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Figure 1. We present a method to synthesize physically plausible bi-manual manipulation. Our method can generate motion sequences
such as grasping and relocating an object with one or two hands, and opening it to a target articulation angle.

Abstract

We present ArtiGrasp, a novel method to synthesize bi-
manual hand-object interactions that include grasping and
articulation. This task is challenging due to the diversity of
the global wrist motions and the precise finger control that
are necessary to articulate objects. ArtiGrasp leverages
reinforcement learning and physics simulations to train a
policy that controls the global and local hand pose. Our
framework unifies grasping and articulation within a single
policy guided by a single hand pose reference. Moreover, to
facilitate the training of the precise finger control required
for articulation, we present a learning curriculum with in-
creasing difficulty. It starts with single-hand manipulation
of stationary objects and continues with multi-agent train-
ing including both hands and non-stationary objects. To
evaluate our method, we introduce Dynamic Object Grasp-
ing and Articulation, a task that involves bringing an object
into a target articulated pose. This task requires grasping,
relocation, and articulation. We show our method’s efficacy
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towards this task. We further demonstrate that our method
can generate motions with noisy hand-object pose estimates
from an off-the-shelf image-based regressor. Project page:
https://eth-ait.github.io/artigrasp/.

1. Introduction
The ability to manipulate complex objects, such as op-
erating a coffee machine, opening a laptop, or passing
a box, is a fundamental part of everyday life. Provid-
ing systems with the capability to understand and perform
such tasks can enable effective interactions with the phys-
ical world and provide assistance to humans in various
domains. Consequently, the capacity to generate realistic
hand-object interactions is paramount in fields like anima-
tion, AR/VR, human-computer interaction, and robotics.
Traditional methods for capturing human motion in gam-
ing and films, such as multi-view marker-based setups, can
be costly and require substantial data cleaning for motion
capture data [18, 58]. Hence, a model that can proficiently
generate two-handed motions interacting with objects could
reduce the costs associated with motion capture.

https://eth-ait.github.io/artigrasp/


Research has turned to synthesizing hand-object inter-
actions using either data-driven [75, 78] or physics-based
methods [15]. While existing data-driven methods gener-
ate hand-object motions, including object articulation [78]
and two-hand manipulation [75], these methods typically
depend on complete supervision from precise 3D motion
data for each frame (see Table 1). Recently, physics-based
methods that leverage reinforcement learning (RL) in a sim-
ulated environment have been proposed [15]. This approach
reduces the data requirement for motion generation as they
demand only a single hand pose reference per interaction.
While physics-based approaches have primarily focused on
single-hand grasping motions for rigid objects, real world
hand-object interactions are often bi-manual and include
articulation. However, a framework for synthesizing bi-
manual grasping and articulation of objects is still missing.

Here, we go beyond single-hand grasping interaction of
rigid objects and present ArtiGrasp, a novel method to syn-
thesize dynamic bi-manual grasping and articulation of ob-
jects. We formulate this task as a reinforcement learning
problem and leverage physics simulations. This allows our
method to learn motions that adhere to physical plausibility,
ensuring no object interpenetration and that object articula-
tion results from stable hand-object contacts and forces. We
propose a general reward function and training scheme that
enables grasping and articulation of a diverse set of objects
without object- or task-specific retraining.

Object articulation and bi-manual grasping present two
key challenges compared to single-hand grasping. First,
the articulation of different objects requires diverse wrist
motions, making it challenging to define a general control
strategy. For example, we show that a simple PD control
scheme for relocation of objects after grasping [15] does
not work well in this setting. To address this, we train an
RL-based policy that learns to i) manipulate an object to a
target articulation angle and ii) achieve natural interactions
with the objects by utilizing only a single hand pose refer-
ence as input. The second key challenge is the precise finger
control that is necessary to achieve successful articulation,
where even small deviations from ideal positions on the tar-
get object impact performance. In the bi-manual manipula-
tion setting, one hand can easily hinder the other hand from
reaching its ideal position. To deal with this challenge, we
introduce a learning curriculum consisting of two phases.
In the first phase, we fix the object base to the surface and
create separate learning environments for each hand. This
allows our policies to focus on learning precise finger con-
trol for articulation. In the second phase, we fine-tune the
policies using non-fixed objects in a shared physics envi-
ronment, allowing the hands to cooperate.

