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In this supplementary document, we provide additional materials to sup-
plement our manuscript. In Sec. 1, we provide further implementation details of
our proposed method ReLoo. Sec. 2 explains details of our experiment, including
dataset descriptions and the implementation of baseline methods. Furthermore,
in Sec. 3, we show additional quantitative and qualitative comparisons to demon-
strate our superior performance over prior art and provide ablation studies of
more components in our framework. Sec. 4 includes more qualitative results of
our method on in-the-wild videos and an illustration of the decomposition of
the inner body and outer garment layer. Finally, we discuss our limitations and
potential negative societal impacts in Sec. 5. In the supplementary video, we
show more 3D surface reconstruction and novel view synthesis results of dynamic
humans dressed in loose outfits using our method and qualitative comparisons
with baseline methods, both on indoor datasets and in-the-wild video sequences.

1 Implementation Details

1.1 Layered Neural Human Representation

Parameterization Details. In the main manuscript, we denote the body and
garment layer with an implicit neural network fB , or fG respectively. In prac-
tice, fB and fG each consist of two separate neural networks that model the
geometry and texture field of the respective layer, which is similar to [7,24]. For
the neural body layer, our SDF network fB

s that models the geometry takes the
point xB

c and the human pose parameters θ as input and outputs the signed
distance value sB along with global geometry features zB of dimension 256.
Our body texture network fB

c takes the point xB
c , the human pose parameters

θ, points’ normals nB
d in deformed space, and the extracted 256-dimensional

global geometry feature vectors zB from the neural body SDF network as in-
put and predicts the radiance value cB . Specifically, the points’ normals nB

d are
calculated by the spatial gradient of the signed distance field fB

s w.r.t. the 3D
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position in deformed space, following [7, 27]. This facilitates better disentangle-
ment of surface geometry and appearance reconstruction. The same separation
of geometry and texture field is applied to the neural garment layer fG.

Network Architecture. The canonical neural body network fB
s is modeled

as an MLP with 8 fully connected layers, each of which consists of a weight
normalization layer [22] and a Softplus activation layer. Each fully connected
layer contains 256 neurons. Given the input point, we apply positional encoding
with 6 frequency components to better model high-frequency details [17]. The
canonical body texture network fB

c is modeled as an MLP with 4 fully connected
layers, each of which has the same architecture as the body shape network layers,
except that it uses the Sigmoid activation function for the last layer and ReLU
[19] for the rest of the layers. The network architectures for the neural garment
model (fG

s and fG
c ) follow the same approach.

1.2 Virtual-Bone Deformation

Parameterization Details. Instead of sticking to a pre-defined set of virtual
bones with fixed positions and optimizing their transformations relative to the
SMPL [15] root, we formulate the virtual bone deformation module using a
deformation field DG. This allows for a progressively changing/updated garment
topology during training and avoids overfitting to the learned garment shape
after the first training stage, in which we only deploy skeletal deformation to
drive both the inner body and outer garment layer (Sec. 3.4 in the manuscript).
The virtual bone deformation field DG takes the 3D positions vi of the virtual
bones along with conditions on the human body pose θ and a continuous time
embedding t as input. The continuous time embedding t is obtained by using
the positional encoding introduced in NeRF [17] with 4 frequency components,
which help to learn temporal dynamics from videos.

During the forward process of the virtual bone deformation, the skinning
weights δc (Sec. 3.2 in the manuscript) of xG

c w.r.t. each virtual bone vi ∈ V is
calculated based on the inverse of the distance between xG

c and each vi. More
specifically, we query the nearest K virtual bones from V for xG

c based on the
point-to-point distances in canonical space. The weights δic for the nearest K
virtual bones are inversely proportional to the point-to-point distance and the
skinning weights for the rest of the virtual bones are clamped to 0. We normalize
δc so that

∑nv

i=1 δ
i
c = 1. In our experiments, we set K = 5. To warp the sampled

3D garment points xG
d in deformed space to canonical space, we first forward-

warp the virtual bones’ locations in canonical space vi to deformed space using
their own transformations T i and then proceed with the similar approach as
the forward virtual bone deformation to obtain the skinning weights δd, and
calculate the canonical correspondences xG

c .

Network Architecture. The virtual bone deformation field DG for the garment
layer is parameterized using an MLP with 4 fully connected layers, each of which
consists of a weight normalization layer and a softplus activation layer. Each fully
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connected layer contains 256 neurons. We initialize the weights of the last layer
of the deformation network to small values U(−10−5, 10−5), i.e., initializing the
translations to be close to zero and the rotation matrices to be approximately
identities.

