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1. Challenges

Although our multi-view, volumetric capture systems
can provide high-quality textured scans of individuals, it
fuses the 3D surfaces of multiple closely interacting persons
into a single connected surface. In Fig. 10 we show several
examples of the fused geometry of multiple persons inter-
acting with physical contact. As we can see from Fig. 10,

the raw scan does not contain any instance-level informa-
tion, thus there exists a lot of instance ambiguity in the con-
tact area. Our main challenges are to derive complete per-
subject surface geometry from the fused scan and to further
gain instance-level information in 3D space.

2. Dynamic Personalized Prior
2.1. SMPL Registration

Registering the SMPL model [13] to individual scans is
formulated as an energy minimization problem over body
shape β, pose θ and translation t as defined in Eq. (1) in the
main manuscript. The important energy terms are detailed
as following:
Surface Energy Term Es: bi-directional Chamfer distance
between the scan R and registered SMPL template M de-
fined by

ES =
1

|VM|
∑

vM∈VM

min
vR∈VR

ρ(∥vM − vR∥)+

1

|VR|
∑

vR∈VR

min
vM∈VM

ρ(∥vM − vR∥),
(9)

where VR and VM are the vertices of the raw scan and the
SMPL template, respectively. ρ is the Geman-McClure ro-
bust penalty function.
3D Keypoint Energy Term EJ : we first detect the 2D key-
points on the multi-view images via [3]. The 3D keypoints
J3D are then obtained via robust triangulation of the 2D
keypoints. The keypoint energy term is then formulated as

EJ =
1

|J |

J∑
j

∥JSMPL(θ, β, t)j − J3Dj∥, (10)

where JSMPL(θ, β, t) is the 3D SMPL joints given the SMPL
parameters.

Several examples of SMPL registrations to individual
scans are shown in Fig. 11.

2.2. Network Architecture

We follow [4] to use two neural networks to model shape
and deformation in canonical space. The network architec-
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Figure 10. Fused geometry. The raw scans fuse the individual surface geometries into a single connected geometry and thus do not contain
any instance-level information.

SMPL RegistrationTextured Scan Scan aligned with SMPL

Figure 11. Examples of SMPL registrations.

ture of the shape field and deformation field are illustrated in
Fig. 12. To better model the high-frequency details such as
wrinkles of clothed humans, positional encoding [14] with
4 frequency components is applied to the input points.

3. Instance Segmentation During Interaction

3.1. Data Preprocessing.

We capture each interaction sequence starting from a
frame where no physical contact between the P subjects oc-
curs. Note that such raw scans without physical contact can
be easily decomposed into P connected components, i.e.
the individual textured scans of the P subjects. We track the
raw scans until the frame where the number of the decom-
posed component decreases, meaning there exists physical
contact between subjects. We denote the last frame before
the contact as t0 and use the decomposed individual scans
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(B) Deformation Field

Figure 12. Network architecture. Each rectangle represents a
dense linear layer with its output dimension specified. For more
details about the network architecture please refer to [4].

to obtain initial SMPL parameters Θp
t0 .

3.2. Implementation Details.

The scan-to-mesh loss term Ls2m is generally defined as

Ls2m(S,M) =
1

|VS |
∑

vS∈VS

ρ( min
vM∈VM

∥vM − vS∥), (11)

where ρ is the Geman-McClure robust penalty function.

We use the Adam optimizer [10] with the default values
β1 = 0.9 and β2 = 0.999 for the pose and shape opti-
mization. In the pose optimization stage, the learning rate
is set to η = 10−2 and body poses are optimized until con-
vergence. During the shape refinement stage, the learning
rate is set to η = 5 × 10−5 and the weight of the collision
loss term λcoll is 0.1. We observe that setting the number
of alternating optimization steps N to 2 can already lead to
good convergence. For more discussion about the number
of alternating optimization steps please refer to Sec. 5.1.
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4. Hi4D Dataset
4.1. Capture System

We captured our dataset in a Volumetric Capture Studio
equipped with 106 synchronized cameras (53 RGB and 53
IR cameras), from which we release 8 RGB images equally
distributed on the external perimeter. The sequences are
filmed at 12 MP, 30 FPS, and within an effective capture
volume of 2.8 m in diameter and 3 m in height. Each frame
Mraw

t consists of a mesh with 80K faces with an estimated
average error of 1-2 mm, and a texture map of 4 × 4 MP
resolution [5].

