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Figure 1: Touch input is expressive but can occlude large parts of the screen (A). We propose a machine learning based algorithm
for gesture recognition expanding the interaction space around the mobile device (B), adding in-air gestures and hand-part
tracking (D) to commodity off-the-shelf mobile devices, relying only on the device’s camera (and no hardware modifications).
We demonstrate a number of compelling interactive scenarios including bi-manual input to mapping and gaming applications
(C+D). The algorithm runs in real time and can even be used on ultra-mobile devices such as smartwatches (E).

ABSTRACT
We present a novel machine learning based algorithm ex-
tending the interaction space around mobile devices. The
technique uses only the RGB camera now commonplace on
off-the-shelf mobile devices. Our algorithm robustly recog-
nizes a wide range of in-air gestures, supporting user varia-
tion, and varying lighting conditions. We demonstrate that our
algorithm runs in real-time on unmodified mobile devices, in-
cluding resource-constrained smartphones and smartwatches.
Our goal is not to replace the touchscreen as primary input
device, but rather to augment and enrich the existing interac-
tion vocabulary using gestures. While touch input works well
for many scenarios, we demonstrate numerous interaction
tasks such as mode switches, application and task manage-
ment, menu selection and certain types of navigation, where
such input can be either complemented or better served by in-
air gestures. This removes screen real-estate issues on small
touchscreens, and allows input to be expanded to the 3D space
around the device. We present results for recognition accuracy
(93% test and 98% train), impact of memory footprint and
other model parameters. Finally, we report results from pre-
liminary user evaluations, discuss advantages and limitations
and conclude with directions for future work.
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INTRODUCTION
Today’s mobile devices have realized the vision of ubiquitous
access to information. Data is now literally at our fingertips no
matter where we are. It is clear that these devices have already
changed the way how we consume and produce information.
However, the question of how best to interact with mobile
content is far from solved. While direct touch interaction is
clearly intuitive and popular, it also comes with drawbacks.
In particular, as mobile devices continue to be miniaturized,
touchscreen real-estate becomes increasingly limited, leading
to smaller on-screen targets and fingers causing occlusions
of displayed content. This can be an issue during prolonged
interaction, for example, while reading on a mobile device
or when attempting to perform complex manipulations that
require many on-screen controls.

Not surprisingly, many HCI researchers have attempted to
extend the interaction space around the device. For example
using infrared (IR) proximity sensors [3, 23] or handheld mag-
netic tags [20]. Others have attempted to address the input
scarcity issue by leveraging the human body [11] or surfaces
in the environment [10, 34] as interactive platforms. How-
ever, all of these require hardware modifications of the device
and/or user instrumentation. This can be a major barrier to
adoption, and limits seamless unencumbered user interaction.

Our work builds upon and extends this body of research, in so
doing, we leverage the fact that almost all mobile devices con-
tain RGB cameras for video and image capture. We propose
a novel machine learning based algorithm to extend the inter-
action space around mobile devices by detecting rich gestures
performed behind or in front of the screen. The technique
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uses only the built-in RGB camera, and recognizes a wide
range of gestures robustly, copes with user variation, and vary-
ing lighting conditions. Furthermore, the algorithm runs in
real time entirely on off-the-shelf, unmodified mobile devices,
including compute-limited smartphones and smartwatches.

Our goal is not to replace the touchscreen as primary input
device but to complement it and to enrich the interaction vo-
cabulary. While touch input works well in many scenarios,
there are numerous interaction tasks such as mode switches,
application and task management, menu selection and certain
types of navigation, where touch input can be cumbersome
and the size of mobile devices, and hence that of on-screen
controls, becomes problematic. While multi-touch gestures
are a feasible way to increase the expressiveness of touch in-
teraction, they cover even more screen real-estate and worsen
the occlusion issue.

We argue that such tasks and interactions can be comple-
mented well by sporadic, low-effort gesturing behind or in
front of the device. For example, while sitting comfortably
on a couch a quick flick of the wrist behind the phone may
be used to advance the page in an e-book. Similarly, while
using touch to pan a map, symbolic gestures could be used
to adjust the map-viewing mode, to adjust the zoom level or
to enable additional data views such as traffic information.
Furthermore, we present a number of compelling interaction
scenarios that would be difficult to achieve with a touchscreen
only. For example, the non-dominant hand can be used to
invoke and control a fish-eye lens while the touch screen may
be used to select targets in the magnified region.

Contributions and overview of the paper
Our proposed gesture recognition algorithm is based on ran-
dom forests (RF) [2], which have proved to be powerful for
prediction of static hand gestures, hand pose [19] and body
pose [33], but using PCs and depth sensing cameras. How-
ever, these classifiers trade discriminative power and run-time
performance against memory consumption. Given a com-
plex enough problem and large enough training set, memory
requirement will grow exponentially with tree depth. This
is of course a strong limitation for application on resource
constrained mobile platforms.

To our knowledge, we present the first real-time implemen-
tation of RFs for mobile devices for a pixel labelling task.
Furthermore, the algorithm does not rely on highly discrimi-
native depth features but works using only 2D images. We de-
scribe a method to robustly and efficiently classify hand states
(i.e., gestures) and salient features (i.e., fingertips) using only
binary segmentation masks. We also describe techniques to
make the classifier robust to in-plane rotation (i.e., wrist artic-
ulation or rotating the device itself) and to variations in depth
of the hand. We introduce different techniques, specifically
designed for mobile devices, to compactify the forests and to
reduce memory consumption drastically, while maintaining
classification accuracy. These techniques are necessary to re-
duce the memory footprint of the classifier for mobile phones
but generalize to any computing device.