In our experiments, we first assess both grasping and ar-
ticulation separately, and then evaluate the Dynamic Object
Grasping and Articulation task, which involves transition-

Few Shot Physics Two-hand Free-base
Method Simulation Articulation

IMoS [20] × × ✓ ×
ManipNet [75] × × ✓ ×
CAMS [78] × × × ✓
Zhang et al. [77] × ✓ × ×
DexMV [49] × ✓ × ×
D-Grasp [15] ✓ ✓ × ×
ArtiGrasp (Ours) ✓ ✓ ✓ ✓

Table 1. Comparison between ours and existing methods. Ours
generates two-hand manipulations using physics simulation, re-
quires only static hand pose references (few shot), and accommo-
dates both rigid and articulated objects with a unified policy.

ing an articulated object from its initial state into a target ar-
ticulated object pose (see Fig. 1). To the best of our knowl-
edge, there are no direct baselines for this task. Therefore,
we adjust the closest related work [15] and show that sim-
ple adaptations lead to low task success rates. On the other
hand, our method achieves performance gains of 5× over
this baseline. We further demonstrate that our method can
work with inputs from both motion capture data and noisy
reconstructed poses from images with off-the-shelf hand-
object pose estimation models. Lastly, we ablate the main
components of our framework.

Our contributions can be summarized as follows: 1) We
propose a method to achieve Dynamic Object Grasping
and Articulation in a physically plausible manner. 2) Our
method leverages RL and a general reward function to learn
fine-grained wrist and finger control to grasp and articulate
different objects without task- or object- specific retrain-
ing. 3) We present a learning curriculum with increasing
difficulty to address the complexity of learning articulation
and bi-manual manipulation. 4) We demonstrate that our
method can utilize hand pose estimates from a single image
as input to generate dynamic grasping and articulation.

2. Related Work
We categorize related research into human grasp generation,
motion synthesis, and dexterous robotic hand manipulation.
Table 1 compares different hand-object motion generation
methods to ours.

2.1. Hand-object Reconstruction and Synthesis

There has been a surge of large-scale datasets introduced
for modeling hand-object interaction [4, 5, 8, 23, 38, 63].
Recent datasets include interactions with articulated ob-
jects [18, 45, 67, 81]. Methods that are being developed
with these datasets can be split into two categories: 1) hand-
object reconstruction; 2) hand grasp synthesis.

The goal of hand-object reconstruction [16, 22, 27, 28,
44, 60, 69, 79, 80, 82] is to estimate the 3D hand and object
surfaces from RGB images. Methods mostly leverage deep



learning models, for example, by using 3D supervision and
synthetic images [27], temporal models [60], or by integrat-
ing adversarial priors and contact constraints [16]. Others
focus on the denoising of pose estimates [22, 79].

In hand grasp synthesis, the goal is to generate static
hand grasps given an object mesh as input. Corona et
al. [16] first generate the grasp type and then refine the
grasp pose accordingly. Karunratanakul et al. [36] intro-
duce a part-based implicit hand model for grasp synthe-
sis. Hidalgo-Carvajal et al. [29] use 10 pre-defined poses
to predict infeasible grasping areas and feasible hand poses.
Some methods use contact information to predict or refine
the grasp configuration [22, 34, 40, 70, 73]. Moreover,
physics-based optimization can be leveraged to improve the
initial grasping pose [63, 64]. Han et al. [24] optimize a
single reference grasp pose for grasping different objects in
virtual reality. Some other approaches focus on more gen-
eral tasks, such as generating grasps for dexterous hands
and grippers [41] or using implicit representations [35] for
grasping and reconstruction.

The methods above are orthogonal to ours. They do not
generate hand motion but provide useful static grasp poses
that we can potentially leverage to synthesize motions in-
volving grasping and manipulating objects.

2.2. Motion Synthesis

The synthesis of human motion is a long-standing problem
in graphics and computer vision [1, 2, 21, 30, 31]. Recently,
there have been methods that synthesize human body mo-
tion interacting with static scenes [6, 25, 32, 39, 57, 62, 76],
such as sitting on a chair or sofa. This line of work focuses
on the human body motion and does not generate motions
of hand-object interaction. There are methods that gener-
ate full-body grasping motion [20, 42, 59, 65], but they
are purely data-driven approaches without physics. They
either require a post-processing optimization for the ob-
ject motion [20], or only generate the approaching mo-
tion until grasping [59, 65]. Recent work has also ex-
plored integrating physics simulations into pose reconstruc-
tion [55, 56, 74], synthesis [66], and even coarse human-
object interaction pipelines [7, 26, 46]. However, these
physics-based methods focus on the body motion and do
not model hands to capture fine-grained hand-object inter-
actions. In contrast, we omit the human body and focus
specifically on bi-manual hand-object manipulation.

Similar to ours, some recent methods also focus on dex-
terous hands and generate interactive sequences that include
physics [15], articulated objects [78], or bi-manual manip-
ulation [75]. Christen et al. [15] generate natural grasping
sequences from static grasp references in a physics simula-
tion, but focus on rigid objects and only consider one hand.
Zheng et al. [78] presents a data-driven method to synthe-
size single-hand pose sequences for articulated objects and

uses post-optimization to make the sequences more physi-
cally plausible. Zhang et al. [75] predict finger poses for
two-hand object interaction. However, they require the full
trajectory of the wrist and object at inference time. In our
work, we generate object and wrist motions through inter-
action with the objects in a physics simulation.