1.3 Background Modeling and Scene Composition

Quadruple Reparameterization. We follow the inverted sphere parameteri-
zation of NeRF++ [26] to represent the background. Our human models are de-
fined to be within a spherical inner volume with a radius equal to 3 and the back-
ground covers the complementary space. Specifically, each 3D background point
xS
d = (xS

d , y
S
d , z

S
d ) is reparametrized by the quadruple x′S

d = (x′S
d , y

′S
d , z

′S
d ,

1
r ),

where
∥∥∥(x′S

d , y
′S
d , z

′S
d

)∥∥∥ = 1 and (xS
d , y

S
d , z

S
d ) = r · (x′S

d , y
′S
d , z

′S
d ). Here r denotes

the magnitude of the vector from the camera origin to xS
d . This reparameter-

ization of the background points helps to improve the numerical stability and
to weigh further away points with lower resolution. To obtain the background
component RGB value, we follow NeRF++ and sample 32 background points.
This is done by uniformly sampling 1

r in the range [0, 1
3 ], where 3 corresponds

to the predefined inner volume radius. Given the sampled 1
r , we calculate the

corresponding background point x′S
d using the geometric relationship derived

in [26].

Scene Composition. To obtain the final rendered pixel value, we raycast the
human layers and the background volume separately and composite the rendered
color of humans ĈH with the one of the scene background ĈS . The final pixel
color value is calculated by:

C = CH + (1− ÔH) CS , (16)

where ÔH =
∑N

i=1

∑P
p=1

[
opi

∏P
q=1

∏
j∈Zq,p

i

(
1− oqj

)]
is the total opacity for all

the person in the scene, and we follow the same notations as our manuscript.

Network Architecture. The scene background network fS consists of two
parts: the density network and the texture network. The density network has
the same architecture as the canonical human shape network with 10 frequency
components to the input background points. The texture network only includes
1 block of a fully connected layer with 128 neurons, a weight normalization layer,
a ReLU activation layer, and a Sigmoid activation layer at the end. Both the
density network and the texture network take the quadruple parameterization
of the sampled background point, view direction, and per-frame learnable time
encoding as input and output the density and the view-dependent radiance value.
The per-frame time encoding helps to compensate for dynamic changes in the
environment.
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1.4 Preprocessing

Pose Initialization. To obtain pose initialization for in-the-wild videos, we
first leverage 4DHumans [5] to estimate the SMPL [15] parameters. However,
[5] usually assumes an extremely large focal length which would make the 3D
human extremely small within the sphere (radius equal to 3) after the camera
normalization. Specifically, the same as HMAR [21], in 4DHuman, the SMPL
translation TSMPL in the camera frame can be re-calculated using the following
formula:

TSMPL =

[
tx +

2cx − 2px
sb

, ty +
2cy − 2py

sb
,
2f

sb

]
(17)

where tx, ty, and s represent the predicted local camera parameters related to the
bounding boxes, b. cx and cy correspond to the scale and center of the respective
bounding box of the target. (px, py) and f represent the principal point (x, y)
and focal length of the camera, respectively. Throughout our experiment, we use
the following values for the principal point and focal length of the camera

px =
W

2
, py =

H

2
, f =

W +H

2
(18)

where W and H denote the image width and height. After this conversion, we
obtain a set of aligned camera and SMPL parameters with a reasonable camera
focal length, which empirically helps to provide better results.

Segmentation Mask Initialization. We build a semi-automatic preprocessing
pipeline to estimate full-body human and clothing segmentation masks using
SAM [10,13]. We first utilize Graphonomy [6] to parse the human in the images,
yielding coarse segmentation masks. Given the outputs from Graphonomy, we
concatenate sampled pixels from the body or clothing classes with corresponding
2D keypoints detected using OpenPose [1]. The concatenation serves as the input
point and mask prompts for SAM to predict finer segmentation masks for the
body and garment. However, the segmentation masks do not consistently exhibit
robustness, and the delineations of boundaries might lack sharpness. Manual
annotations such as manually selecting pixels to serve as extra point prompts
are occasionally required to further improve the segmentation mask quality.

