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Abstract. While previous years have seen great progress in the 3D
reconstruction of humans from monocular videos, few of the state-of-
the-art methods are able to handle loose garments that exhibit large
non-rigid surface deformations during articulation. This limits the ap-
plication of such methods to humans that are dressed in standard pants
or T-shirts. Our method, ReLoo, overcomes this limitation and recon-
structs high-quality 3D models of humans dressed in loose garments from
monocular in-the-wild videos. To tackle this problem, we first establish
a layered neural human representation that decomposes clothed humans
into a neural inner body and outer clothing. On top of the layered neu-
ral representation, we further introduce a non-hierarchical virtual bone
deformation module for the clothing layer that can freely move, which
allows the accurate recovery of non-rigidly deforming loose clothing. A
global optimization jointly optimizes the shape, appearance, and defor-
mations of the human body and clothing via multi-layer differentiable
volume rendering. To evaluate ReLoo, we record subjects with dynami-
cally deforming garments in a multi-view capture studio. This evaluation,
both on existing and our novel dataset, demonstrates ReLoo’s clear su-
periority over prior art on both indoor datasets and in-the-wild videos.
Project page: https://moygcc.github.io/ReLoo/
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1 Introduction

As researchers aim to democratize the creation of realistic human avatars, the
reconstruction of 3D clothed humans from casually captured monocular videos
has garnered increased attention. While many solutions have been proposed
to do so in recent years [1, 8, 13, 18, 39, 50], they primarily focus on capturing
subjects with tight-fitting clothing and perform poorly when reconstructing loose
garments whose dynamics are less tightly coupled with body pose. Such loose
garments, however, constitute a significant part of a real-life wardrobe and thus
failure to capture them is limiting the creation of realistic human avatars from
monocular footage. In this paper, we present a method, ReLoo, that overcomes
this shortcoming.

Reconstructing humans dressed in loose clothing requires accurate track-
ing of large, non-rigid deformations and recovering fine-grained details of freely
flowing surfaces. Template-based methods [14, 15, 51] have been applied to do
so but the acquisition of the template burdens the deployment to unseen sub-
jects and its explicit representation limits its expressive capability to capture
dynamically changing surface details. More recently, methods based on neural
implicit functions have emerged as a promising remedy for the disadvantages of
template-based methods [13,16,18,20,35,39,41,47,49,58–60]. Yet, these methods
currently fail to provide convincing reconstructions of humans in loose garments.
We observe that few of these methods differentiate between the human body and
clothing but model the clothed human as a single entity. This limits the expres-
siveness and capacity of the underlying model to capture more local features.
More importantly, this formulation only allows to drive the off-body garments
with skeletal deformations that are derived from the underlying parametric body
model (e.g ., SMPL [27]). Thus, they are inherently incapable of handling highly
dynamic loose garments that are topologically different from the inner body and
do not correlate strongly with the bone movement.

In this paper, we adopt the promising neural implicit shape modeling par-
adigm, but we argue that a single implicit representation fundamentally limits
the representation power and hinders the capability to model complex garment
topology that exhibits free-form deformations. To properly model loose garment
dynamics that only weakly correlate with skeletal deformations – while still re-
taining the ability to deform human bodies with skeleton-driven motions – ReLoo
takes neural implicit human models to the next level. To do so, our approach is
grounded in the following core concepts: i) We establish a layered neural human
representation that decomposes clothed humans into the neural inner body and
outer clothing. ii) Based on this layered neural representation, we further pro-
pose a non-hierarchical virtual bone deformation module for the clothing layer
that allows free movement and accurate recovery of highly dynamic loose outfits.
iii) In a global optimization, we jointly optimize the shape, appearance, and de-
formations of both the human body and clothing layer over the entire sequence
via multi-layer differentiable volume rendering.