The remainder of the paper is structured as follows: we dis-
cuss the relevant literature in the areas of augmented mobile
devices, touch and in-air gesture recognition. We then in-
troduce a number of compelling interaction techniques and

application scenarios. This is followed by an in-depth discus-
sion of the gesture recognition method and several techniques
to reduce the memory footprint of the RF classifier. The algo-
rithm is simple enough to be replicated quickly. In this regard,
we provide pseudo-code detailing the classification pipeline
alongside training data in order to enable the community to
replicate and extend our algorithm. We present our initial
results in terms of recognition accuracy, impact of tree depth
and other parameters. Finally, we report results from prelimi-
nary user evaluations, discuss advantages and limitations and
conclude with directions for future work.

RELATED WORK
Advances in processing, sensing and display technologies
have enabled rich, powerful computational platforms to fit
into our hands and pockets . The current generation of mobile
computing relies on touch for interaction but this limits the
expressiveness of input. Here we review the literature that
expands the input space from the touchscreen to the areas
immediately above, behind and around it.

A number of systems have used cameras to extend the interac-
tion space beyond the display of mobile devices. LucidTouch
uses a rear-mounted, protruding 2D camera to detect multi-
touch input on the back of mobile devices [40]. Niikuura et
al. [28] leverage IR LEDs and a 2D camera to recognize a
single fingertip for in-air typing. Samsung has shipped several
basic in-air swipe and hover gestures with their Galaxy S4∗
using a single IR proximity sensor. Others have proposed
using body-worn cameras and diffuse IR illumination [9, 36]
or RGB cameras [26, 37], demonstrating simple 2D pinch
gestures [9] or detecting fingers using markers [26]. [36, 37]
classify a wider set of discrete hand postures e.g. for sign
language but require a desktop PC for processing. Jones et
al. find, in a study of around the device interaction, that in-air
gestures can perform as well as touch and define comfort
zones for interaction [17].

Researchers have also explored handheld [16, 27] and
shoulder-worn [10] depth cameras, focusing on sensing touch
interaction with planar [10] or more complex physical sur-
faces [16, 27]. Others have attempted to leverage the human
body directly as input source either sensing muscle or ten-
don activity to recognize a small set of discrete hand ges-
tures [31, 32], leveraging acoustics to coarsely localize touch
on the body [11], or using wristbands of IR proximity sen-
sors for detecting coarse gestures performed on the forearm
[29]. Wrist-worn camera based sensors have also been demon-
strated to reconstruct full 3D hand pose [21].

The approaches above require new (or augmented) mobile
hardware, body-worn cameras, user instrumentation or ex-
ternal tracking, and oftentimes off-board processing. These
issues pose serious barriers for user adoption. We propose a
real-time system that runs on unmodified mobile devices and
recognizes a rich set of gestures alongside accurate fingertip
detection for pointing and stroke-based interaction.

The challenges of camera based systems have led researchers
to experiment with non-camera based sensing around mobile
devices. For example, using simple IR proximity sensors fac-

∗http://www.samsung.com/global/microsite/
galaxys4/
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ing outwards [3] or upwards [23, 24]. Magnetic field sensing
has been used to track rigid motion around a device by pairing
permanent magnets and magnetometers either by wearing
both [4] or by using the device’s built-in IMU (inertial mea-
surement unit) [1, 15, 20]. Just like optical sensing solutions,
magnetic field sensing can suffer from coarse sensing fidelity
and input is limited to tracking a restricted number of dis-
crete points and often with limited degrees-of-freedom (DoF).
More recently, a transparent electric field sensing antenna has
been demonstrated that enables sensing of 3D hand and finger-
tip locations [7]. While more compact than external camera
augmentations, these approaches still require device or user
augmentation. Our technique allows for richer gestures that
go beyond tracking of discrete points and does not require any
augmentation of the device nor the user.

A particularly important aspect of our work is that we aim to
complement touch input with gestures. In this sense we share
commonality with prior work combining pen+touch input
[14], motion+touch [13], in-air and on-body gestures [25], or
input from multiple devices [5]. We explore new interaction
techniques and application scenarios that combine touch input
on and gestural interaction around a mobile device.

Our work clearly relates to the vast body of literature on com-
puter vision methods for hand gesture recognition. Early work
focused on hand tracking from 2D cameras. However, rec-
ognizing complex hand gestures is clearly challenging from
such 2D input [6]. The recent advancements in processing
power and the emergence of consumer grade depth cameras,
however, have enabled a number of high fidelity gestural in-
teractive systems in HCI [10, 12, 21] and fine-grained 3D
hand-pose estimation in real-time [19, 30, 35]. The current
state-of-the art can be broken down into methods relying
on model-fitting and temporal tracking [30, 35], and those
leveraging per-pixel hand part classification [19, 38].

Our algorithm is designed for the recognition of rich and var-
ied gestures and detection of salient hand parts (i.e., fingertips)
rather than full hand pose estimation. It is important to note
though, that our algorithm works without relying on highly
discriminative depth data and rich computational resources of
a high-end desktop machine. To our knowledge we present
the first implementation of a RF-based gesture recognition
algorithm that i) runs in real-time on off-the-shelf mobile
devices ii) relies only on the built-in RGB camera(s) and iii)
makes no strong assumptions about the user’s environment
and iv) is reasonably robust to rotation and depth variation.

IN-AIR GESTURES ON THE MOVE
Our system opens up the input space around a mobile device.
In doing so, our aim is to couple regular touchscreen input
with gestures performed around the device. Rather than re-
place one modality with the other, we believe that it is this
combination that is powerful.