2.3. Dexterous Robotic Hand Manipulation

Dexterous robotic manipulation is often addressed by lever-
aging physics simulation and reinforcement learning with
robotic hands [19, 43, 51, 54, 72]. Some common strategies
to learn to grasp different objects include data augmenta-
tion [12], curriculum learning [77], or improving the move-
ment re-targeting from human demonstrations to the robot
hand in a physics simulation [13, 43, 49]. Other approaches
include tele-operated sequences as training data [51] or use
demonstrations as prior and predict residual actions [19].
Alternatively, a parameterized reward function based on
demonstrations can be used [14]. All of these methods rely
on demonstration of entire grasping sequence. In contrast,
our method only requires static hand pose references, which
are easier to obtain.

To alleviate the need for expert demonstrations, some
methods are formulated as pure RL problems [3, 9]. Chen
et al. [11] propose a benchmark for two-hand manipulation
tasks and use standard RL algorithms. However, the hand
poses remain rather unnatural. They mitigate this by fine-
tuning with a human preference reward [17]. Mandikal and
Grauman [47] train an affordance-aware policy for grasp-
ing. They further introduce a hand pose prior learned from
YouTube videos to achieve more natural hand configura-
tions [48]. However, they only consider a single pose per
object. Qin et al. [50] achieve grasping objects or opening
doors with noisy point clouds from a single camera. Xu et
al. [68] and Wan et al. [61] generate grasp sequences on ob-
jects with point clouds. Yang et al. [71] focus on planning
interactions with chopsticks that are already in the hand
from the start. All these methods consider a single robotic
hand and focus mostly on rigid objects, while our method
can handle two hands for both grasping and articulation of
different objects with a single policy. Chen et al. [10] pro-
pose a benchmark for bi-manual manipulation with differ-
ent rewards and separately trained policies for each individ-
ual task and object. In contrast, our method learns a general
policy across different articulated objects for approaching,
grasping and articulating.

3. Task Definition
The Dynamic Object Grasping and Articulation task is il-
lustrated in Fig. 3. We are given an articulated object that
consist of two parts rotating about an axis qax, an initial ar-
ticulated object pose Ω0, a target articulated object pose Ω,
and two pairs of object-relative hand pose references D (one



Figure 2. Overview of Grasping and Articulation Policy. Our method uses static hand pose references as input (top row) and generates
dynamic sequences (bottom row, where higher transparency represents further in time). We propose a curriculum that starts in a simplified
setting with separate environments per hand and fixed-base objects (gray solid box on the left) and continues training in a shared envi-
ronment with non-fixed object base (purple solid box in the middle). Our policies are trained using reinforcement learning and a physics
simulation. Rewards are only used during training. The detailed structure of our policy is shown on the right.

for grasping and one for articulation). Our goal is to gener-
ate a sequence of one or two hands interacting with the ob-
ject such that the initial object pose Ω0 approaches the tar-
get pose Ω. An articulated object pose Ω is defined by the
6 DoF global pose of the object base B and the 1 DoF angle
ω of its articulated joint. We define the output sequence as
{(qt

l ,T
t
l ,q

t
r,T

t
r,Ω

t)}Tt=1, where T is the number of time
steps and Ωt is the articulated object pose at time step t.
The hand joint rotations and the global 6D hand pose are
defined by qt

h and Tt
h where h ∈ {l, r}. The hand pose

references D = (ql,Tl,qr,Tr) can be obtained from mo-
tion capture or grasp predictions [18] (see our experiments
in Section 6).

4. Grasping and Articulation Policy
We provide an overview of our policy learning framework
in Fig. 2. Since we formulate the problem identically for
both hands, we will omit the notation “h” for simplicity in
this section. ArtiGrasp is reinforcement learning based, and
hence takes as input a state s, provided by a physics simu-
lation, and the hand pose reference D. A feature extraction
layer Φ transforms these inputs and passes them to our pol-
icy network. We train a policy π(a|Φ(s,D)) for each hand.
The policy predicts actions a as PD-control targets, from
which torques τ are computed. The torques are applied to
our controllable hand model’s joints in the physics simula-
tion and the updated state is again fed to our feature extrac-
tion layer. In the physics simulation, we create controllable
MANO hand models [52] with mean shape following [15].

The models have 51 DoFs each and are represented by the
local hand pose q ∈ IR45 and global pose T ∈ IR6. The
objects are represented by meshes taken from the ARCTIC
dataset [18]. Each mesh is split into a base and an articu-
lation part with a single connecting joint. We now present
details about RL, the feature extraction layer, the reward
function, and our learning curriculum.

