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Overview
Many computer vision tasks benefit from the disentanglement of 
multiple factors, among which
• some are labelled and task-relevant (e.g. gaze direction, pose)
• others are unlabelled and extraneous (e.g. lighting condition)

We propose the Self-Transforming Encoder-Decoder (ST-ED), 
which 
• learns to encode extraneous factors in a self-supervised manner,
• disentangles them from task-relevant factors.

We apply our method to gaze and head redirection, and show 
• better perceptual quality and redirection fidelity versus SOTA,
• improved downstream performance when used as data augmentation.

Self-Transforming Encoder-Decoder (ST-ED)
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Comparison to SOTA

• ST-ED Model predicts and controls with pseudo conditions for explicit factors
• +𝒇! additionally learns to discover and represent extraneous factors
• +ℒ" + ℒ# additionally uses functional and factor disentanglement loss.

Qualitative Results
Given limited labelled samples,
• Train semi-supervised redirector
• Augment labelled dataset with redirection
• Compare downstream performance
With ½ labelled data, our method achieves similar performance.

Conclusion
• Our ST-ED model learns extraneous factors of variation (unlabeled) from in-the-wild images.
• Our functional and disentanglement losses help to learn more accurate and disentangled factors.
• For the first time, we show that augmenting training data with gaze redirector results in improved 

downstream task performance.
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Novel Objectives
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