Before detailing the technical gesture recognition approach,
we illustrate a number of compelling interaction scenarios,
enabled by in-air gestures around mobile devices, in particular
bi-manual, multi-modal input. We highlight scenarios where
the user tries to perform complex operations that require mode-
switching or simultaneous input on different screen locations.
Such interactions are typically mapped to multi-touch ges-

Figure 2: Usage scenarios: (A) Panning and zooming a document.
(B) Bimanual map browsing with a magnifier lens (C) Using gestures
to control mode-switches and tool parametrization in a drawing app.
(D) Shooting in a scrolling shooter game.

tures, which can cause occlusion issues and decrease pointing
performance, especially on very small screens.
Fig. 2 summarizes a selection of interactive scenarios enabled
by our approach. In its most basic form, our algorithm can
enable division of labor bimanual input [8]. For example, a
user sitting on a couch can use touch input to continuously
navigate a map or document while the non-dominant hand can
be used to occasionally adjust the zoom level of the document,
without occluding the screen, or interrupting the touch-based
navigation (see Fig. 2 (A)).
The two hands can also work in a more tightly integrated fash-
ion, where an in-air pinch gesture invokes a magnifier lens to
magnify a particular area of interest on the document (e.g., an
underground map). The magnifier lens can then be positioned
by moving the hand behind the device. This illustrates the
usefulness of jointly recognizing gestures and fingertips. The
magnification factor can be adjusted by opening or closing
the pinch gesture. Touch input can then be used to highlight
text in a document, place a positional marker on a map or
to otherwise interact with the magnified content (see Fig. 2
(B)). Combining touch and gestures makes interactions that
simultaneously modify multiple parameters more integrated
than what would be possible with touch input alone.
Similarly, gestures around the device can be used to stream-
line interaction with more complex user-interfaces that require
explicit mode changes and allow the user to parametrize tools
and functionalities. We have implemented a simple draw-
ing application to illustrate this (Fig. 2 (C)). Here the user
can draw using touch input, while a pinch gesture will in-
voke a brush-selection menu directly at the current touch
location. The menu selection can then be performed using
touch, without requiring the user’s finger to travel to a menu.
Analogously, the open pinch (a C-shaped hand) can invoke an
in-place color picker. A final, compelling interaction scenario
is mobile gaming. We interface our gesture recognition en-
gine with an open-source 2D scroller game†. Touch input is
used to control the helicopter position, whereas gestures are
used to shoot weapons (see Fig. 2 (D)).
†https://code.google.com/p/orange-grass
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Interacting with other mobile devices
One of the main contributions of our work is supporting a
classifier that is efficient enough to run in real time on very
resource-constrained platforms. The fact that cameras are
now ubiquitous on many mobile platforms, makes our system
applicable to a wide range of mobile computing scenarios,
including mobile phones, tablets but also smartwatches.

Figure 3: Our algorithm runs on a variety of mobile form factors
and enables different interaction scenarios. (A) A tablet media player
in the kitchen can be controlled using simple, effortless gestures with-
out touching the screen with wet hands. (B) In-air pointing gesture
in front of the smartwatch triggers a photo sharing application.

Fig. 3 (A), shows our system running on an off-the-shelf
tablet. Here we leverage the front-facing camera for gesture
recognition. The user controls a media application where a
flat, closed hand pauses the playback of a video and the flat,
splayed hand resumes playback. The user may also control
other applications such as advancing a photo slideshow using
swipe gestures, or controlling (semantic) zoom in a PDF
reader. We argue that this type of low-effort, casual gestures
can complement touch in certain scenarios for example when
the tablet is rested on the user’s lap or on a table.
Ultra-mobile devices such as smartwatches are clearly be-
coming important mobile platforms. However, their input
expressiveness is severely limited by the small size of the
touchscreens, making typical multi-touch gestures cumber-
some or infeasible. Not surprisingly, multiple efforts have
been undertaken to enable gestural interaction with such de-
vices (e.g., [23, 31]). However, these typically require mod-
ification of the watch and suffer from limited input fidelity.
We enable recognition of the same rich gestures as on tablets
and phones (e.g., static gestures and fingertip detection) on a
smartwatch‡. For example, to take pictures and navigate the
photo stream without occluding the screen (see Fig. 3 (B)).

Data-driven gesture recognition
The application scenarios discussed here give a flavor for the
types of interactions enabled by our system. While already
enabling new scenarios, we do not claim that the gestures
currently implemented constitute the best possible or even
final gesture set. Quite contrary, the proposed algorithms
are data driven and therefore it is a matter of capturing new
training data, and retraining the classifier, to redefine the
gesture set – not a matter of rewriting any code. We highlight
two further aspects of this work:
First, due to power and size constraints, currently no readily
procurable mobile devices exist with integrated depth sensors.
However, state-of-the art gesture and hand-pose estimation al-
gorithms rely on depth data. Robustly detecting hand gestures
from a monocular, moving camera, in uncontrolled lighting

‡http://www.samsung.com/global/microsite/
galaxynote3-gear/.

conditions and with arbitrary backgrounds remains a challeng-
ing and difficult task - in particular on mobile devices. At
the same time, our main design goal is to support unmodified
mobile devices to lower the barrier of use.

Second, the initial gesture set is what we consider to be a
useful but also a challenging gesture set. The gestures are
different enough from each other that it would be difficult
to conceive a single, non-probabilistic algorithm (for exam-
ple based on geometric heuristics) that could detect them all.
Moreover, there is sufficient similarity between the pairs of
gestures (e.g., flat hand, splayed-hand) that distinguishing
these from each other (heuristically) is an even more challeng-
ing task. Moreover, in many interaction scenarios we are not
only interested in hand states (i.e., gestures) but also salient
hand parts such as fingertips or the wrist, further complicating
the detection problem.

These two aspects suggest that recognizing this gesture set
or a similar set alongside hand parts would be challenging
using heuristics-based approaches only. We therefore explore
a novel recognition architecture that combines very simple
and computationally efficient image processing techniques
with powerful machine learning classification techniques for
robust and extensible gesture recognition.

SOFTWARE PIPELINE
So far we have concentrated on describing our system at a
high-level and discussing interactive possibilities it affords.
We now provide an overview of the software pipeline before
detailing the gesture classification algorithm. The pipeline
consists of fairly easy and established image processing steps
interwoven with a new, staged gesture and part classification
pipeline. All components of the pipeline have been carefully
chosen and designed with runtime and memory efficiency
in mind, in order to achieve real-time performance even on
ultra-mobile and resource restricted devices.