4.1. RL Background

We formulate our problem as a Markov Decision Pro-
cess (MDP), where the goal is to train a policy π to
maximize the expected future reward Eξ∼π

[∑T
t=0 γ

trt

]
,

where γ ∈ [0, 1] is a discount factor, rt the reward,
and ξ = [(s0,a0), · · · , (sT ,aT )] a trajectory of state
and action sequences generated by the policy interact-
ing with the physics simulation. The probability dis-
tribution over all trajectories ξ is given by pθ(ξ) =

p(s0)
∏T

t=0 p(st+1|st,at)π(at|Φ(st,D)), where p(s0) is
the initial state distribution and p(st+1|st,at) are the transi-
tions determined by the physics simulation. From this prob-
ability we compute the expectation of the discounted future
rewards. The policy π is represented by a neural network,
whose weights are updated during training. Note that we
describe the case where the two hand policies are trained in
separate environments here (see Section 4.4). In the case of
two hands interacting in the same environment, the update
of the simulation state is influenced by the actions of both
policies. To simplify notation, we omit the time indication
from the equations in the following sections.



4.2. Feature Extraction

The state s at a time step entails the current poses of the
hands and object, as well as the contacts and forces per hand
joint. We convert this information into features for the pol-
icy. Since we train a left-hand and a right-hand policy, the
feature space is hand-specific, however, the overall structure
is identical and defined as follows:

Φ(s,D) = (H,O,G), (1)

where H, O, and G are the hand features, object features,
and goal features, respectively.

The hand features H are defined as H = (q, q̇, f, ˙̃T)
where q and q̇ are the hand joints’ local rotations and ve-
locities, f are the net contact forces of each link of the hand,
and ˙̃T are the hand’s linear and angular velocities in object-
relative frame.

The object features are O = (Ω̃, ˙̃Ω, Iart). The terms Ω̃

and ˙̃Ω indicate the articulated object’s 7 DoF pose and ve-
locity expressed in wrist-relative frame. We convert global
information into wrist-relative features (denoted by ·̃) to
make the policy independent of the global state and prevent
overfitting. To provide more information about the object’s
state with regards to articulation to our policy, we introduce
the term Iart = (q̃ax, q̃art, lart,mart,mbase, ), where q̃ax and
q̃art are the direction vector of the articulation axis and the
direction vector from wrist to the axis, represented in wrist-
relative frame. The terms lart, mart and mbase indicate the
distance from wrist to the articulation axis and the weights
of the object’s parts, respectively. We ablate this component
Iart in Section 6.4.

The goal features G guide the policy towards the hand
pose reference and the target articulation angle. They are
defined as: G = (g̃q, g̃x, gc, ga). In particular, g̃q = q − q
is the distance between the target and the current hand joint
rotations (including wrist). The term g̃x = x − x is the
distance between the target and the current hand joint po-
sition, which can be computed from the hand pose using
forward kinematics. gc = [c|c − c] contains the target con-
tacts and the difference between the target and the current
binary contact vector. ga = ω−ω is the difference between
the the target and the current object articulation angle. The
target position, pose, and contacts are extracted from the
hand pose reference. The target articulation angle is set to
zero for grasping and otherwise set to a random angle dur-
ing training. The goal features are expressed in either the
object’s base or articulation coordinate frame, depending on
the part that needs to be manipulated.

4.3. Reward Function

The individual time-step reward function should guide our
policy towards a solution that imitates the reference pose

and fulfills the task objectives at the same time. Therefore,
we define it as follows:

r = rim + rtask, (2)

where rim is the reward for imitating the reference pose and
rtask contains the task objective. The imitation reward is
defined as:

rim = rp + rc + rreg. (3)

The pose reward rp considers both the joint position and
joint angle error. The joint position error is the weighted
sum of the distances between target and current positions x
and x of every joint, and the joint angle error measures the
L2-norm of the differences between the target and current
finger joint (and wrist) angles q and q:

rp = −
L∑

i=1

wi
px||xi − xi||2 − wpq||q − q||, (4)

where wi
px and wpq are weights for the respective terms.

The contact reward rc is composed of a relative contact
term, which corresponds to the fraction of target contacts
c the hand has achieved, and a contact impulse term, which
encourages the amount of force f applied on desired con-
tact joints, capped by a factor proportional to the object’s
weight mo:

rc = wcc
cT If>0

cT c
+ wcfmin(cT f, λmo), (5)

where wcc and wcf indicate the respective weights. The
term rreg regularizes the linear and angular velocities of the
hand and object:

rreg = −wrh||Ṫ||2 − wro||Ω̇||2. (6)

The task reward rtask consists of two incentives: opening the
object to a target articulation angle and avoiding the move-
ment of the object base from its initial pose:

rtask = −wtq||ω − ω|| − wtx||p0 − p||2, (7)

where ω and ω are the the target and the current articulation
angle, p0 and p are the object’s initial and current position.
The weights wtq and wtx are used to balance the terms. All
the weight values are reported in SupMat.

