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1 Overview

In this supplementary document, we first show additional qualitative examples and experimental
results (Sec. 2). We then provide details of the transformation function T (·) (Sec. 3) and implementa-
tion of network architectures (Sec. 4). We highly recommend that our readers view the supplementary
video which provides further results produced by the proposed method.

2 Further Results

2.1 Video Samples

Please check the accompanying video for samples which further demonstrate the quality and consis-
tency of our approach. Note that all samples are produced using a test subset of the GazeCapture
dataset [1] and as such no over-fitted results are shown.

Our ST-ED approach is able to reconstruct smoother and more plausible changes in gaze direction
and head orientation, and generates images with photo-realism despite being trained on a highly noisy
dataset of in-the-wild images. Furthermore, the gaze direction and head orientation apparent in the
output video sequences more faithfully reflect the given inputs, with promising results at extreme
angles which go beyond the range of the training dataset (as such, the faithfulness of those generated
samples cannot be quantitatively measured yet).

2.2 Additional Image Samples

In Fig. 2 (see end of document), we show additional qualitative results from the GazeCapture test set,
comparing our method against state-of-the-art baselines.

2.3 Failure Cases

In Fig. 1 we show that our method sometimes exhibits difficulties in handling eyeglasses and
expressions (Fig. 1a), preserving person-specific appearance characteristics such as face shape
(Fig. 1b), or retaining finer details of the face such as moles and freckles (Fig. 1c).

2.4 Experiments on loss weight combinations

In Table 1, we show that our method is robust to different wights for the various loss terms. The
fluctuation in redirection score is around 0.1 degrees when decreasing reconstruction, functional or
pseudo label loss weights by half (compared to the final weights that we selected and show in Sec. 3.3
of the main paper). We also experiment with varying the weights of our embedding loss terms, which
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Figure 1: Failure cases and limitations. Most of our failure cases are related to appearance preservation.
Difficult scenarios includes eyeglasses, unusual facial features or expressions and finer details such as freckles.

Table 1: Sensitivity to loss term weights. Our method is robust to different loss term weight combinations.
The metrics remain reasonably consistent when the weight of a loss term is decreased by half or set to zero (for
embedding losses).

Approach Gaze Direction Head Orientation LPIPS
Re-dir. u→ g h→ g Re-dir. u→ h g → h g + h all

0.5x weight for LR 2.231 0.517 2.003 0.814 0.209 0.390 0.247 0.204
0.5x weight for LF 2.321 0.558 2.225 0.831 0.227 0.397 0.253 0.206
0.5x weight for LPL 2.249 0.550 2.070 0.819 0.229 0.411 0.248 0.204
No embedding losses 2.359 0.470 2.013 0.779 0.198 0.404 0.243 0.200
Ours 2.195 0.507 2.072 0.816 0.211 0.388 0.248 0.204

includes the embedding consistency loss LEC and the embedding part of our disentanglement loss
LD (the last term in Eq. 9 of the main paper). Removing the embedding-related loss terms leads to
slightly better LPIPS metric but worsened gaze redirection metric. Overall, we conclude that our loss
combination is stable and robust to different weight values.

2.5 Comparison with He et al. [2] on the Downstream Task

We compare our method with baseline methods on the tasks of semi-supervised cross-dataset gaze
and head pose estimation in Sec. 4.5 of the main paper. In this section, we further compare it with the
previous state-of-the-art method from He et al. [2]. We first train the gaze redirector of the method
from He et al. [2] with the entire GazeCapture training set, and then generate eye images from 2.5k
real samples. Finally we train the estimator Fd with both the real and generated data. Please note that
our method as well as the baseline follow the same procedure where only the 2.5k real samples are
used during the entire training procedure.

As shown in Table 2, augmenting the real data samples using the method from He et al. [2] generally
results in performance degradation compared to the baseline, despite having used more labeled data
for training the redirection network. This difference in implementation was necessary, as with very

Table 2: Downstream estimation error with 2.5k real training samples. We show the results from He et al. [2],
a supervised baseline method and our method for both gaze and head pose estimation tasks. The redirector is
trained on the whole GazeCapture training set for He et al. [2], and only 2.5k real samples for our method (in a
semi-supervised fashion with unlabeled samples from the rest of the dataset).