Segmentation and Pre-processing
Our gesture recognition algorithm relies on binary masks of
the hand, segmented from the background. Therefore, the
first step of our pipeline is foreground extraction via skin
color detection. Despite much research this problem remains
a challenging task under arbitrary lighting conditions. A
good summary of various techniques is provided by [18]. We
have experimented with many techniques, including HSV
and GMM-based adaptive thresholding. However, due to the
large variation in skin color and the influence of lighting and
background, currently none of these methods provide high
enough accuracy of segmentation under arbitrary conditions.

Figure 4: Segmentation by classification. A) Input frame. B)
Foreground mask after color thresholding. C) Salt’n’pepper noise
is cleaned up by connected component analysis; larger connected
non-hand regions remain. D) Result after classification. Colored
pixels indicate class label, white pixels indicate noise (red box).
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Therefore we opted for a very simple thresholding technique
that is i) easy to implement ii) computationally cheap and iii)
provides a good compromise between true positives and false
negatives. We segment the hand from the background by:

St(u) =

{
1, ifmin(Rt(u)−Gt(u), Rt(u)−Bt(u)) > τt
0, otherwise

(1)
where Rt, Gt and Bt denote the RGB-components at frame
t and image pixel u, τt is a threshold value and St the seg-
mentation. This technique provides reasonable segmentation
but suffers from false positives, that noise outside the hand
region (see Fig. 4 (B)). Some of this noise can be suppressed
using connected component analysis but regions of noise will
remain if connected to the hand (see Fig. 4 (C)). However,
the proposed hand state classification algorithm can be made
robust to this particular type of noise as detailed below. At
this stage it is important to attain a segmentation that does not
suffer from too many false negatives, in particular we wish
to persist the contour of the hand for accurate classification
results. Please note that the technique only relies on a single
parameter τ that can be tuned at runtime (via an on-screen
slider), and hence it can be quickly adapted to work under
many different illumination conditions.
Hand State Classification Method
Our gesture recognizer is based on random forests (RF) [2]
which have been used successfully for a number of vision
problems, including body pose estimation [33] and hand pose
and state estimation [19, 38] using depth cameras, but also in
HCI using different sensing modalities [7, 22, 39].
A RF is an ensemble of decision trees, each tree in the ensem-
ble produces a noisy classification result. However, accurate
classification results can be attained by averaging the results
from multiple, non-biased classifiers together. Each tree con-
sists of split nodes and leaf nodes; the split nodes themselves
can be seen as very primitive classifiers. Each node will eval-
uate a simple and computationally inexpensive function and
as a result forward the currently evaluated datum (in our case
a pixel) to its left or right child until the datum reaches one
of the leaf nodes. The split functions can be seen as simple
questions where each answer adds a little more information,
or in other words reduces the uncertainty about the correct
class label for the particular pixel. The leaf nodes contain
probability distributions describing the likelihood with which
a pixel belongs to any of the classes in the label space.
Recent work based on RFs (e.g., [19, 33, 38]) leverages highly
descriptive depth images and complementary depth-invariant
features for classification. These approaches use continuous
valued features (typically simple depth differences), and the
split functions compare the feature response against a contin-
uous valued threshold. Our approach cannot rely on depth.
Furthermore, we cannot rely on color, as the variation in ap-
pearance of different hands under arbitrary lighting conditions
is too large to cover all variations. Hence, our method relies
only on shape (i.e., binary masks cf. Eq. (1)) to infer hand
states and features. We use split criteria of the form:

CL
j (w, v,Γj) = {(S, u)|Fw,v(S, u) = Γj} (2)

CR
j (w, v,Γj) = {(S, u)|Fw,v(S, u) 6= Γj} (3)

where Fj is the feature response and Γj is a selector value
stored at each split node j. Here CL

j and CR
j are the mutually

exclusive sets of pixels assigned to the left and right children
of the split node. For a given segmented image S we define
the feature response at the pixel location u as

Fw,v(u) = [S(u+ w), S(u+ v)] (4)

this is a 1× 2 vector where w and v are random offsets and
S(u) is the binary pixel value at that location. The feature
response is discrete and each element of it can take on only
two values; 1 for foreground and 0 for background pixels. At
evaluation time we simply compare this vector with Γj ∈
{[0, 0], [1, 0], [0, 1], [1, 1]}.
An important aspect is that the order in which the split func-
tions are concatenated (the tree structure) and that the final
probability distributions are learned from annotated training
data. In the case of RF this is done by randomly selecting
multiple split candidates and choosing the one that splits the
data best. The quality metric for the split thereby is typically
defined by the information gain Ij at node j:

Ij = H(Cj)−
∑

i∈L,R

|Ci
j |
|Cj |

H(Ci
j) (5)

where H is the Shannon entropy of C. Decrease in entropy,
denoted by Ij , means increase in information, or in other
words that the uncertainty about the decision boundary goes
down. At training time we exhaustively enumerate all possible
splits (w, v,Γj) and select the one maximizing Ij (for more
details see [2, 33]). We provide pseudo-code for forest evalu-
ation, for others to easily extend our results (cf. appendix).
The binary features employed in our method allow training
of a complex data-set while keeping the computational time
and memory footprint low. This, however, does not impact
precision. Conceptually, the binary and shift values encode
the hand shape information and hence the probability that
a given pixel belongs to the hand and to which gesture. As
the classifier is trained and operates only on such data, the
amount of variance in the learning data that needs to be mod-
elled is drastically reduced compared to training directly on
color images. Ideally, we could use a larger number of offsets
to increase the discriminative power of our classification tech-
nique. However, this would strongly affect the training time
as the number of offset combinations increases exponentially.
Multi-stage Classification
Now that we have characterized how we leverage the RF
framework for per-pixel classification of binary images, we
next detail how this can be utilized to recognize a rich set of
gestures and hand-parts, highlighting aspects that are specific
to computationally restricted mobile devices.
Given the interactive scenarios outlined earlier, our classi-
fier has to infer much from binary images alone. First, the
gestures themselves are challenging, due to the similarity be-
tween pairs of gestures. Second, we are not only interested
in hand states (i.e., whole image classification) but also more
fine-grained part information, in particular the location of
fingertips. Third, the classifier has to work with hands of dif-
ferent shapes and sizes. Fourth, due to the complexity of skin
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Figure 5: Multi-stage classification. A) Pre-processing segments
hands from background. B) DCF coarsely estimates the depth of
hand and in-range frames are forwarded. Effective range is between
15-50 cm. C) PCA is used to find in-plane rotation of hands. D) SCF
classifies foreground pixel into 6 gesture classes + plus noise. E)
PCF classifies location of fingertips for pointing-like gestures.