In our experiments, we demonstrate that our framework leads to temporally
consistent and high-quality reconstructions of clothed humans dressed in loose
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garments. We also ablate our method to uncover the contribution of its essential
components. Furthermore, we conduct comparisons with existing approaches in
human surface reconstruction and novel view synthesis, showing that our method
outperforms prior art from both the template-based and neural implicit modeling
domains. To highlight differences to the prior art, we capture a new dataset,
MonoLoose, which puts an emphasis on humans dressed in loose clothing under
dynamic motions and contains ground-truth reconstructions captured with a
high-end multi-view volumetric recording studio (MVS).

In summary, in this paper we introduce ReLoo, a method that improves
clothed human reconstruction quality and accurately captures human perfor-
mance dressed in highly dynamic loose garments. Our key contributions are:
– a novel layered neural human representation, disentangling the inner body

and outer clothing; and
– a virtual bone deformation module that is built on top of the layered neural

human representation and accurately tracks the large surface dynamics; and
– a robust framework that leverages multi-layer differentiable volume rendering

achieving high-fidelity 3D human reconstructions from monocular in-the-
wild videos of humans dressed in highly dynamic loose garments.

2 Related Work

Single-Layer Human Reconstruction from Monocular Input Template-
based monocular human performance capture methods track the pre-defined
clothed human template to fit to 2D observations [14,15,51]. They demonstrate
robust tracking of human performance even when dressed in loose garments.
However, they struggle to generalize to in-the-wild settings due to the reliance
on a rigged, personalized, pre-scanned template obtained from a dense capture
setup. Follow-up works endeavor to remove this dependency by adding per-vertex
offsets on top of the SMPL body [1,12]. Nevertheless, the explicit mesh represen-
tation is held back by a fixed resolution and topology, hampering the represen-
tation of fine-grained details. Other works have shown compelling results with
learning-based methods that learn to regress 3D human geometry and appear-
ance from images [2,16,17,39,49,50,58,60]. A major limitation of these methods
is the necessity of high-quality 3D data for supervision. They also often fail to
produce space-time coherent reconstructions over frames. Recent works employ
neural rendering to fit neural fields to videos to obtain an articulated human
model [8, 13, 18, 20, 21, 26, 34, 35, 37, 45, 47]. E.g ., SelfRecon [18] deploys neural
surface rendering [53] to achieve consistent reconstruction over the sequence and
Vid2Avatar [13] leverages differentiable volume rendering [52] to eliminate the
need for pre-masking thus producing robust 3D human reconstruction. However,
all aforementioned methods treat the body and clothing as a single entity, lim-
iting the model’s expressiveness and resulting in low-quality reconstructions for
loose clothing. In contrast, our method is based on a layered neural human repre-
sentation that, in conjunction with our novel virtual bone deformation module,
enables tracking of highly dynamic loose clothing.
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Multi-Layer Human Representation and Reconstruction Several meth-
ods exist that investigate how a clothing layer deforms given 3D human motion.
They use either physically-simulated training data [3,25,31,32,42,44] or directly
deploy physics-informed objectives [10, 40]. These methods have shown com-
pelling results in modeling large deformations of loose outfits. However, they
lack generalization to in-the-wild settings and diverse clothing categories due to
a reliance on input templates [25, 44] and assume high-quality 3D motion data
is already available, not learned from video like in our setting. Our multi-layer
representation and deformation modeling are inspired by this line of work, specif-
ically Pan et al . [31], who also make use of virtual bones. Different from [31], our
method jointly learns the clothing shape and deformations from only 2D obser-
vations, whereas [31] require known clothing templates and 3D simulated data to
achieve animation of clothes. Furthermore, [31] define and fix virtual bones using
skinning decomposition [24], while in our framework the virtual bone placement
evolves naturally with training.