1.5 Multi-Garment Clothed Human

Our method also generalizes to multiple garments, e.g ., a T-shirt for the upper
body and a skirt for the lower body (cf . Fig. 3 in manuscript and Fig. 12). We
separately model these two garments with two neural networks to keep the rep-
resentation capacity. Moreover, considering that T-shirts and other upper-body
garments mainly follow skeletal movement, we thus use SMPL-based skeletal
deformation to warp sampled 3D points for the upper-body garment layer, while
the lower-body garment is still deformed using the proposed virtual bone defor-
mation module.
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Fig. 9: MonoLoose Dataset. We show sample images and their corresponding
ground-truth meshes from MonoLoose dataset.

1.6 Inner Body Regularization Loss

Due to garment-body occlusions, reconstructing a plausible inner human body
is an ill-posed problem due to the lack of observations. To stabilize the training
progress while preserving a reasonable inner body shape, in addition to the
training objectives that are described in the manuscript, we include a body loss
Lbody that encourages the neural inner body to be close to the optimized SMPL
shape. We gradually decay the weight of this loss as it is especially needed in
the early stage of the training.

1.7 Training Details

We initialize both the canonical body shape and the garment shape networks
with a generic SMPL body by using a subset of motion sequences released in
AMASS [16]. Human-specific shape network initialization can accelerate the
training convergence. We optimize our neural networks and pose parameters
using the Adam optimizer [12]. The learning rate for training our neural net-
works is set to l = 5e−4 and the learning rate for optimizing the pose param-
eters is set at one-tenth of l initially. We decay the learning rates in half after
200/500/800/1000 epochs respectively. The other Adam hyper-parameters are
set to β1 = 0.9 and β2 = 0.999. We train an individual model for every input
video. A video with about 300 frames (10 seconds) usually requires training for
2 days on a single NVIDIA 3090Ti (24GB) with batch size 512.

2 Evaluation Details

2.1 MonoLoose Dataset

We collect a new dataset called MonoLoose, which has a particular focus on hu-
man subjects dressed in loose attire while performing highly dynamic motions.
MonoLoose is captured with a high-end dense-view camera rig. The dataset con-
tains 5 sequences with different identities, loose garment styles, and motions (in
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total 1219 frames). This dataset is specifically curated for evaluating monoc-
ular human surface reconstruction and novel view synthesis methods with the
provided high-fidelity 3D ground-truth meshes. These dense human meshes are
reconstructed by 106 synchronized cameras (53 RGB and 53 IR cameras) via
commercial software [2]. We use two separate cameras for training and evalua-
tion of novel view synthesis (The distances between the test and training view
are 0.56 meters and 18 degrees). We show example images and the corresponding
3D ground-truth meshes of our MonoLoose dataset in Fig. 9.

Ethics. Our institution’s ethics committee duly approved the protocol we fol-
lowed for the collection and publication of MonoLoose dataset. All subjects have
freely volunteered to participate in this data collection. They have been duly in-
formed about the intended use and publication of the dataset, signed a consent
form, and have received compensation for the time it took to record them.

2.2 DynaCap Dataset

For the novel view synthesis evaluation on DynaCap [8], we curate 2 sequence
clips (in total 620 frames), i.e., FranziBlue and FranziRed, where we regard
images from camera 17 as training camera view and camera 16 as test view. The
camera distances for the DynaCap experiments are 0.7 meters and 16 degrees.

2.3 Baseline Methods

In our manuscript, we compare our method with state-of-the-art video-based
methods (SelfRecon [9], Vid2Avatar [7], and SCARF [3]) in two tasks: 3D hu-
man surface reconstruction and novel view synthesis. SelfRecon and Vid2Avatar
are SMPL-based methods, the same as ReLoo, and share the same SMPL model
parameters for training and testing. SCARF takes SMPL-X parameters as in-
put, thus, we first utilize the officially released model transfer scripts [20] to
convert SMPL to SMPL-X models with the corresponding parameters. We use
the converted model parameters to serve as the input for SCARF for training
and testing.

3 Additional Experimental Results

3.1 Surface Reconstruction Comparisons

We provide additional qualitative reconstruction comparisons with SelfRecon [9],
Vid2Avatar [7] and SCARF [3] in Fig. 10. Compared to state-of-the-art video-
based human reconstruction methods in both categories (single-layer and multi-
layer), our method outperforms them by a large margin both quantitatively (cf .
Tab. 1 in manuscript) and qualitatively (cf . Fig. 10). Our approach can accu-
rately reconstruct complete and more detailed 3D human surfaces, and capture
large non-rigid garment surface deformations.
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Image SelfRecon Vid2Avatar ReLoo (Ours)SCARF

Fig. 10: Qualitative 3D surface reconstruction comparison. Baseline methods
produce less detailed and implausible 3D clothed human reconstructions with visible
artifacts (discontinuities between legs, missing dress parts) due to the strong reliance on
skeletal deformations. In contrast, our method correctly recovers the clothing dynamics
and generates more detailed and complete 3D human surfaces. Note also that ReLoo
produces more detailed facial features.