4.4. Curriculum

Training our policies with non-stationary objects from the
beginning makes it difficult to learn the precise control nec-
essary for fine-grained articulation. To address this, we in-
troduce a learning curriculum that consists of two phases.
In the first phase, we fix the objects to the table surface and
train each hand separately in its own physics environment



(grey shaded box in Fig. 2). This lets the policies learn
precise finger movements and articulation. It also enables
faster training, since the physics simulation speed scales
roughly quadratically with the number of contacts in the en-
vironment. In the second phase, we move to the more com-
plex setting where the object base is not fixed to the surface
and the hands are both simulated in the same environment
(purple shaded box in Fig. 2). In this setting, the policies
need to learn to articulate the object without moving the ob-
ject base or even tipping the whole object over. Addition-
ally, the hands must collaborate, i.e., one hand should grasp
the object without moving it too much, such that the other
hand can successfully manipulate the object. In Section 6.4,
we ablate the effectiveness of our curriculum.

5. Sequence Generation

Given the unified policy per hand that can grasp and artic-
ulate objects, we now solve the Dynamic Object Grasping
and Articulation task (see Section 3) by combining the dif-
ferent subtasks. To achieve this, we use two pairs of hand
pose references Dgrasp and Dart. In the first phase, the hand
policies are executed until a stable grasp is reached. In this
case, the target object articulation angle ω is set to zero and
Dgrasp is used as input. To move the object to its target 6D
global pose, we use the policies to keep a stable grasp on
the object and employ the motion synthesis module accord-
ing to D-Grasp [15]. Note that in the case where the hand
pose reference contains only single hand manipulation, we
simply fix the other hand. After having relocated the object,
we need to transition from grasping into pre-grasp poses
for articulation. This is achieved through a heuristics-based
control scheme. First, we release the grasps by bringing the
fingers into open hand poses and moving them away from
the object following the direction that points from the object
center to the wrist. Next, we linearly interpolate a trajectory
between the hand poses and pre-grasp poses for articulation
Dart. The pre-grasp poses correspond to Dart with a linear
translation in global space. They are computed by setting
them at a small distance away from direction of the object
center to the wrist poses of the reference. In the last phase,
we use our articulation policy to approach the object and
articulate it to reach the target articulation angle.

6. Experiments

We conduct several experiments to evaluate our framework.
We first report experimental details in Section 6.1. We then
conduct quantitative evaluations on grasping and articula-
tion tasks in Section 6.2 and Section 6.3, including exper-
iments with imperfect hand pose references from images.
Finally, we provide ablations to show the importance of our
method’s components in Section 6.4. Please see our Sup-
Mat video for qualitative examples.

6.1. Experimental Details

Implementation Details We use PPO [53] for RL training
and RaiSim [33] for the physics simulation. We train all
policies using a single Nvidia RTX 6000 GPU and 128
CPU cores. Training our method takes roughly three days.
We will release all code and data for future research.

Dataset We utilize the ARCTIC dataset [18], which
contains fully annotated two-hand interaction sequences
including dexterous grasping and manipulation of artic-
ulated objects. We separate all available sequences into
the different interactions of grasping and articulation.
For each interaction, we extract a single pair of hand
pose references using heuristics (see SupMat for details).
Since the ground-truth annotation for the test split is not
released, we create a custom 65%/35% train/test-split over
all sequences of the training and validation sets, with a
total of 488 and 257 hand pose references for training and
testing, respectively. For the experiments with image-based
estimates, we only use the validation set consisting of 60
hand pose references, because the pose estimation model
was trained on the ARCTIC training set (see Section 6.3).

Metrics We mostly follow related work [15, 34] and define
three metrics for grasping (success rate, position and angle
error), three metrics for articulation (success rate, simulated
distance and angle error), and one additional metric for the
Dynamic Object Grasping and Articulation task. We omit
the interpenetration metric since all of our baselines include
a physics simulation which exhibits no interpenetration.
Grasp Success Rate (Suc. G): A grasp is defined as suc-
cess if the object is lifted higher than 0.1m and does not fall
until the sequence terminates.
Position Error (PE): The mean position error between the
object’s final and target 3D position in meters.
Angle Error (AE): The mean angle error between the ob-
ject’s final and target base orientation measured as geodesic
distance in radian.
Articulation Success Rate (Suc. A): An articulation is de-
fined as success if the hand can articulate the object for more
than 0.3 rad and the articulated part does not slip until se-
quence termination.
Articulation Angle Error (AAE): The mean error between
the object final and target articulation angle in radian.
Simulated Distance (SD): As articulation should not move
the object base, we report average displacement of the ob-
ject base in meters.
Task Success Rate (Suc. T): We deem a task as success if
the PE < 0.05m, the AE < 0.2rad, and the AAE < 0.5rad.