Methods that reconstruct layered clothed humans from videos or images alone
are presented in [5, 7, 8, 19, 30, 36, 43, 48, 54]. Some of them either require active
multi-view setups [4,5,36,48] or depth information [54] preventing them from be-
ing deployed in the wild. BCNet [19] learns to predict clothing geometry draped
over the SMPL body from a single image. However, it is limited to pre-defined
clothing style templates. SMPLicit [7] and ClothWild [30] extend such learning-
based methods to generalize to more general clothing types, but they tend to
produce over-smooth results lacking details such as wrinkles. Our closest related
work, SCARF [8] is built upon SMPL-X [33] and reconstructs the outer cloth-
ing layer using NeRF [29], achieving better reconstruction quality than previous
works. Our method differs from SCARF [8] in three regards: 1) ReLoo is a fully
implicit representation that is expressive enough to capture detailed body (in-
cluding faces) and clothing shape jointly, 2) it is not limited to self-rotating
motions, and 3) it supports the capture of large non-rigid surface deformations
of loose garments thanks to a novel virtual bone deformation module.

In summary, existing monocular-based methods tend to overly rely on para-
metric body models [27,33] as a human body proxy and thus struggle to model
garments whose deformations cannot be easily correlated with the inner body
pose under dynamic motion (as is the case for t-shirts or pants that are commonly
used as example apparel). Moreover, they can only capture less detailed person-
alized shape characteristics such as faces. ReLoo overcomes these limitations and
when compared to existing single-layer, multi-layer, and template-based methods
produces higher fidelity results across the board.

3 Method

We introduce ReLoo, a novel method for detailed geometry and appearance
reconstruction of a human performer in highly dynamic, loose clothing from
monocular in-the-wild videos. The overview of our method is schematically given
in Fig. 1. To enable a temporally consistent, expressive human representation
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Fig. 1: Method Overview. Given an image from a video sequence, we sample points
along the camera ray for each neural layer. We warp sampled points for the body layer
xB

d into canonical space via inverse LBS derived from skeletal deformations. We deform
sampled points for the garment layer xG

d into canonical space via inverse warping
based on the proposed virtual bone deformation module (Sec. 3.2). We then evaluate
the respective implicit network to obtain the SDF and radiance values (Sec. 3.1). We
apply multi-layer differentiable volume rendering to learn the shape, appearance, and
deformations of the layered neural human representation from images (Sec. 3.3). The
loss function L compares the rendered color predictions with image observations as
well as a segmentation mask obtained using SAM [22] (Sec. 3.4).

we establish a layered neural implicit representation for the body (inner layer,
naked) and garment (outer layer, template-free) as described in Sec. 3.1. On
top, we introduce a hybrid deformation strategy which consists of skeletal de-
formation for the body and a virtual-bone-driven deformation module for the
outer loose garment (Sec. 3.2). This allows us to capture dynamic loose gar-
ments. We learn the layered human representation and the deformation module
jointly by performing multi-layer differentiable volume rendering (Sec. 3.3). The
whole process is trained globally to optimize jointly for shape, appearance, and
deformations of the inner body and outer garment layer (Sec. 3.4).

3.1 Layered Neural Human Representation

We represent the 3D shape of the clothed human with implicit signed-distance
fields (SDF) and the appearance with texture fields in a temporally consistent
canonical space. The inner body and outer garment are modeled separately. More
specifically, we model the geometry and appearance of the body in canonical
space with a neural network fB which predicts the signed distance value sB

and radiance value cB for any 3D point xB
c in this space. We similarly model

the garment with a neural network fG that takes points xG
c in the garment’s
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canonical space as input:

cB , sB = fB(xB
c ,θ); cG, sG = fG(xG

c ,θ), (1)

where θ denote the SMPL pose parameters [27], which we concatenate to xB
c and

xG
c to model pose-dependent effects such as facial features and clothing wrinkles.