4.2. Contents

With Hi4D we publish the following data:

1. 4D textured scans. High-quality textured scans ob-
tained on our multi-view capture stage [5].

2. Instance segmentation masks in 2D and 3D. Given
our method, the raw scans are then segmented auto-
matically by assigning the label of the closest individ-
ual reposed avatar to each vertex. These 3D segmenta-
tion masks are then projected to multi-view RGB im-
ages to obtain 2D instance masks.

3. Parametric body models. As part of the outputs of
the alternating optimization process, SMPL registra-
tions of each individual are obtained along with the
instance meshes by our proposed method.

4. Vertex-level contact annotations. For each vertex on
the instance/SMPL mesh, we compute the point-to-
surface distance to the mesh of another person. If the
distance is lower than a threshold (1 cm for instance
meshes and 2 cm for SMPL meshes) and the normals
depict quasi-opposite direction, the vertex is labeled
as in contact. In this way, we obtain a binary contact
label for each vertex. We further find the contact cor-
respondence of each in-contact vertex by searching for
the closest contact point of another person. We de-
note the contact segmentation of a person p as S (p) ∈
{0, 1}Nverts ×1 and the contact correspondence between
person p0 and p1 as C (p0, p1) ∈ {0, 1}Nverts0×Nverts1 .

5. RGB images. For every frame, we provide 8 RGB
views as shown in Fig. 8 of the main paper.

More examples from Hi4D are shown in Fig. 21.

4.3. Subject Statistics

Hi4D captures 20 unique subject pairs (16 female, 24
male). Our dataset contains a variety of subject pairs with
diverse height, weight and garments. The statistics of the
participants are shown in Fig. 13.
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Figure 13. Statistics of the participants in Hi4D.

4.4. Pose Accuracy Validation

Evaluating how accurate our SMPL registrations are is
a challenging problem in itself. This is because we have
frequent and heavy occlusions in our setting, so even the
gold-standard, marker-based optical tracking, is struggling
to produce accurate results without laborious manual inter-
ventions in post-processing. We take a first step towards
evaluating the pose accuracy of our SMPL registrations by
comparing our results to a capture technology that does not
require line-of-sight but is still accurate. We chose to use
electromagnetic (EM), body-worn sensors similar to [9].

More specifically, one subject is wearing 12 EM sen-
sors, while performing 3 kinds of interactions with another
subject on the volumetric capture stage. The EM sensors
are synchronized with the cameras. We then fit the SMPL
model to the EM data, assuming that the SMPL shape of
the subject is known. Further, to spatially align the EM data
with the coordinate frame of the capture stage, we track the
EM source with an Apriltag [11, 16, 21]. We can then com-
pare the SMPL fit obtained via the EM sensors with the
SMPL fit obtained by our method. The results are shown in
Tab. 5.

As we can see from Tab. 5, the error of our SMPL regis-
tration pipeline compared to EM-based fitting with body-
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Sequence PA-MPJPE [mm] PA-MPJAE [deg]
dance 16.1 11.2
fight 18.5 9.1
hug 20.6 10.0

mean 18.4 10.1

Table 5. Quantitative comparison to EM-based pose reference.
Comparison of our SMPL registration pipeline to an SMPL fit ob-
tained by fitting to body-worn EM sensors that do not require line-
of-sight. We compare on three sequences and compute the average
per-joint positional (MPJPE) and per-joint angular (MPJAE) error
after Procrustes alignment.

Figure 14. Qualitative comparison to EM-based reference.

worn sensors is on average a very low 1.84 cm in posi-
tional error (PA-MPJPE) or 10.1 degrees in angular error
(PA-MPJAE). For comparison, the estimated accuracy of
3DPW [20], a dataset with monocular RGB data and SMPL
registrations of people who are not in contact, was reported
to be 2.6 cm and 12.1 degrees [20], which is considered
ground-truth for RGB-based pose estimators. Thus, these
results support that our method indeed produces accurate
results despite the challenges posed by frequent occlusions
and interactions.

4.5. Ethics

Our institution’s ethics committee duly approved the
protocol we followed for the collection and publication of
Hi4D. All subjects have freely volunteered to participate in
this data collection. They have been duly informed about
the intended use and publication of the dataset, signed a
consent form, and have received compensation for the time
it took to record them.