appearance the classifier has to operate on noisy segmentation
data, in particular with regions of noise that are connected to
and are indistinguishable from fingers (cf. Fig. 4 (C)). Fifth,
natural gestures display a lot of variation in gesture execution
(across users but also within), in particular, in terms of rota-
tions of the hand relative to the camera and of course distance
between the mobile device and the user’s hand. Our goal was
to produce a classification scheme that would be able to deal
with all of these challenges to a high degree and in real-time.

One approach to achieve this goal is to amass a training
database that covers all the expected variations and train a
single, potentially very deep forest on this data. The classi-
fication step is very efficient so that even deep trees can be
evaluated on modern hardware in only a few milliseconds.
However, the size of the forest can quickly become an issue
as the memory footprint of the trees grows exponentially with
tree depth. A further issue is that the different objectives
of the classifier are not necessarily aligned with each other.
For example, we experimentally confirmed that gesture clas-
sification accuracy tremendously benefits from near perfect
segmentation. Hence, jointly classifying noise and hand state
might not be the optimal approach. A final concern is that
of overfitting. With very deep trees the danger exists that a
forest learns how to precisely separate the data in the training
set but does not have the model capacity to generalize well on
unseen test data.

A different approach is that of multi-stage or multi-layered
forests [19]. This is a configuration where expert forests are
trained for a particular task (e.g., finding hand parts after first
determining the overall hand shape) and only those images
corresponding to a particular class are forwarded to a second
forest, trained only on examples from this class. Each of the
forests then needs to model less variation and hence can be
comparatively shallow. We propose an algorithm similar to
[19]. Ours differs in that it combines forests trained on com-
pletely separate tasks and combines forests that modify the
image before forwarding it to the next stage (e.g., removing
noise). This can be thought of as a pipeline of independent
but inter-related classifiers as illustrated in Fig. 5.

Stage 1: Coarse Depth Classification The segmented but
noisy foreground mask S(u) is classified into three levels of
depth (see Fig. 6 (A)). The depth classification forest (DCF)
serves a dual purpose. By coarsely estimating the depth of
the hand and by rejecting frames where the hand is either too
close or too far from the device, the DCF greatly reduces the
variation in depth that the downstream pipeline has to deal
with. Equally important, at this stage, the system can detect
whether it will be able to correctly classify a gesture with suf-
ficient probability, information that can be fed back to the user.
Currently the system is trained to accept gestures performed
in an interval of 15-50cm, corresponding to a comfortable
arm pose (see Fig. 6 (A)).

Stage 2: Shape Classification On the foreground masks that
passes the DCF we run principal component analysis (PCA).
The angle of the hand is computed from the major axis (see
Fig. 5, C). Instead of rotating the image, which would be
costly on mobile hardware, we pass this angle to the next
classifier and during evaluation, we rotate the features. This
makes the features pseudo-rotation invariant and allows us
to reduce the number of images necessary in the training
data (and consequently to train shallower forests), while not
sacrificing runtime performance. The shape classification
forest (SCF) classifies the images into (currently) six gesture
classes, one additional no-gesture class, and a per-pixel noise
class (i.e. eight classes in total). The latter is necessary to
deal with remaining false positives from the segmentation,
and the former to robustly reject non-gesture motion in front
of the camera. Fig. 6 illustrates typical classification results
with colored pixels indicating the class label and white pixels
being classified as noise.

Stage 3: Part Classification Images containing pointing like
gestures (i.e., ’point’, ’gun’, ’splayed hand’) are processed by
a part classification forest (PCF, see Fig. 5, E), performing
per-pixel hand part classification. Due to the lack of depth
information we do not attempt to classify all hand parts (cf.
[19]), but only select parts of interest for interaction. Con-
cretely we detect the location of fingertips and the wrist which
can then be used to implement more fine-grained, localized
in-air gestures. The PCF benefits from the previous steps, as
practically all noise is cleaned up and only images with visible
fingertips will be forwarded to it (see Fig. 6 (C)). Hence, the
forest is fairly accurate at a very shallow depth of 10 levels.

Training Data
The RF relies on good training data for high classification
accuracy. To train a classifier, robust to the large amount of

Figure 6: Multistage classification: (A) First hand is classified into
three different coarse depth bins. (B) Next hand shape is classified
into 6 classes. (C) Finally, fingertip parts are detected by PCF.
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variation in hand shapes, sizes and distances to the camera
and gesture execution, we need a large and balanced training
data set.

We asked 20 subjects from our institution to perform the
seven gestures under natural variation and recorded short
sequences of each gesture. This included one ’no-gesture’
where participants were instructed to just casually move their
hands and fingers. This was performed per participant and
at different distances away from the phone (see Fig. 7 inset).
We recorded ∼ 50K images covering enough variation in
rotation, depth and appearance for training the SCF.

We collected additional 8K images to train the DCF, covering
a larger depth range, selected 35K images from the original
data set to train the SCF, and collected additional 5K images
to train the PCF. The raw training data was processed using the
runtime pre-processing pipeline. However, we have to attain
clean segmentation masks and label false positives as such.
This was achieved by first acquiring the gesture sequences in
front of a uniform (typically black) background with carefully
tuned threshold τ (see Fig. 7 (A+B)). We then capture empty
scenes of arbitrary backgrounds, which are segmented with
the same τ , producing some realistic noise signal (Fig. 7
(C+D)). The hand segmentation is then superimposed over the
noise and the resulting image is cleaned up using connected
component analysis. Finally, to attain a labeled image we
subtract the clean hand from the noisy image to separate the
hand region from connected false positives (Fig. 7 (E-G)).