For clothing that is not a single, dress-like garment we use a separate network for
the upper and lower garment. For simplicity and without loss of generality, we
only discuss a single piece of clothing in the following. Note that if a canonical
point is within any of these two surfaces (sB < 0 or sG < 0), it is also within the
entire clothed human shape. Thus we can obtain the final clothed human shape
by compositing these two neural fields and taking their minimum [38]:

sH = min{sB , sG}. (2)

3.2 Hybrid Deformation Modeling

To find point correspondences between the deformed space in the observed image
and our pre-defined canonical space, we devise a hybrid deformation module
that treats the body and clothing layers according to their respective levels of
rigidity. The human body predominantly depends on skeletal deformation, but
the deformation of the loose garments cannot solely be explained by skeletal
motion alone. Therefore we propose to drive clothing deformation by a set of
additional virtual bones whose transformations are directly learned from video.
Skeletal Deformation. We follow a standard skeletal deformation based on
SMPL to find correspondences in canonical and deformed space for the inner
body [13]. Specifically, given the bone transformation matrices Bi for joints
i ∈ {1, ..., nb} which are derived from the body pose parameters θ, a canonical
point xB

c is mapped to the corresponding deformed space point xB
d via linear

blend skinning (LBS):

xB
d =

ns∑
i=1

wi
cBi x

B
c . (3)

Conversely, given a point in deformed space xB
d , its canonical correspondence

can be solved via:

xB
c = (

ns∑
i=1

wi
dBi)

−1 xB
d . (4)

Here, ns denotes the number of skeletal bones in the transformation, and w(·) =
{w1

(·), ..., w
ns

(·)} represents the skinning weights for xB
(·). We assign wd to xB

d based
on the average of neighboring SMPL vertices’ skinning weights, weighted by the
point-to-point distances in deformed space. The treatment of canonical points
xB
c follows a similar approach.

Virtual Bone Deformation. The virtual bones correspond to a set of bones
V = {vi}nv

i=1 defined in the canonical space that drives the neighboring 3D gar-
ment points xG

c using rigid transformations. Different from the skeletons of char-
acters rigged by artists such as SMPL [27], the virtual bones are non-hierarchical
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and are not restricted to rotate in relation to their parents following an anatomi-
cal structure. Thus, they can be transformed freely and are applicable to capture
the deformations of highly dynamic loose garments.

Given a set of virtual bones V, their transformations consist of the rotations
and translations relative to the SMPL root T i = [Ri|Ti] which are predicted by
a deformation field DG, parameterized via an MLP. DG takes the concatenation
of the 3D positions vi of the virtual bones, the human body pose θ and a
continuous time embedding t as input, and outputs the axis angles Ai and
translations Ti. The continuous time embedding t is included to aid in learning
temporal dynamics from videos. The rotations Ri are further obtained from Ai

via the Rodrigues’ formula fRod(·):

T i = [fRod(Ai)|Ti] = DG(vi,θ, t). (5)

To drive a 3D garment point from canonical space xG
c to deformed space xG

d and
vice-versa, we use the neighboring virtual bones’ motions and LBS as follows:

xG
d =

nv∑
i=1

δicT i x
G
c , xG

c = (

nv∑
i=1

δidT i)
−1 xG

d (6)

Here, nv denotes the number of virtual bones for deforming loose garments,
which is a hyperparameter, and δ(·) = {δ1(·), ..., δ

nv

(·)} represent the skinning
weights of xG

(·) w.r.t. each virtual bone vi ∈ V. δ(·) is calculated based on the
inverse of the distance between xG

c and each vi whereby far away bones are
clamped to 0. More details are shown in the Supp. Mat.

Unlike [31], where a garment template is available and the virtual bones are
extracted using 3D simulation data, we learn the clothed human model from
monocular observations solely and extract the virtual bones on the fly without
requiring any specific template prior. We explain the acquisition more in Sec. 3.4.

3.3 Multi-Layer Volume Rendering

As we are aiming to jointly reconstruct multiple layers of neural implicit fields,
we are required to depart from standard differentiable volume rendering for static
scenes (e.g ., [29]). We thus introduce multi-layer volume rendering tailored to our
multi-layer human representation (Sec. 3.1) to reconstruct both inner body and
outer clothing under garment-body occlusions. To do so, we use surface-based
volume rendering [52] while re-ordering multiple neural layers [55].