(a) Gaze Direction
Method GazeCapture MPIIGaze ColumbiaGaze EYEDIAP
He et al. [2] 9.882 11.985 9.274 25.43
Baseline 6.138 8.243 10.536 21.35
Ours 5.203 6.903 7.974 18.31

(b) Head Orientation
Method GazeCapture MPIIGaze ColumbiaGaze EYEDIAP
He et al. [2] 13.457 7.964 3.787 13.04
Baseline 2.668 2.913 4.158 3.681
Ours 1.961 2.122 2.950 2.960
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few samples the redirection network of He et al. could not be trained successfully. Furthermore, the
approach of He et al. [2] cannot be trained in a semi-supervised manner.

This result highlights that smaller differences in redirector performance can cause large differences in
downstream regression tasks. We believe that the degradation in performance is also due to the lower
quality of the generated images from He et al. [2], which contain many artifacts as shown in Fig. 2.
This causes a domain shift problem between the training images (half of which are generated images)
and the testing images (real), which harms performance.

In contrast, our semi-supervised re-director is trained without any additional labeled data. Nonetheless,
it can generate accurate and photo-realistic samples, which consistently improves performance over
the baseline estimator.

3 Definition of Transformations

In a typical transforming encoder-decoder architecture, the encoder predicts an embedding and this
embedding is transformed via pre-defined transformation routines such as translations as shown in
the initial transforming autoencoder architecture by Hinton et al. [3]. We follow the approach of
Worrall et al. [4] and Park et al. [1] and define our transformations as rotations, which are easily
invertible and are linear orthogonal transformations. This makes such transformations easy to control
and to some extent, interpret.

For a given factor of variation f ji , we assume as described in Sec. 3.2 of the main paper that this
factor is described by an embedding zji and a pseudo condition c̃ji . More specifically, assuming that
a rotation matrix Rj

i is associated with this factor and its variation, we define that the embedding
predicted by the encoder Genc is written as,

zji = Rj
iz

j
icanon

, (1)

where zjicanon
is the canonical representation associated with input Xi. Based on this assumption, we

have:

z̃jt = T
(
zji , c

j
i , c

j
t

)
(2)

= Rj
t

(
Rj

i

)−1
zji , (3)

where the rotation matrices Rj
t and Rj

i are computed from c̃jt and c̃ji , respectively. By the definition
of SO(·) rotation matrices, the inverse of a given matrix is simply its transpose.

More specifically, at the stage of configuring the ST-ED architecture (introduced in Sec. 3.1 of the
main paper), an arbitrary number of factors can be defined with f =

{
f1, f2, . . . , fN

}
where each

factor f j can be controlled with degrees of freedom ∈ {0, 1, 2}.
0-DoF Factors. For the case of zero degrees of freedom, we define z0i , which does not vary but is
simply passed to the decoder assuming and enforcing that z0i ' z0t via the reconstruction objective
(Eq. 3 of main paper).

1-DoF Factors. For the case of 1 degree of freedom, we define the rotation matrix of factor f ji as:

Rj
i =

(
cos cji − sin cji
sin cji cos cji

)
(4)

and the dimensionality of the associated embedding zji becomes N j
f × 2, where N j

f is the hyperpa-
rameter for defining the latent embedding size for this 1-dimensional factor.

2-DoF Factors. For the case of 2 degrees of freedom, we define the rotation matrix of factor f ji as:

Rj
i =

 cosφji 0 sinφji
0 1 0

− sinφji 0 cosφji

1 0 0

0 cos θji − sin θji
0 sin θji cos θji ,

 (5)

where we define the components of the 2-dimensional condition cji =
(
θji , φ

j
i

)
and the dimen-

sionality of the associated embedding zji becomes N j
f × 3. This is in line with the definition of
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Table 3: Architecture of the PatchGAN discriminator used to train ST-ED

Nr. layers / blocks
0 Conv2d(3, 64, kw=4, stride=2, pad=1, bias=True), LeakyReLU()
1 Conv2d(64, 128, kw=4, stride=2, pad=1, bias=False), BatchNorm2d(128), LeakyReLU()
2 Conv2d(128, 256, kw=4, stride=2, pad=1, bias=False), BatchNorm2d(256), LeakyReLU()
3 Conv2d(256, 512, kw=4, stride=1, pad=1, bias=False), BatchNorm2d(512), LeakyReLU()
4 Conv2d(512, 1, kw=4, stride=1, pad=1, bias=True)

spherical coordinate systems for head orientation and gaze direction estimation [5], where the zero-
representation should correspond with a “frontal” direction, such as the face being oriented to be
directly facing the camera.