This semi-automatic method is reasonably fast in producing
training data that contains both clean hand segmentations as
well as realistic, labeled noise.

SYSTEM EVALUATION
So far we have presented what we believe is the first real-time
implementation of RFs for pixel-labelling tasks on mobile
devices. The algorithm does not rely on highly discriminative
depth features but works using only 2D images. We detail
experiments to characterize the performance of our recognizer.
Please note that we report accuracy figures from a single SCF,
trained on the entire dataset. As evident from Fig. 10 this
serves as lower bound, and as we show later, the pipelined
version performs as well or better. The SCF is the best testbed
to access the pure discriminative power of the algorithm.

Fig. 8 demonstrates qualitative results of our system classi-
fying different hand gestures. Note the variation we see in
the distance to the camera, orientation, of the hand, and the

Figure 7: Training data generation and labels used for training.

different backgrounds and lighting conditions, as well as the
robustness of the segmentation step (labeled white).

Test Data and Forest Parameters
The forest size (number of trees) and the depth of the trees
are the two main parameters affecting classifier performance.
Increasing the number of trees can enhance accuracy in certain
cases, but always increases computational cost and memory
footprint linearly. To ensure that recognition is fast enough
for real-time interaction at 30 Hz, we use three trees.

For test data, we instructed participants to gesture roughly
at a range of 15 − 50 cm, which is a comfortable range of
operation, and well represented in the training data.

Gesture Recognition Accuracy
We report results using both leave–one–subject–out cross–
validation and by using half of the gesture samples in the set
for training and the remaining half for validation. Table 1
summarizes overall classification accuracy for a single SCF,
averaged over all recognized gestures.

15 16 17 18 19 20
Tr PPCR 0.79 0.82 0.85 0.87 0.89 0.92
Tr SCR 0.88 0.92 0.94 0.96 0.97 0.98
Ts PPCR 0.75 0.77 0.78 0.79 0.80 0.80
Ts SCR 0.86 0.89 0.92 0.92 0.92 0.93

Table 1: Per-frame accuracy for half–training / half–test (Tr) and
leave–one–subject–out (Ts) cross validation of SCF. PPCR stands
for per-pixel classification rate and SCR for state classification rate.
Columns report accuracy for different depths.

Users have their own preferences for natural gestures, and the
way gestures are performed may vary considerably. Hence,
the accuracy of the leave–one–subject–out technique directly
depends on the inter-personal variation in the dataset. As the
number of subjects increases, so does the variation covered
in the training set, and the model’s capacity to generalize to
previously unseen subjects. This accuracy (avg. 93%) can
therefore be viewed as a lower bound and a good estimate of
(unfiltered) real-world performance.

The half training–half test scheme is provided to give a better
estimate of the power of the proposed method, independent of
the quality and make-up of the training data. Overall, recog-
nition performance is very good even with shallow trees (cf.
Table 1). Fig. 9 summarizes classification accuracy as a con-
fusion matrix for the entire gesture set, using both validation
methods. Our technique achieves generally near perfect classi-
fication accuracies with a mean per-class, per-frame accuracy
(mean of the confusion matrix’s diagonal) of 98% and 93%
respectively. In practice this translates to a very robust ges-
ture recognizer with very little temporal filtering necessary
(currently we use a 3 frame box filter), as evident by the video.

Increasing tree depth improves classification accuracy but
also increases training time and memory footprint. On our
data no overfitting effect was observed, indicating that we
could increase mean accuracy even further by training deeper
trees. However, beyond 20 levels we hit the memory limits
of mobile devices. This issue of memory footprint for mobile
uses reaffirms our need for multi-staged forests, which we
evaluate in the next section.
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Figure 8: The current gesture set recognized by our classifier. Training data samples insets. Note the variation in scale and rotation as well as
robustness to false positives from the segmentation step. the right-most image represents the background noise class.

PinchOpen 0.98 0 0 0 0 0 0.01

PinchClose 0 1 0 0 0 0 0.01

Pointing 0.02 0 0.99 0 0 0 0

Gun 0 0 0 1 0 0 0

SplayedHand 0 0 0 0 0.99 0 0

FlatHand 0 0 0 0 0.01 0.99 0.07

No-Gesture 0 0 0.01 0 0 0.01 0.91

0.88 0.03 0 0 0 0 0.02

0 0.93 0.05 0 0 0 0.01

0.02 0.01 0.9 0.04 0 0 0.01

0 0 0.02 0.95 0 0 0

0 0 0 0.01 0.99 0 0

0.05 0 0 0 0.01 0.99 0.11

0.05 0.03 0.03 0 0 0.01 0.85

Figure 9: Confusion matrix; data from 20 users. Left: half–test /
half–train cross-validation; avg. accuracy 98% Right: leave–one–
subject–out; avg. per-frame accuracy 93%.

Multi-staged Forests: Accuracy vs. Memory Footprint
In this section we quantify why splitting forests into separate
specialized classifiers improves memory consumption, whilst
greatly improving accuracy. For this experiment, we assessed
both the performance of the pipelined classifier (DCF+SCF)
and the standalone forest (SCF). We chose a far more chal-
lenging test dataset, where six users performed an extreme set
of gestures at different ranges from 2 − 90cm, which is far
beyond the expected range of interaction. This was intentional
as we wanted to stress-test both classifiers.

