Self-Learning Transformations for Improving Gaze and Head Redirection

Yufeng Zheng¹, Seonwook Park¹, Xucong Zhang¹, Shalini De Mello², Otmar Hilliges¹

Overview

Many computer vision tasks benefit from the disentanglement of multiple factors, among which

- some are labelled and task-relevant (e.g. gaze direction, pose)
- others are unlabelled and extraneous (e.g. lighting condition)

We propose the Self-Transforming Encoder-Decoder (ST-ED), which

- learns to encode extraneous factors in a self-supervised manner,
- disentangles them from task-relevant factors.

We apply our method to gaze and head redirection, and show

- better perceptual quality and redirection fidelity versus SOTA,
- improved downstream performance when used as data augmentation.

Ablation Studies

Approach	Gaze Direction			Head Orientation			LPIPS	
Approach	Re-dir.	$u \rightarrow g$	h ightarrow g	Re-dir.	$u \rightarrow h$	$g \rightarrow h$	g+h	all
T-ED Base Model[1]	7.114	-	4.882	2.470	-	0.542	0.279	0.279
ST-ED Model	5.107	-	3.639	1.479	-	0.660	0.272	0.271
$+ f_u$	4.716	0.814	3.404	1.434	0.314	0.385	0.257	0.215
$+\mathcal{L}_{\mathrm{F}}+\mathcal{L}_{\mathrm{D}}$	2.195	0.507	2.072	0.816	0.211	0.388	0.248	0.205

- ST-ED Model predicts and controls with pseudo conditions for explicit factors
- $+f_u$ additionally learns to discover and represent extraneous factors
- $+\mathcal{L}_F + \mathcal{L}_D$ additionally uses functional and factor disentanglement loss.

Comparison to SOTA

	(a) GazeCapture				(b) MPIIFaceGaze					
	Gaze Redir.	Head Redir.	$g \rightarrow h$	$h \rightarrow g$	LPIPS	Gaze Redir.	Head Redir.	$g \rightarrow h$	$h \rightarrow g$	LPIPS
StarGAN	4.602	3.989	0.755	3.067	0.257	4.488	3.031	0.786	2.783	0.260
He et al.	4.617	1.392	0.560	3.925	0.223	5.092	1.372	0.684	3.411	0.241
Ours	2.195	0.816	0.388	2.072	0.205	2.233	0.884	0.365	1.849	0.203

Conclusion

- Our ST-ED model learns extraneous factors of variation (unlabeled) from in-the-wild images.
- Our functional and disentanglement losses help to learn more accurate and disentangled factors.
- For the *first time*, we show that augmenting training data with gaze redirector results in improved downstream task performance.

ETHzürich

Acknowledgement

project has received This from the European funding Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement No. StG-2016-717054.

References

2019.

[3] Yunjey Choi et al. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In CVPR, 2018. [4] Richard Zhang et al. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[1] Seonwook Park et al. Few-shot adaptive gaze estimation. In ICCV, 2019.

[2] Zhe He et al. Photo-realistic monocular gaze redirection using generative adversarial networks. In ICCV,