Specifically, we shoot a ray r through every pixel of the image and sample
two sets of points in the body layer and the garment layer: {xB

d,1, ...,x
B
d,N} and

{xG
d,1, ...,x

G
d,N} following the two-stage sampling strategy proposed in [52]. Note

that both sets contain the same amount of points. Next, we use the skeletal de-
formation to warp each sampled point xB

d,i to the body’s canonical space xB
c,i and

we use our virtual bone deformation module to find canonical correspondences
xG
c,i to each sampled point xG

d,i (Sec. 3.2). Then, we obtain the corresponding
signed-distance (sBi and sGi ) and radiance values (cBi and cGi ) by querying the
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implicit shape and texture fields with the canonical points. We then compute
the occupancy for the inner and outer layer at the i-th sampled point as:

oBi =
(
1− exp

(
−σB

i ∆xB
i

))
; σB

i = σ
(
sBi ,θ

)
(7)

oGi =
(
1− exp

(
−σG

i ∆xG
i

))
; σG

i = σ
(
sGi ,θ

)
(8)

where ∆x
(·)
i is the distance between two adjacent sample points in the respective

layer, and σ(·) represents the scaled Laplace’s Cumulative Distribution Function
(CDF) to convert sBi and sGi to volume densities (σB

i and σG
i ) following [52].

Finally, we integrate the radiance numerically for both layers and obtain the
neurally rendered color of the human performer ĈH :

ĈH =

N∑
i=1

∑
p∈{B,G}

opi cpi ∏
q∈{B,G}

∏
j∈Iq,p

i

(
1− oqj

) , (9)

where Iq,p
i = {j ∈ [1, N ] | z(xq

d,j) < z(xp
d,i)} and z(·) measures the depth of a

point w.r.t. the camera origin. In other words, we sort all points according to
their depth values from near to far and then conduct the volumetric integration.
Scene Composition. To model the background of the scene we use NeRF++
[56], denoted as fS , which estimates a color value ĈS representing the scene’s
color. The final pixel color Ĉ is a composite of ĈS with ĈH following [13]. More
details are shown in the Supp. Mat.

3.4 Global Optimization

To jointly learn the inner body and outer clothing of clothed humans from
monocular videos in a template-free manner, we propose a two-stage training
schema. The whole training process is formulated as a global optimization over
all optimizable parameters and the entire video sequence.
Two-Stage Training Schema. In the first stage, we leverage skeletal defor-
mation to deform both the body and garment layer. Meanwhile, we warm up
the virtual bone deformation field DG by encouraging DG to have similar de-
formations as the SMPL model around near-body regions. In the second stage,
we activate the virtual bone deformation module to drive the garment layer. To
obtain virtual bones, we generate garment meshes using Multiresolution IsoSur-
face Extraction (MISE) [28]. In theory, each of the M vertices of the resulting
canonical garment mesh can be made a virtual bone. This will however incur a
high computational cost in the deformation module. To mitigate this but still
retain expressive capability we employ a quadric mesh simplification algorithm
to reduce the number of vertices to nv ≪ M . The remaining vertices after the
simplification are the initial virtual bone locations. We empirically found 80 vir-
tual bones to deliver the best performance-efficiency compromise (see Sec. 4.5).
Note that we periodically generate new sets of virtual bones during training to
account for changing garment topologies.
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Reconstruction Loss. For every ray r ∈ R we compute how well the rendered
color Ĉ(r) matches the image pixel’s RGB value C(r) with the L1-distance:

Lrgb =
1

|R|
∑
r∈R

|C(r)− Ĉ(r)|. (10)

Segmentation Loss. We modify Eq. (9) to render the opacity ÔB(r) and ÔG(r)
per pixel for both layers:

ÔB(r) =

N∑
i=1

[oBi
∏

q∈{B,G}

∏
j∈Iq,B

i

(
1− oqj

)
]; ÔG(r) =

N∑
i=1

[oGi
∏

q∈{B,G}

∏
j∈Iq,G

i

(
1− oqj

)
].