4 Further Implementation Details

In this section, we provide further details of the configuration and implementation of our ST-ED, and
the external regression networks Fd and F ′d for gaze estimation and head orientation. The codebase
for this project can be found at https://github.com/zhengyuf/ST-ED

4.1 Self-Transforming Encoder-Decoder (ST-ED)

The ST-ED architecture can be flexibly configured. Here, we provide details of the backbone
architecture used and the specific explicit and extraneous factors that were configured, along with
their latent embedding dimensions. Lastly, we provide the used hyperparameters during training for
better reproducibility.

4.1.1 Network Architecture

Generator We use the DenseNet architecture to parameterize our encoder and decoder [6]. For our
decoder, we replace the convolutional layers with de-convolutions and the average-pooling layers
with strided 3× 3 de-convolutions. We configure the DenseNet with a growth rate of 32. Our input
image size is 128×128, and we use 5 DenseNet blocks and a compression factor of 1.0. We don’t use
dropout or 1× 1 convolutional layers, and use instance normalization and leaky ReLU. The feature
map size at the bottleneck is 2× 2, and we flatten the features and pass them through fully-connected
layers to calculate the embeddings and pseudo-labels. Before decoding, we reshape the embeddings
to have a spatial resolution of 2× 2 to match the bottleneck’s shape.

In all our experiments, we use a 0-DoF factor of size 1024, 4× 1-DoF factors of size 16× 2 and 4×
2-DoF factors of size 16× 3 for our generator. Two of the 2-DoF factors are chosen to represent the
explicit factors, i.e., gaze direction and head orientation.

Discriminator We use a PatchGAN discriminator as in [7]. The receptive field at the output layer is
70× 70, and the output size is 14× 14. The architecture of the discriminator is listed in Tab. 3.

4.1.2 Training Hyperparameters

We use a batch size of 20, and train the network for 3 epochs (about 210k iterations). The initial
learning rate is 10−3 and is decayed by 0.8 every 0.5 epoch. We use the Adam optimizer [8] with a
weight decay coefficient of 10−4. We use the default momentum value of β1 = 0.9, β2 = 0.999

4.2 Gaze Estimation and Head Orientation Network

We use a VGG-16 [9] network to implement Fd. We select an ImageNet [10] pre-trained model and
fine-tune it on the gaze and head orientation estimation tasks. The input to this network is a full-face
image of size 128× 128 pixels, and the output is a 4-dimensional vector representing pitch and yaw
values for gaze direction and head orientation. The architecture of the network is shown in Tab. 5.
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Table 4: Architecture of the external gaze direction and head orientation estimation network, Fd.

Nr. layers / blocks
0 VGG-16 convolutional layers
1 FC(512, 64, w/bias), LeakyReLU()
2 FC(64, 64, w/bias), LeakyReLU()
3 FC(64,4, w/bias), 0.5π·Tanh()

Table 5: Architecture of the external gaze direction and head orientation estimation network, F ′
d.

Nr. layers / blocks
0 ResNet convolutional layers, stride of MaxPool2d = 1
1 FC(2048, 4, w/bias)

We fine-tune the network for 100k iterations with a batch size of 64, using the Adam optimizer[8]
with momentum values β1 = 0.9, β2 = 0.95. The initial learning rate is 10−4 and is decayed by a
factor of 0.5 after 50k iterations.

The external estimator for evaluation F ′d is trained in a similar way as Fd, but with a ResNet-50 [11]
backbone which is also pre-trained on ImageNet.

4.3 State-of-the-Art Baselines

There exists no prior art in simultaneous head and gaze redirection and as such we extend and
re-implement the state-of-the-art approach for gaze redirection, He et al. [2] and its close-cousin,
StarGAN [12]. We perform this as best as possible by being faithful to the original objective
formulations, but implement a backbone similar to our own ST-ED for fairness. This sub-section
provides further details of our implementation.