Baselines D-Grasp is the most related to ours (see
Tab. 1) [15], so we propose baselines following it:
D-Grasp: For grasping, we use vanilla D-Grasp and train
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Figure 3. Qualitative evaluation of Dynamic Object Grasping and Articulation. D-Grasp can grasp and relocate the object successfully,
but fails to articulate the object. Ours is more successful at tackling this task and can articulate the object after relocation.

Grasping Articulation

Model Suc. G ↑ PE ↓ AE ↓ Suc. A ↑ AAE ↓ SD ↓
PD+IK 0.13 1.20 1.50 0.28 0.80 0.39
D-Grasp 0.72 0.12 0.62 0.22 0.93 0.49
Ours 0.71 0.13 0.69 0.55 0.57 0.01

Table 2. Quantitative comparison for grasping and articula-
tion tasks. When the tasks are decoupled, we find that our method
outperforms the baselines on articulation and performs compara-
bly to D-Grasp on grasping.

the policies of the two hands directly with non-stationary
objects. To compare D-Grasp to our method for articulation,
we adjust the wrist control in D-Grasp. We first gradually
increase the angle of the articulated joint and calculate the
target 6D wrist pose with inverse kinematics by assuming
that the wrist is fixed to the articulated part of the object.
We then feed the wrist target pose to the PD controller.
PD+IK: We use the hand reference poses and set them as
targets to the PD controller. The wrist for the articulation is
controlled in the same way as in D-Grasp.

6.2. Evaluation

We first evaluate grasping and articulation tasks separately
and then conduct experiments on the Dynamic Object
Grasping and Articulation task (see Section 3).

Grasping and Articulation For grasping, we pre-sample
30 6D target object poses randomly (see SupMat for
details). To control the wrist movement for relocation
after grasping the object with our method and the PD+IK
baseline, we adopt the same motion synthesis module
as in [15] (see Section 5). For articulation, we evaluate
each hand pose reference on 5 target articulation angles:
{0.5, 0.75, 1.0, 1.25, 1.5} rad. For both tasks, the initial
hand poses are set at a pre-defined distance away in the
direction that points from the object center to the wrist
of the hand pose references, with partially opened hands.

Models Suc. T ↑ PE ↓ AE ↓ AAE ↓
D-Grasp 0.11 0.05 0.15 0.66
Ours 0.50 0.03 0.10 0.41

Table 3. Evaluation for our Dynamic Object Grasping and Ar-
ticulation task. Our method outperforms D-Grasp on all metrics
when evaluated on the task of transitioning an articulated object
into a target articulated object pose.

The quantitative results are shown in Tab. 2. Our method
significantly outperforms the PD+IK baseline on both
grasping and articulation. Our policy has considerably
better articulation performance and comparable grasping
performance compared with D-Grasp. The results also
show the difficulty of articulation and indicate that our
learning-based wrist control is favorable for articulation
compared to D-Grasp’s non learning-based approach.
Furthermore, as shown in the qualitative result Fig. 4,
we observe some recovering behavior from failure cases,
which indicates the robustness of our policy. In particular,
the agent fails to grasp first but tries again to find a
better grasp until it succeeds in articulating the object.
Qualitative comparisons and more examples of generated
sequences are presented in SupMat figures. To evaluate
the generalization ability of our framework, we conduct a
proof-of-concept experiment with a single left-out object.
The result indicates that our framework can generalize to
an unseen object with about 15% performance drop. We
hypothesize that this is because the hand pose reference
serves as a strong prior to the policy. However, more
thorough evaluations need to be carried out once accurate
3D datasets with more articulated objects and hand-object
poses become available.

Dynamic Object Grasping and Articulation To evaluate this
task (see Section 3), we combine all grasping hand pose
references with all articulation hand pose references per ob-
ject, and sample a random target articulated object pose per
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Figure 4. Qualitative articulation result. The hand shows some
recovery ability from failure cases. Zoom in for details.

(a) Input image (b) Noisy recon. (c) Our motion generation

Figure 5. Motion generation. Our method can synthesize new
motion sequences (c) with a noisy hand pose reference (b) recon-
structed from a single RGB image (a).

trial (see SupMat for details). This results in roughly 7500
evaluation trials in total. We report the average pose errors
and the task success rate in Tab. 3. Our method outper-
forms D-Grasp significantly in all metrics. For example,
our method achieves a success rate of 5× than that of D-
Grasp. This shows that while D-Grasp can perform well
in grasping when decoupled, it struggles in this composed
task. We provide a qualitative comparison in Fig. 3 and a
demonstration of a longer sequence with multiple objects in
our SupMat figures. Moreover, see our SupMat video for
more qualitative examples.