(11)
The segmentation loss is calculated between the rendered pixel-wise opacity and
the segmentation masks extracted using SAM [23]. A robust Geman-McClure
error function ρ [9] is applied to down-weigh potentially erroneous cloth segmen-
tation mask predictions (more details are explained in Supp. Mat):

Lseg =
1

|R|
∑
r∈R

∑
p∈{B,G}

ρ(Mp
sam(r)− Ôp(r)). (12)

Adaptive Eikonal Loss. We follow IGR [11] and sample points in the canonical
space to compute the Eikonal constraint to regularize the validity of our SDFs
in each layer. Unlike [11], which randomly samples points in the entire space,
we periodically extract the canonical shapes for both layers and sample points
around the explicit mesh surfaces:

Leikonal = ExB
c

(∥∥∇sB
∥∥− 1

)2
+ ExG

c

(∥∥∇sG
∥∥− 1

)2
. (13)

Virtual Bone Deformation Regularization. To accelerate the convergence
of the virtual bone deformation field in the first stage of the training process, we
randomly sample 3D canonical garment points xG

c and apply additional SMPL
transformation regularization which ensures that the virtual bone deformation
LBSG do not deviate excessively from the transformations made by skeletal
deformation LBSB during the warm-up stage:

Lreg = ∥LBSB(xG
c )− LBSG(xG

c )∥2 (14)

See Supp. Mat for more details about the final loss.

4 Experiments

We first introduce the datasets and metrics used for evaluation. Then, we com-
pare our proposed method with state-of-the-art approaches in two tasks: 3D sur-
face reconstruction and novel view synthesis. Ablation studies are then conducted
to demonstrate the effectiveness of our core components and design choices.
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Table 1: Quantitative evaluation on surface reconstruction. We compute the
3D surface metrics on the MonoLoose dataset. Our method consistently outperforms
all baselines on all evaluation metrics (cf . Fig. 2).

Method C− ℓ2 ↓ NC ↑ V − IoU ↑
SelfRecon [18] 2.22 0.788 0.844
Vid2Avatar [13] 2.34 0.794 0.776
SCARF [8] 3.13 0.711 0.691
Ours w/o Multi-Round Sampl. 2.34 0.770 0.879
Ours 1.93 0.831 0.881

4.1 Datasets

MonoLoose Dataset: Due to the lack of datasets that capture dynamic human
performance with high-fidelity 3D ground-truth meshes when dressed in loose
garments, we captured our own dataset, MonoLoose, with a high-end multi-
view volumetric capture studio (MVS) [6]. This dataset is specifically curated
for evaluating monocular human surface reconstruction and novel view synthesis
methods, with a particular focus on subjects dressed in loose attire. It consists
of five sequences with different identities, loose garment styles, and motions. For
more details on the contents of MonoLoose, please refer to the Supp. Mat.
DynaCap [14]: We further evaluate our method on DynaCap, which captures
dynamic human performance with a dense multi-view system. We curate two
sequences that feature loose garments for novel view synthesis evaluation. Note
that DynaCap does not provide dense scans for reconstruction comparison.
In-the-wild videos: We use in-the-wild videos collected from DeepCap [15] and
online videos to demonstrate the robustness and generalization of our method.
Evaluation Protocol: We report Chamfer distance (C− ℓ2) [cm], normal con-
sistency (NC), and volumetric IoU for surface reconstruction comparison. Novel
view synthesis quality is measured via PSNR, SSIM [46], and LPIPS (×100) [57].