Fig. 10 shows the comparison of the two classifiers. The drop
in performance of SCF in this experiment is explained by the
extreme hand poses and distances that we captured in this test
set. SCF was not able to cope with this large variation, and
could not exceed an accuracy much greater than 50%. Our
DCF+SCF multi-stage classifier was able to continuously out-
perform the SCF producing an average accuracy of ∼ 85%.
What is perhaps most compelling about this approach is the
memory footprint of DCF+SCFs compared to SCFs. The
combination of a DCF+SCF with depths 10 and 15 consumes
only 4.5MB, versus 110MB for the SCF at depth 20 but per-
forms ∼ 30% better. At level 18 the DCF+SCF still saves
81MB and outperforms the single SCF by 35%. All memory
figures are for a single tree and have to be multiplied by the
number of trees in the forest.

MOBILE PLATFORM IMPLEMENTATION
The details of our implementation including pseudo-code for
the forest evaluation can be found in the appendix. Here, we
briefly summarize the most important aspects.

Our recognition pipeline is written in native C++ and han-
dles the camera access, performs background segmentation,
random forest evaluation, gesture filtering and visualization
of the different stages. At runtime we read images from the
camera directly into an OpenGL ES texture and perform skin
detection and bilinear downsampling on the GPU. Next, we
download the segmentation mask to the CPU and perform con-
nected component analysis (CC) on the binary image, and we
compensate for transformations via principal component anal-
ysis (PCA). The resulting binary mask is then classified by the
DCF, SCF and, if applicable, by the PCF. Each forest updates

15 16 17 18 19 20

SCF 0.471 0.471 0.48 0.494 0.494 0.506

DCF+SCF 0.826 0.834 0.84 0.851 0.854 0.854
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Figure 10: Comparison of classification accuracy as function of tree
depth when extreme gesture depth variations occur. DCF+SCF (or-
ange) outperforms single SCF (blue) in terms of accuracy averaged
over all classes.

a label image as well as the input mask. After classification we
upload the gesture labels and the cleaned segmentation mask
back to the GPU for display. The per-pixel label probabilities
are pooled across the image c∗ = argmax

c

1
|u|
∑|u|

0 p(c|S, u),

where c∗ is the final output mode or class label. Finally, a
low-pass filter stabilizes the class labels temporally and a
Kalman filter stabilizes the part labels spatially. The filtered
gestures are injected as events to the Java-based Android apps.
Camera capture, GPU computations, CPU computations, and
user interaction run in four different synchronized threads.

PRELIMINARY USER EVALUATION
So far we have concentrated on evaluating the gesture recog-
nition accuracy and the impact of pipelining the classifier,
which we deem one of our main contributions. However, the
main goal is to enable new forms of interaction and to en-
hance user experience on mobile devices. Hence, we gathered
quantitative and qualitative data from a small pilot user study.

Bi-manual interaction One of the most compelling interac-
tion scenarios for our technique is the use of touch and ges-
tures in concert, freeing up display real-estate but allowing
for complex bimanual interactions. To assess this hypothesis
we ran a baseline experiment comparing multi-touch input
with the combination of touch plus gestures in a comparative
experiment. Participants had to repeatedly switch mode in a
finger drawing application either using traditional menus in
the touch condition or gestures in the bi-manual condition.

Experimental design We asked 9 subjects (6 male, 3 fe-
male) from our institution to trace a given figure using the
touch+gesture interface or touch only. In both cases users
had to repeatedly switch brush size and brush color. In the
touch only condition both functionalities are controlled via
a standard Android radial menu (see Fig. 11, left). In the
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touch+gesture condition the color chooser was invoked us-
ing the “C” gesture and the brush-size was toggled using the
closed pinch gesture. Presentation order of the conditions
is counterbalanced. Each user is asked to trace a total of 10
drawings requiring a total of 6 mode changes each.
Our results, summarized in Fig. 11 right, indicate that the
touch+gesture condition is faster on average (mean=80.66s,
SD=17.62) than the pure touch condition (65.22s, SD=15.06).
A student’s t-test shows that this difference is statistically
significant(p < 0.007). This is inline with our observation
that most users instantaneously picked up on how to effec-
tively leverage the gestures in this task. Only one user in our
sample was faster with touch (104 versus 111 sec) and this
user reported issues with remembering which gesture was
mapped to which function.
Qualitative Feedback
While the quantitative results are promising, not all aspects of
our system lend themselves to a formal evaluation. To attain
a more holistic impression on the perceived user experience
we conducted informal sessions with 8 participants (5 male,
3 female) again recruited from our lab. We gave users the
opportunity to experiment with the applications we have built
and discussed in the section “In-Air Gestures On The Move”.
This was followed with informal interviews.
Overall the feedback was very positive and users were im-
pressed by the robustness of the gesture recognition engine.
Scenarios that tightly couple touch input and gestures, for
example the gaming scenario, were particularly well received.
Furthermore, most users commented on the usefulness of
the ‘back of device’ zoom and ‘page flip’ functionality in
the Reader app. However, the participants were split in their
opinion about the zoom functionality on the map application;
with those not liking it saying ‘I’m simply too well trained
on touch and pinch–to–zoom on mobile phones’. Finally,
the magnifier functionality was generally received positively,
with many users highlighting that this could be very useful, re-
marking that current mobile OS do not allow for simultaneous
positioning of the magnifier and interaction with magnified
content. The lack of dwell-time for lens invocation was also
appreciated.
Of course, these observations are only preliminary. Our ges-
ture set was in part designed to evaluate the range of variation
our recognizer can cope with. Nonetheless, the current ges-
tures illustrate the utility of the bi-manual touch+gestures
interaction style. Furthermore, only two participants thought
that more gestures would have been useful, whereas the rest
of the participants found the overall gesture set useful and
easy to remember. One user commented on the compelling

Figure 11: Tracing experiment. A) Touch condition B)
Touch+gestures condition. C) Time to completion results in secs per
drawing. Error bars signify standard deviation.

possibility to train different forests for different apps (‘for ex-
ample, each game could come with it’s own gestures’). While
the classification engine could be built into the OS, the spe-
cific trained forest could be shipped as middleware for each
application. Finally, users commented that the absence of an
explicit mode switch is very compelling. This can be seen as
partial confirmation of our initial design goal of low-effort
gestures, leveraging touch as primary input channel, comple-
mented by smooth transitions to in-air gesturing then back.