3.2 Novel View Synthesis Comparisons

We show additional qualitative novel view synthesis comparisons in Fig. 11. Our
method outperforms baseline methods both quantitatively (cf . Tab. 2 in the
manuscript) and qualitatively (cf . Fig. 11). ReLoo produces more plausible and
realistic renderings while preserving sharper and fine-grained texture details.

3.3 Surface Reconstruction Comparisons with Image-based Method

In our manuscript, we mainly compare with video-based 3D human reconstruc-
tion for a fair comparison. Here, we complement our surface reconstruction com-
parison experiments with an image-based baseline method ECON [23]. ECON
is a state-of-the-art regression-based model for reconstructing 3D humans from
images, capable of handling humans dressed in loose garments. As indicated
in Tab. 3, our method outperforms ECON by a substantial margin on the
MonoLoose dataset. Especially, our Chamfer distance error is only about 40%
of ECON’s error. This performance difference is even more visible in qualitative
comparisons shown in Fig. 12. When loose garments exhibit large non-rigid sur-
face deformations during human articulation, ECON fails to recover complete 3D
human shapes but only outputs corrupted reconstructions (e.g ., missing body
parts and clothing). Furthermore, ECON fails to preserve fine-grained surface
details on the reconstructions (e.g ., the human face in the second row of Fig. 12).
In contrast, our method generates complete and high-fidelity 3D human surfaces
even when loose outfits show extremely free-form deformations.
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Image SelfRecon Vid2Avatar ReLoo (Ours)SCARF

Fig. 11: Qualitative novel view synthesis comparison. Our method achieves
better rendering quality with clearly sharp boundaries and detailed texture recovery
in e.g ., garment patterns and faces. Baseline methods can only produce corrupted
and blurry rendering results (dress discontinuities between legs and unsharp texture
details).

Table 3: Quantitative evaluation on surface reconstruction with image-based
method. We compute the 3D surface metrics on the MonoLoose dataset. Our method
consistently outperforms ECON on all evaluation metrics (cf . Fig. 12).

Method C− ℓ2 ↓ NC ↑ V − IoU ↑
ECON [23] 4.49 0.688 0.695
Ours 1.93 0.831 0.881

3.4 Qualitative Comparisons with GS-based Method

We further provide some qualitative comparisons with concurrent Gaussian-
Splatting (GS) [11] based human reconstruction methods on the UBC-Fashion
dataset [25]. GART [14] is one of the concurrent GS-based works and it lever-
ages the explicit and efficient representation to achieve human reconstruction
with fast training and real-time inference speed. We show the learned canonical
human models of GART and our method ReLoo in Fig. 13. Compared to our
implicit SDF-based representation, the explicit Gaussian-based representation
does not demonstrate plausible 3D human shapes due to the irregularity of the
3D Gaussians’ distribution. GS-based methods can easily fit the image obser-
vations without preserving a plausible 3D shape, leading to visually unpleasant
rendering results with scaly artifacts.
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Image ECON ReLoo (Ours)

Fig. 12: Qualitative comparisons with image-based method. Compared to
the state-of-the-art image-based method ECON [23], our representation and learning
schemes enable more robust and detailed human surface reconstructions when dressed
in highly dynamic loose garments.

3.5 Robust Error Function vs. L1 Loss

The segmentation masks obtained from SAM [10, 13] are not perfect and the
predictions might be noisy. Directly applying L1 loss as the segmentation mask
objective might lead to unstable training progress since the segmentation mask
predictions can be contradictory across video frames. Instead of using a hard
L1 loss for supervision, we employ a robust Geman-McClure error function ρ [4]
which helps to down-weigh potentially erroneous cloth segmentation mask pre-
dictions. Moreover, the inverse CDF sampling process [24] does not always guar-
antee a spiky distribution of the ray-sampled points around surface boundaries.
When sampled points for the neural body layer are interwoven with the sampled
points for the neural garment layer, the ray opacities of the garment layer ÔG(r)
cannot be strictly equal to 1. A hard constraint introduced by L1 loss can lead
to corrupted surface reconstructions (thicker garment layer). We provide a qual-
itative comparison in Fig. 14 to highlight the effects of the robust error function
compared to a simple L1 loss. Our method recovers more realistic and detailed
3D surface reconstructions with the robust Geman-McClure error function.