4.2 Surface Reconstruction Comparisons

We compare our proposed human surface reconstruction method to several state-
of-the-art approaches [8, 13, 18] on our MonoLoose dataset. SelfRecon [18] and
Vid2Avatar [13] deploy neural rendering to reconstruct the 3D clothed human
using a single layer. SCARF [8] reconstructs a hybrid human model based on an
explicit inner body and NeRF-based clothing model. All baseline methods rely
on SMPL skeleton skinning transformation with additional deformation fields
for the garments’ motion. Our method outperforms all baselines by a substan-
tial margin on all evaluation metrics (cf . Tab. 1). This disparity becomes more
visible in qualitative comparisons shown in Fig. 2. When the dynamic loose gar-
ments necessitate large non-skeletal surface deformations, all baseline methods
fail to recover complete human surfaces or produce implausible and corrupted
reconstructions with visible artifacts (e.g ., discontinuities between legs and miss-
ing dress parts, see highlights in Fig. 2). Furthermore, they tend to produce less
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Fig. 2: Qualitative 3D surface reconstruction comparison. Baseline methods
produce less detailed and implausible 3D clothed human reconstructions with visible
artifacts (discontinuities between legs, missing dress parts) due to the strong reliance on
skeletal deformations. In contrast, our method correctly recovers the clothing dynamics
and generates more detailed and complete 3D human surfaces. Note also that ReLoo
produces more detailed facial features.

fine-grained details (e.g ., the faces shown in the third row and the T-shirts shown
in the last row of Fig. 2). In contrast, ReLoo generates complete and plausible
3D human shapes with considerably more details (e.g ., clothing wrinkles that
fully align with image observations). ReLoo also clearly outperforms the base-
lines for the surface reconstruction under unseen views (see white background
columns in Fig. 2). We attribute this superiority to our proposed neural layered
clothed human representation and novel virtual bone deformation module.

4.3 Novel View Synthesis Comparisons

We compare with the same baselines for the task of novel view synthesis on
MonoLoose and DynaCap [14]. We choose an unseen camera from the respec-
tive dataset as a novel view for all methods. As shown in Tab. 2, our method
outperforms all baseline methods w.r.t. all metrics with an especially large mar-
gin on MonoLoose. Fig. 3 shows that SDF-based methods SelfRecon [18] and
Vid2Avatar [13] strongly rely on skeletal deformation and cannot accurately re-
cover the correct 3D shapes, leading to similar artifacts in novel view rendering
as in surface reconstruction. Although the NeRF-based method SCARF [8] can
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Fig. 3: Qualitative novel view synthesis comparison. Our method achieves bet-
ter rendering quality with detailed texture recovery in e.g ., garment patterns and faces.
Baseline methods can only produce corrupted and blurry rendering results (dress dis-
continuities between legs and unsharp texture details).

fit to the coarse shape provided by the contour in image observations, it only
produces blurry rendering results. ReLoo, in contrast, produces more plausible
and realistic renderings while preserving sharper and fine-grained texture details.

4.4 Qualitative Comparisons with Template-based Method

Since there is no open-sourced template-based monocular method, we conduct
a qualitative comparison with DeepCap [15], which is a learning-based method
that predicts the template transformation given image observations. Our method
is based on implicit neural fields which are topologically flexible and are not
limited to a fixed resolution. As shown in Fig. 4, our method better recovers
both the human surface details (e.g., faces and wrinkles) and large non-rigid
clothing deformations. More importantly, our representation allows topological
changes (empty space between dresses shown in the top row of Fig. 4), while the
template-based method is inherently bound to the pre-scanned template mesh.

4.5 Ablation Study

Multi-Layer Volume Rendering. To learn the layered human representa-
tion, we leverage multi-layer volume rendering that is SDF-based and includes
an inverse CDF sampling process. This means we perform multi-round sampling,
where we sample two layers individually and combine the samples through sort-
ing. To investigate the effect of this sampling strategy, we compare it to one-
round sampling whereby we join the implicit SDFs of the human body and cloth-
ing simply by computing the minimum of the joined function. Results in Tab. 1
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Table 2: Quantitative evaluation on novel view synthesis. We report the quanti-
tative results on test views. Our method consistently outperforms other baseline meth-
ods on both datasets and all quantitative evaluation metrics, showing more realistic
and plausible rendering quality (cf . Fig. 3).