DISCUSSION AND FUTURE WORK
The initial quantitative and qualitative results of our system
are promising. Classification results performed by a variety
of users in different lighting conditions and with changing
backgrounds illustrates that even our initial prototype can be
used for a diverse set of gestures, on off–the–shelf mobile
phones, tablets and even smartwatches. To our knowledge this
is the first time that a real-time implementation of the RFs has
been demonstrated on such devices, especially with this level
of robustness for gesture recognition. One important aspect to
note is that given our recognition engine is machine learning
based, new gestures can be added simply by providing new
examples, and retraining our system. There are also clearly
many areas of improvement, which we discuss in this section,
outlining limitations and future work.

More Gestures, Better Features To demonstrate the extend-
ability of our system we have trained the recognizer on a
gesture set compiled from the American Sign Language al-
phabet but taking only gestures that have a unique contour
(see supplementary material). The resulting set contains 12
classes and on leave–one–subject out validation achieves an
avg. accuracy of 83%. However this demonstrates that our
approach is limited to recognizing and discriminating gestures
that provide a unique shape or contour, and therefore can miss
subtle differences in gestures. For future work we will explore
the feasibility of using more discriminative features and going
beyond classifying binary images. For example, a feature
that captures texture information may be able to differentiate
between a flat hand facing down and one facing up.

Dynamic Gestures While we already detect a number of
continuous interactions such as tracking fingertips or comput-
ing the ratio between open and close pinch (cf. supplementary
material ), our recognizer is static in nature. For future work
we want to explore means to extend this to be able to capture
dynamic gestures such as flicks and swipes directly. We plan
to built upon recent work demonstrating the usage of RFs for
motion gestures [39].

Lighting conditions As with all vision systems, ambient light
is an issue. We have demonstrated that the system can cope
with a variety of natural lighting as can be found in many
indoors and outdoors locations. However, sudden changes in
lighting such as entering or leaving a building or switching
on strong direct light sources are still an issue. In particular,
our technique is sensitive to segmentation failure – primarily
false negatives as these impact the shape of the hand. To some
degree this is counteracted by using a skin detection scheme
with a single parameter and keeping the user in the loop to
tune this setting. However, ultimately more sophisticated and
reliable detection mechanisms would be desirable. Inspired
by the promising results we achieved on classifying false
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positives we will explore the possibility of pushing the entire
segmentation into the random forest.
CONCLUSIONS
We have presented, for the first time, a random forest based
gesture recognizer, running in real-time on off–the-shelf mo-
bile devices, including tablets, mobile phones and smart-
watches. The algorithm avoids any hardware modifications,
requiring only images from a regular RGB camera which are
now commonplace on such devices. This makes natural ges-
tures on mobile devices accessible to a large user base. We
have also proposed a number of compelling interaction scenar-
ios, allowing users to seamlessly transition between touch and
gestural interaction, and allowing for bi-manual, simultaneous
touch+gesture interaction. To achieve maximum accuracy for
minimal memory footprint we have introduced multi-stage
classification forests. Our hope is to provide a compelling
new platform for researchers and practitioners alike to create
new gestural interfaces on mobile devices.
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F. Hand Pose Estimation and Hand Shape Classification
Using Multi-layered Randomized Decision Forests. In
Proc. ECCV (Berlin, Heidelberg, 2012).

20. Ketabdar, H., Roshandel, M., and Yüksel, K. A. Towards
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APPENDIX
Extended gesture set
The main body of the paper demonstrates a gesture set consist-
ing of only six gestures. In order to demonstrate the scalability
and discriminative power of the approach, we have conducted
further experiments with a larger gesture set. We selected 12
gestures from the American Sign Language alphabet (ASL)
based on the uniqueness of their shape. As our algorithm
relies only on binary images, differences in appearance that
are fully contained within the silhouette of a hand pose are dif-
ficult to discriminate using the binary features. For example,
the letters A, M, N, S, and T produce near identical outlines.
Furthermore, we excluded signs with dynamics (i.e., motion)
as we currently only recognize static gestures.
Fig. 12 shows the confusion matrix for the 12 gestures selected
from the ASL alphabet. On this gesture set we achieved simi-
lar performance to our original gestures. The overall average
per-class accuracy is of 83% for leave–one–out validation.
This additional experiment further demonstrates the power
of the classification algorithm and we believe that even more
complex gesture sets could be handled. However, the feature
we chose limits the type of gestures to those that produce
visually discernible contours. In our future work we will
investigate different types of features to overcome this limita-
tion and to exploit the additional information that is present
in the data (e.g., texture, edges).

Figure 12: Confusion matrix for 12 gestures selected from
American Sign Language.

Continuous gesture switching
Currently our algorithm can only handle static gestures. How-
ever, in many situations application programmers are inter-
ested in continuous valued input. For example, one might
want to implement a gesture to control the volume of an audio
player dynamically. One possibility to do so based on our
approach is to exploit the per-pixel nature of the classifier. We
have observed that the probabilities of symmetric gesture pairs
(e.g., open and closed pinch) increase and decrease smoothly
during the transition between the two gestures. Fig. 13 plots
the raw, unfiltered relative probability ratio between the pair
of gestures (PinchOpen and PinchClose). The ratio between
these two values can be mapped to continuous inputs.

Figure 13: Continuous gesture input can be implemented by
looking at the ratio of the first two modes in the per-pixel
class probability distribution.

For instance, we have implemented a mapping application
in which a fisheye lens can be invoked using the PinchOpen
gesture. Subsequently, the size (and hence magnification
factor) of the fisheye lens can be controlled by opening and
closing the pinch gesture. The location of the lens can then
be controlled via the fingertip locations (see Fig. 14).

Figure 14: The size of magnifier on the map can be adjusted
continuously by the transitions between PinchOpen and Pinch-
Close gesture pair.
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