5. Experiments

5.1. Number of Alternating Optimization Steps

We select a subset of our collected data to evaluate the
effect of the number of alternating optimization steps. With
a larger number of alternating optimization steps, the recon-

Scan SMPL+D Ours 

Figure 15. Qualitative comparison with SMPL+D. The
SMPL+D baseline fails to reconstruct all the details of humans
and more importantly, it lacks personalized prior information to
tackle the instance ambiguity in the contact area. In contrast, our
method is able to maximally reconstruct the surface details and
disambiguate contact parts between different persons.

struction quality increases as shown in Tab. 6. The compu-
tational time increases proportionally to the number of opti-
mization steps. In our implementation, the number of alter-
nating optimization steps N is set to 2 to balance between
the reconstruction quality and the computational efficiency.

Number of Steps IoU ↑ C-L2 ↓ P2S ↓ NC ↑
1 0.987 0.23 0.23 0.945
2 0.989 0.20 0.21 0.946
5 0.991 0.19 0.20 0.947

Table 6. Ablation study on the number of alternating optimiza-
tion steps.

5.2. SMPL+D Baseline

We apply the similar alternating optimization schema for
the SMPL+D baseline. More specifically, we start from the
last frame without physical contact and use its SMPL pose
and vertex displacement as initialization. During the opti-
mization process, we first optimize the poses by minimizing
the scan-to-mesh loss term (cf . (11)) between the raw scans
and SMPL+D templates plus a pose prior term (cf . [2]).
Then we refine the displacements of the SMPL template by
minimizing the surface energy term between the raw scans
and SMPL+D templates with an additional SDF-based col-
lision term [8]. The poses and displacements are optimized
in an alternating manner for N = 2 steps. The qualitative
results are shown in Fig. 15. Visually we observe several
artifacts including bodies of subjects overlapping, misalign-
ment with input scans and oversmoothing, which is caused
by the limited representation capability of the SMPL mesh
model.
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Scan w/o pre-built priors Ours

Figure 16. Qualitative comparison with SNARF (w/o pre-built
dynamic personalized priors). Without pre-built personalized
priors, the results from the joint training of multiple SNARF mod-
els typically have artifacts in contact areas.

5.3. SNARF (w/o pre-built dynamic personalized
priors) Baseline.

We further implement a baseline where instead of build-
ing avatars in advance we train the SNARF models of each
subject jointly via the loss defined in Eq. 7 in the main
manuscript. Note that training SNARF models from scratch
requires accurate SMPL poses, which itself is a challenging
problem especially when people interact in close proximity
(see Sec. 8.1 in the main manuscript). In order to disen-
tangle the influence of SMPL pose estimations, we use the
reference SMPL pose obtained by our proposed method to
build the avatars on the fly.

As seen from Fig. 16, without pre-built avatars, the re-
sults from joint training of multiple SNARF models from
scratch tend to have artifacts, especially in the contact area.
This observation further confirms the importance of creat-
ing individual avatars beforehand, which helps to tackle the
instance ambiguity when multiple instances interact with
physical contact. The quantitative results in Tab. 7 also ver-
ify that our proposed method can achieve better reconstruc-
tion accuracy.

Method IoU ↑ C-L2 ↓ P2S ↓ NC ↑
w/o pre-built priors 0.952 0.49 0.49 0.939

Ours 0.989 0.22 0.23 0.945

Table 7. Quantitative comparison with SNARF (w/o pre-built
dynamic personalized priors). Our method with pre-built avatars
consistently outperforms the SNARF baseline without pre-built
dynamic personalized priors.

5.4. Results on More Than Two People

Our method is extendable to more than two people as
shown in Fig. 17.

Textured Scan Instance Meshes SMPL

Figure 17. Results on more than two people.

6. Benchmark

6.1. SMPL Estimation

Contact Distances (CD). This metric measures the average
distances of annotated contact correspondences (cf . Sec.
4.2):

CD =
∑

(v0,v1)∈C(p0,p1)

ϕD (v0, v1) , (12)

where (v0, v1) is a pair of vertices in contact and ϕD (v0, v1)
is the euclidean distance between this contact correspon-
dence.
Contact Optimization. From the results of SMPL estima-
tion methods (cf . Tab. 3 and Fig. 8 in the main manuscript)
we can observe common errors presented as the formats of
incorrect spatial arrangement as well as strong interpenetra-
tion in 3D space. We hope our dataset can drive research on
multi-person pose and shape estimation along with contact
modeling.