MonoLoose DynaCap [14]

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SelfRecon [18] 22.5 0.953 6.08 26.8 0.982 1.56
Vid2Avatar [13] 25.9 0.968 4.66 27.1 0.983 1.82
SCARF [8] 23.3 0.953 6.59 25.5 0.979 2.55
Ours w/o Virtual Bone 28.7 0.969 3.81 27.3 0.982 1.52
Ours 29.2 0.970 3.15 27.9 0.985 1.27

Image DeepCap ReLoo (Ours)

Fig. 4: Qualitative comparisons
with template-based method.
Compared to the template-based
method, our representation and learn-
ing schemes enable more detailed and
realistic human surface reconstruction
and topological flexibility.

Image One-Round Sampl. Multi-Round Sampl.

Fig. 5: Importance of multi-round
sampling. One-round sampling strat-
egy can lead to physically implausi-
ble clothed human reconstructions with
severe garment-body interpenetration
while multi-round sampling achieves
better holistic reconstructions.

indicate that multi-round sampling helps to improve the holistic clothed human
reconstruction quality and avoids garment-body interpenetration (cf . Fig. 5).
Virtual Bone Deformation Module. An important hyperparameter in our
framework is the number of virtual bones nv for a garment. We quantitatively
analyze the effects by learning the clothed human model with different numbers
of virtual bones, i.e. nv ∈ {20, 40, 80, 160, 320}. We choose a subset of MonoLoose
to evaluate novel view synthesis based on the perceptual similarity metric LPIPS
[57] and time per training iteration. The quantitative results are reported in
Fig. 6. We observe that the time cost linearly increases, while the error decreases
with the sharpest drop at nv = 80 bones. We thus select this point as the best
performance-efficiency compromise.

To validate the effectiveness of our virtual bone deformation module, we com-
pare our full model to a version that uses SMPL-based skeletal deformation for
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Fig. 6: Number of virtual bones.
LPIPS consistently decreases with the
increasing number of virtual bones. We
choose 80 virtual bones for the gar-
ment layer to balance the method per-
formance and efficiency.

Ref. Image w/o Virtual Bone Ours Full

Fig. 7: Importance of virtual bone.
Without the virtual bone deformation,
our method is bounded by the expres-
siveness of skeletal movement and can-
not accurately capture the topology and
motion of loose garments.

the garment layer instead of the virtual bone deformation module. We conducted
both quantitative and qualitative analyses as shown in Tab. 2 and Fig. 7. The
results demonstrate that integrating the virtual bone deformation module helps
to find correct correspondences for points that are not solely controlled by skele-
tal deformations, leading to plausible and complete novel view synthesis results,
while SMPL-based deformation is limited to the hierarchical skeleton structure
and struggles with recovering garments that are far away from the inner body.

5 Conclusion

We present ReLoo, a novel method that produces temporally consistent 3D re-
constructions of humans when dressed in highly dynamic loose garments from
monocular in-the-wild videos. Our method does not require any 3D supervision
or prior knowledge about the garments. We utilize a carefully designed layered
neural implicit human representation to achieve a disentangled reconstruction of
the body and the garment. We introduce a non-hierarchical virtual bone defor-
mation module that enables the accurate capture of non-rigidly deforming loose
outfits under articulation. A global optimization is formulated to jointly optimize
the shape, appearance, and deformations of both inner body and outer clothing
from images via multi-layer volume rendering. Our method achieves robust and
high-fidelity reconstruction of humans dressed in loose garments.
Limitations: Although readily available, ReLoo relies on reasonable pose es-
timates and segmentation masks as inputs. Manual adjustment is occasionally
required to obtain SAM masks with sharp boundaries. Our method is mainly
deployed to up to two garments. The complexity of ReLoo increases linearly with
the number of garments that we aim to reconstruct separately. We discuss more
limitations and societal impact in the Supp. Mat.
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