6.3. Generation with Reconstructed Hand Pose

We now evaluate our method with hand pose references ob-
tained from image predictions via the off-the-shelf hand-
object pose regressor from ARCTIC [18]. In particular, we
estimate hand and object poses from images of the unseen
validation subject in the ARCTIC and use the reconstructed
results as input to our method and baselines. We separate
the evaluation into grasping and articulation and present the
results in Tab. 4. Despite reconstruction noise such as hand-
object interpenetration, our method can retain comparable
performance as in the experiment with hand pose references
from motion capture. This indicates our robustness to pre-
diction noise and its potential to synthesize new motions
with hand-object pose references from single images. An
example of our generated motion is shown in Fig. 5.

6.4. Ablations

We ablate the impact of the newly introduced components
on our framework. To this end, we compare our full method
against i) training both hands cooperatively and with a non-
stationary object from the start of training (w/o curriculum)
ii) training the hands separately and with a fixed-base ob-
ject (w/o cooperation). Additionally, we train our method

Grasping Articulation

Models Suc.G ↑ PE ↓ AE ↓ Suc.A ↑ AAE ↓ SD ↓
D-Grasp 0.60 0.16 0.78 0.20 1.07 0.63
Ours 0.64 0.16 0.80 0.54 0.55 0.01

Ours∗ 0.67 0.14 0.95 0.54 0.53 0.01

Table 4. Results with reconstructed hand pose references.
When evaluated with predictions from images, we observe a mi-
nor drop in performance for grasping and articulation compared
to mocap data. However, the overall performance shows that our
method can handle noisy estimates. The asterisk (*) denotes using
hand pose references from mocap.

Grasping Articulation

Models Suc. G ↑ PE ↓ AE ↓ Suc. A ↑ AAE ↓ SD ↓
w/o curriculum 0.74 0.13 0.65 0.36 0.77 0.02
w/o cooperation 0.21 0.32 1.43 0.48 0.65 0.02
w/o art. features 0.67 0.15 0.73 0.48 0.67 0.01

Ours 0.71 0.13 0.69 0.55 0.57 0.01

Table 5. Ablations. We ablate our curriculum, cooperative train-
ing, and the articulation features. All components are important
aspects to achieve grasping and articulation with a single policy.

without the articulation features Iart (w/o art. features, cf.
Section 4). The results are presented in Tab. 5. Without the
curriculum, the policy achieves slightly better performance
for grasping, but struggles with articulation. This indicates
the importance of a controlled setting to learn fine-grained
articulation first. When training the hands separately with-
out cooperation, grasping performance decreases because
the hands cannot learn to collaborate for two-handed grasp-
ing. Lastly, the articulation features Iart improve all artic-
ulation metrics, indicating that it provides important infor-
mation about the object to the policy.

7. Discussion and Conclusion
We present a method to synthesize physically plausible
bi-manual grasping and articulation of objects with a single
policy. We introduce an RL-based method that learns
hand-object interactions in a physics simulation from static
hand pose references. To address the difficulty in learning
precise control for articulation, we extract articulation
features and propose a curriculum with increasing task
difficulty. We show our method presents a first step towards
the Dynamic Object Grasping and Articulation task.
Furthermore, we demonstrate that noisy hand-object pose
estimates obtained from individual RGB images can be
used as input to our method. In a proof-of-concept with
a single left-out object we have shown that our policy
has the potential to generalize to unseen objects, and
better generalization may be achieved in the future when
larger and more diverse datasets become available. A
limitation of our method is that it sometimes generates



unnatural poses caused by noisy hand pose references and
the trade-off between the task and imitation reward, which
is shown in our SupMat figures. This may be improved by
integrating bio-mechanical constraints or hand pose priors
obtained from data-driven methods into our framework.
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ArtiGrasp: Physically Plausible Synthesis of Bi-Manual Dexterous Grasping and
Articulation

Supplementary Material

The supplementary material contains this document and
a video. We describe implementation details in Section A
and experimental details in Section B. In Section C, we pro-
vide additional experiments. We will release all code and
pre-trained models.

A. Implementation Details
For training, we use PPO [53] and follow the implementa-
tion provided in [15]. We present an overview of the impor-
tant parameters and weight values of the reward function in
Tab. 6.