3.6 Layered Neural Human Representation

Our layered neural human representation is not only the foundation for recon-
structing humans dressed in loose garments but can also contribute to recon-
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Ref. Image GART Ours Ours

Fig. 13: Qualitative comparisons with GS-based method. Compared to the GS-
based method, our implicit SDF-based representation can better learn a plausible 3D
human shape with detailed geometry and appearance.

structing more detailed humans. To validate this, we compare our multi-layer
design to a single-layer representation on the SynWild dataset [7] which consists
of human subjects with tight-fitting clothing. Note that in this experiment, we
deactivate the virtual bone deformation module as tight-fitting garments mostly
follow skeletal movement. As illustrated in Fig. 15, our layered human represen-
tation recovers finer human surface details, such as faces and clothing wrinkles,
which the single-layer representation struggles with, even when both models have
the same number of parameters. This can be naturally explained by the obser-
vation that implicit neural networks can better learn more local features with a
decomposed representation, i.e., the neural body layer can focus more on body
shape features without having to spend capacity on garment details.

4 Visualization

As shown in Fig. 16, our method ReLoo can generalize to humans with different
body shapes, miscellaneous loose garment styles, and diverse human motions.
ReLoo can even reconstruct extremely challenging outfits such as a very wide
cloak in full swing (cf . the first column of Fig. 16). We also demonstrate the
decomposition of the learned body and garment layer separately in Fig. 17.
ReLoo achieves an accurate decomposition of the inner body and outer clothing,
as well as high-fidelity 3D reconstructions for both layers from only monocular
inputs.
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Image L1-Loss Robust-Loss

Fig. 14: Importance of robust loss. Our method recovers more realistic and de-
tailed 3D surface reconstructions with the robust Geman-McClure error function for
segmentation mask supervision.

Image Single-Layer Multi-Layer

Fig. 15: Importance of layered neural human representation. Our layered hu-
man representation can recover more fine-grained human surface details (e.g ., faces
and clothing wrinkles).

5 Limitations and Societal Impact Discussion

Although readily available, our method ReLoo still relies on reasonable pose
estimates and segmentation masks as inputs. As mentioned in Sec. 1.4, the seg-
mentation process is a semi-automatic pipeline and manual efforts for annotation
are occasionally required to improve the quality of the segmentation mask. Cur-
rently, our method is mainly deployed to up to two garments. The computational
complexity of ReLoo increases linearly with the number of garments that we aim
to reconstruct separately, making it less scalable to cases where we aim to recon-
struct the clothed human with various accessories (such as hats, gloves, and etc.)
in layers. Future work could incorporate recent advances in fast and memory-
efficient representation [11,18] to achieve highly efficient layered representation.
Furthermore, our method doesn’t explicitly model hands, leading to less detailed
hand reconstructions (cf ., Fig. 12). We believe the integration of an expressive
human model such as SMPL-X [20] is a promising future direction.
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Image

Geometry

Fig. 16: Additional qualitative results. Our method ReLoo generalizes to humans
with different body shapes, miscellaneous loose garment styles, and diverse human
motions.

Fig. 17: Decomposition of body and garment. Our method accurately decom-
poses the clothed human into the inner body and outer clothing, achieving high-fidelity
3D reconstruction results.

ReLoo enables high-fidelity digitization of humans from a single monocular
in-the-wild video, which bears the potential to facilitate diverse downstream ap-
plications in the film and gaming industries, as well as AR/VR environments.
The final outcome of ReLoo is realistic digital avatars, capable of being ani-
mated to novel poses given respective input signals. This may lead to concerns
regarding privacy leaks and the potential for the misuse of digital assets, for ex-
ample by creating digital avatars from people who did not consent to such uses
and subsequent misappropriation of these avatars for dubious purposes. When
developing avatar creation methods, be it for research or products, paramount
focus should be directed towards addressing these concerns. We strive towards
enabling utilization of such technology in manners that are advantageous for
society. Regrettably, the prevention of malevolent applications can however not
be fully guaranteed. We posit that prioritizing a comprehensive and transpar-
ent treatment of these methodologies – including discussion of technical details
within the paper along with the provision of code and data – should take prece-
dence over undisclosed research. This approach is essential for devising effective
countermeasures aimed at mitigating the potential for unethical applications.