4.3.1 He et al.

This work originally uses eye images (64× 64) from the Columbia Gaze dataset [13], and performs
only gaze redirection. No head orientation manipulation was shown. To apply the method to our
dataset and to ensure a fair comparison, we parametrize the generator with a DenseNet-based encoder-
decoder architecture, which is conceptually similar to the original down- and up-sampling generator
from He et al. [2]. We use one fewer DenseNet block compared to our ST-ED approach in both the
down- and up-sampling stages of the generator, in order to match the original implementation of He
et al. [2] which has a spatially wider bottleneck than our implementation of ST-ED. To extend the
work of He et al. [2] to perform both gaze and head redirection, we simply estimate both values with
the estimation branch of the discriminator, and optimize for both.

We use a global discriminator, as in the original implementation from He et al. [2]. The discriminator
predicts a 5-dimensional vector representing the discriminator value, gaze direction and head orienta-
tion. We use a Tanh() function on the gaze and head direction values and then multiply by 0.5π to
match the ranges of the pitch and yaw values. We follow the original implementation from He et al.
[2] and use the WGAN-GP objective [14]. The discriminator architecture is given in Tab. 6.

We increase the weight for gaze (and head orientation) estimation loss of He et al. [2] from 5 to 1000,
because gaze is harder to estimate when using full face images and the training estimation loss fails
to converge when using the original weight of 5. The weights for the other loss terms are the same as
in the original implementation of He et al. [2]. We choose the same training hyper-parameters as in
our method, except that we train the network for 6 instead of 3 epochs since the WGAN-GP objective
updates the generator less frequently.

4.3.2 StarGAN

Our implementation of StarGAN [12] uses the same generator and discriminator architecture as our
re-implementation of He et al. [2]. Since StarGAN does not need paired training images, we train it
by redirecting the input images to random gaze and head directions, which are sampled from a 4D
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:
Table 6: Global discriminator network with a regression branch for gaze direction and head orientation, as used
in the re-implementation of the He et al. [2] and StarGAN [12] approaches.

Nr. layers / blocks
0 Conv2d(3, 64, kw=4, stride=2, pad=1, bias=True), LeakyReLU()
1 Conv2d(64, 128, kw=4, stride=2, pad=1, bias=False), LeakyReLU()
2 Conv2d(128, 256, kw=4, stride=2, pad=1, bias=False), LeakyReLU()
3 Conv2d(256, 512, kw=4, stride=2, pad=1, bias=False), LeakyReLU()
3 Conv2d(512, 1024, kw=4, stride=2, pad=1, bias=False), LeakyReLU()
3 Conv2d(1024, 2048, kw=4, stride=2, pad=1, bias=False), LeakyReLU()
3 Conv2d(2048, 5, kw=2, stride=1, pad=0, bias=False)

joint distribution of gaze and head directions computed by fitting a Gaussian kernel density to the
ground truth labels from the training dataset. The weights for the cycle consistency, GAN, and gaze
and head estimation losses are 400, 1 and 1000, respectively.

4.4 Data Pre-processing

We preprocess our image data in the same manner as done in Park et al. [1], but with changes to
yield face images. That is, we follow the pipeline defined by Zhang et al. [5] and originally proposed
by Sugano et al. [15] but select [16] and [17] respectively for face detection and facial landmarks
localization. We use the Surrey Face Model [18] and the same reference 3D landmarks as in [1]
to perform the data normalization procedure. To yield 128× 128 images, we configure our virtual
camera to have a focal length of 500mm and distance-to-subject of 600mm.

In more simple terms, we use the code1 provided by Park et al. [1] and tweak the parameters in the
“normalized_camera” variable.

1https://github.com/swook/faze_preprocess
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(a) Input image (b) StarGAN
[12]

(c) He et al. [2] (d) Ours (g+h) (e) Ours (all) (f) Target Image

Figure 2: continued on the next page...

7



(a) Input image (b) StarGAN
[12]

(c) He et al. [2] (d) Ours (g+h) (e) Ours (all) (f) Target Image

Figure 2: Qualitative Results. Example redirection results on the test subset of GazeCapture [19]. Our method
produces more detailed and photo-realistic images compared to the baseline methods of He et al. [2] and
StarGAN [12]. Note that our method can generate photo-realistic images even in cases of large head pose
changes, eyeglasses, and blurry inputs. By aligning to all predicted pseudo-labels of a target ground-truth image,
our approach can also better approximate the target.
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