To motivate research on contact modeling, we conduct
an experiment on a subset of our collected data (around
3000 frames) to show the importance of contact. We use
the SMPL outputs from ROMP [19] as our initialization.
As we can see from Tab. 8, refining the SMPL outputs from
ROMP solely with the 2D ground-truth keypoints via the 2D
re-projection loss cannot fully alleviate the problem. Thus
we add two additional contact-relevant losses:
1) Contact Segmentation Loss: We draw inspiration from
[7] and define the contact segmentation value Spred(p)i at a
vertex vi of subject p is defined as follows:

Spred(p)i = min(
0.02

di
, 1.0), (13)

where di denotes the minimal distance of vertex vi to an-
other person and 0.02 m is the contact threshold.
The contact segmentation loss compares the current con-
tact segmentation map Spred with our annotations Sgt over
NSMPL all SMPL vertices for both subjects:

Ls(p0, p1) =

∑
p∈{p0,p1} |Spred(p)− Sgt(p)|

2 ∗NSMPL
. (14)
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Figure 18. Qualitative results of contact optimization. Without
explicitly taking contact information into account, there exist in-
terpenetration and implausible poses.

2) Contact Distance Loss: We also minimize the contact
distance loss which measures the distance of the paired in-
contact vertices (v0, v1) from subjects (p0, p1) respectively.
C(p0, p1) is denoted as the set of all Nc contact pairs.

Lc (p0, p1) =

∑
(v0,v1)∈C(p0,p1)

ϕD (v0, v1)

Nc
(15)

From Tab. 8 we observe that the pose and shape estima-
tion can further benefit from the correct contact modeling.
A qualitative result can be found in Fig. 18.

Method MPJPE ↓ MVE ↓ PCDR0.1 ↑ CD ↓
ROMP 110.1 135.2 64.24 275.2

w/ 2D Kp 74.1 87.5 70.56 181.8
w/ 2D Kp + Contact 72.7 83.8 78.83 35.1

Table 8. Quantitative results of contact optimization on a sub-
set of Hi4D.

6.2. Detailed Geometry Reconstruction

Monocular Setting. To our best knowledge, the only
method that deals with multi-person reconstruction from a
single image [15] does not handle the case where multiple
people are interacting in close range and it is unfortunately
not open-sourced. Thus we extend the single-person recon-
struction methods PIFuHD [18] and ICON [22] to the multi-
person case. More specifically, first, a pre-trained instance
segmentation network [12] is applied to generate instance
masks. The segmented images of each individual are given
as input to PIFuHD [18] and ICON [22].

To evaluate the reconstruction performance, we first as-
sign each predicted instance a ground truth instance ID by
comparing the overlap region between predicted instance
segmentation masks and ground truth instance segmenta-
tion masks. Then we perform ICP registration [1] be-

tween the reconstructed mesh (after scaling by height) and
its corresponding ground truth mesh to align them in 3D
space. After these processing steps, the reconstruction per-
formance is evaluated with the same metrics mentioned in
Sec. 7 of the main manuscript.
Multi-view Setting. Note that DMC [24] requires the
SMPL-X models generated by [23], which are not publicly
available. Instead, we use the output from MVPose [6] and
convert the SMPL model to SMPL-X by using the official
conversion tool [17].

More qualitative results of SMPL estimation and detailed
geometry reconstruction methods are shown in Fig. 19 and
Fig. 20.

6.3. Additional Notes

In the monocular setting, one camera view for each se-
quence is selected for evaluation. The information regard-
ing the selected camera view will be released along with the
dataset.

7. Societal Impact
Our dataset, Hi4D, promotes progress in 3D human pose

and shape reconstruction from single or multiple RGB im-
ages. Such technology promises valuable applications that
would benefit society at large, e.g. remote telepresence,
automated rehabilitation, or computer-guided fitness and
health coaches. However, human pose estimation, espe-
cially from images, might be abused for malicious surveil-
lance or person identification via gait analysis or face recog-
nition. Although neither our method nor our dataset directly
caters to such dubious uses, it may foster future advance-
ments of such methods and thus indirectly contribute to
adverse uses. This poses an ethical and societal concern,
which must be considered in future developments of these
technologies. We argue that one way of doing so is to con-
duct transparent and open-sourced research to both inform
the public about how such methods work exactly and to pro-
mote the research of respective countermeasures.
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Figure 19. Qualitative results of SMPL estimation methods.

Input PIFuHD ICON DMC (4-views) DMC (8-views) GT

Figure 20. Qualitative results of detailed geometry reconstruction methods.

7



Textured Scans Instance Meshes
with Contact Annotations

Instance Segmentation Masks 
in 2D and 3D

Parametric Body Models 
with Contact Annotations

Figure 21. More examples from Hi4D.
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