ReLoo 13

References

1. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Real-
time multi-person 2d pose estimation using part affinity fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2019)

2. Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., Hoppe,
H., Kirk, A., Sullivan, S.: High-quality streamable free-viewpoint video. ACM
Trans. Graph. 34(4) (jul 2015). https://doi.org/10.1145/2766945, https:
//doi.org/10.1145/2766945

3. Feng, Y., Yang, J., Pollefeys, M., Black, M.J., Bolkart, T.: Capturing and animation
of body and clothing from monocular video. In: SIGGRAPH Asia 2022 Conference
Papers. SA ’22 (2022)

4. Geman, S., McClure, D.E.: Statistical methods for tomographic image reconstruc-
tion (1987)

5. Goel, S., Pavlakos, G., Rajasegaran, J., Kanazawa*, A., Malik*, J.: Humans in 4D:
Reconstructing and tracking humans with transformers. In: International Confer-
ence on Computer Vision (ICCV) (2023)

6. Gong, K., Gao, Y., Liang, X., Shen, X., Wang, M., Lin, L.: Graphonomy: Universal
human parsing via graph transfer learning. In: CVPR (2019)

7. Guo, C., Jiang, T., Chen, X., Song, J., Hilliges, O.: Vid2avatar: 3d avatar re-
construction from videos in the wild via self-supervised scene decomposition. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (June 2023)

8. Habermann, M., Liu, L., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.:
Real-time deep dynamic characters. ACM Transactions on Graphics 40(4) (aug
2021)

9. Jiang, B., Hong, Y., Bao, H., Zhang, J.: Selfrecon: Self reconstruction your digital
avatar from monocular video. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2022)

10. Ke, L., Ye, M., Danelljan, M., Liu, Y., Tai, Y.W., Tang, C.K., Yu, F.: Segment
anything in high quality. In: NeurIPS (2023)

11. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (July
2023), https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2015)

13. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollar, P., Girshick, R.: Segment anything.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 4015–4026 (October 2023)

14. Lei, J., Wang, Y., Pavlakos, G., Liu, L., Daniilidis, K.: Gart: Gaussian articulated
template models (2023)

15. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: A skinned
multi-person linear model. ACM transactions on graphics (TOG) 34(6), 1–16
(2015)

16. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS:
Archive of motion capture as surface shapes. In: International Conference on Com-
puter Vision. pp. 5442–5451 (Oct 2019)

17. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean conference on computer vision. pp. 405–421. Springer (2020)

https://doi.org/10.1145/2766945
https://doi.org/10.1145/2766945
https://doi.org/10.1145/2766945
https://doi.org/10.1145/2766945
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


14 C. Guo and T. Jiang et al.

18. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15
(Jul 2022). https://doi.org/10.1145/3528223.3530127, https://doi.org/10.
1145/3528223.3530127

19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th International Conference on International Con-
ference on Machine Learning. p. 807–814. ICML’10, Omnipress, Madison, WI, USA
(2010)

20. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A.A., Tzionas,
D., Black, M.J.: Expressive body capture: 3D hands, face, and body from a single
image. In: Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). pp. 10975–10985 (2019)

21. Rajasegaran, J., Pavlakos, G., Kanazawa, A., Malik, J.: Tracking people with 3d
representations. In: NeurIPS (2021)

22. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.,
Chen, X.: Improved techniques for training gans. In: Lee, D., Sugiyama, M.,
Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems. vol. 29. Curran Associates, Inc. (2016), https://proceedings.
neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf

23. Xiu, Y., Yang, J., Cao, X., Tzionas, D., Black, M.J.: ECON: Explicit Clothed hu-
mans Optimized via Normal integration. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (June 2023)

24. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. In: Advances in Neural Information Processing Systems (2021)

25. Zablotskaia, P., Siarohin, A., Zhao, B., Sigal, L.: Dwnet: Dense warp-based net-
work for pose-guided human video generation. In: 30th British Machine Vision
Conference 2019, BMVC 2019, Cardiff, UK, September 9-12, 2019. p. 51. BMVA
Press (2019)

26. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving
neural radiance fields. arXiv:2010.07492 (2020)

27. Zheng, Y., Abrevaya, V.F., Bühler, M.C., Chen, X., Black, M.J., Hilliges, O.: I
M Avatar: Implicit morphable head avatars from videos. In: Computer Vision and
Pattern Recognition (CVPR) (2022)

https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf

	Supplementary Material  ReLoo: Reconstructing Humans Dressed in Loose Garments from Monocular Video in the Wild