Hyperparameters PPO Value

Epochs 1e4
Steps per epoch 6e5
Environment steps per episode 300
Batch size 2000
Updates per epoch 20
Simulation timestep 2.5e-3s
Simulation steps per action 4
Discount factor γ 0.996
GAE parameter λ 0.95
Clipping parameter 0.2
Max. gradient norm 0.5
Value loss coefficient 0.5
Entropy coefficient 0.0
Optimizer Adam [37]
Learning rate 5e-4
Hidden units 128
Hidden layers 2

Weight Parameters Value

wpx 3.0
wpx,fingertip 12.0
wpq 0.2
wcc 1.5
wcf 1.5
wrh 0.5
wro 0.2
wtq 1.5
wtx 0.2
λ 5.0

Table 6. Hyperparameters of our RL algorithm and the weight
values of the reward function.

B. Experimental Details
B.1. Dataset

In our experiments, we use the ARCTIC dataset [18] and
include sequences from all training subjects and the re-
cently released data from the validation subject s05. We ex-
clude the three objects ”scissors”, ”capsule machine”, and
”phone” from our experiments. ”Scissors” is different from
all other objects as it cannot be split into a clear base and ar-
ticulation part and requires in-hand manipulation. ”Phone”
and ”capsule machine” have very small and thin articula-
tion parts which cannot be modeled with our method cur-
rently. We then extract hand pose references according to
Section B.2. From these references, we create a 65%/35%
train/test-split. In total, we generate 745 hand pose refer-
ences for 8 objects from the dataset, with a train/test split of
488/257 hand pose references.

B.2. Hand Pose Reference Generation

We now describe the procedure of retrieving hand pose
references from motion capture sequences. Since the se-
quences contain several different interactions of object ma-
nipulation, from which a lot of hand pose references could
be extracted, we devise heuristics to obtain diverse frames
and avoid redundancy. We distinguish between two types
of manipulation in this paper: grasping and articulation.

For each sequence, we first remove all frames where
none of the hands is in contact with an object. Next, we
filter all remaining frames for grasping and articulation. An
interaction is determined as grasping if an object is moved
from its underlying surface, i.e., if the velocity of the object
base Ḃ is higher than a threshold ϵv . On the other hand, if
the articulation angle ω is changed, we deem an interaction
as articulation. To avoid redundancy in hand pose reference
frames, we make the assumption that the hand pose does
not drastically change during one interaction. Hence, we
choose one frame per interaction subsequence.

B.3. Grasping and Articulation

To evaluate grasping, we generate 30 target 6D object poses
for each hand-pose reference. The target positions are sam-
pled within a range of [-0.15m, 0.15m] in x and y direc-
tions and [0.15m, 0.45m] for the z direction. The target
object orientation is the initial object orientation disturbed
with noise in the range of [-0.3rad, 0.3rad] for all rotation
axes. To evaluate articulation, we set 5 target joint angles
per trial: 0.5rad, 0.75rad, 1.0rad, 1.25rad and 1.5rad.



(a) PD+IK

(b) D-Grasp

(c) Ours

Figure 6. Qualitative evaluation of grasping. When evaluated
only on grasping, PD+IK often fails to successfully grasp the ob-
ject. On the other hand, D-Grasp and ours succeed at the task.

(a) PD+IK

(b) D-Grasp

(c) Ours

Figure 7. Qualitative evaluation of articulation. When evalu-
ated only on articulation, both PD+IK and D-Grasp often fail at
the task. On the other hand, our method can articulate the object
successfully.

B.4. Dynamic Object Grasping and Articulation

For the evaluation of Dynamic Object Grasping and Artic-
ulation, we randomly sample the target articulated object
poses Ω, which consists of the target 6D base pose and the
target object joint articulation angle. The target base posi-
tion is sampled within a range of [-0.1m, -0.05m] in x and
y directions and 0m in z direction, since the objects should
be relocated back onto the table. The target base orientation
is the initial object orientation disturbed with noise in the

Figure 8. Qualitative outputs of our method. We provide more
sequences for grasping and articulation, which are generated by
our method with a single pair of hand pose reference label per
interaction. Each sequence is shown from left to right.

range of [-0.4rad, 0.4rad] for the yaw axis. The target artic-
ulation angle is randomly sampled in the range of [0.5rad,
0.6rad].

B.5. Hand Pose Reconstruction

In this experiment, we use the pretrained image-based re-
construction model of ARCTIC [18] to predict hand-object
poses from single images. Since their model is trained on
the full training set and the test data is not released, we use
the validation set (subject s05) to evaluate this experiment.
This allows us to do a direct comparison of individual hand
pose references from motion capture and image-based pre-
dictions. Our evaluation is conducted on 60 hand pose refer-
ences selected with the heuristics explained in Section B.2.
We retrieve the images at the corresponding timesteps and
pass them to the image-based prediction model.

C. Additional Experiments

We provide additional qualitative comparisons of our
method with baselines for grasping and articulation in Fig. 6
and Fig. 7, respectively. Given a pair of policies (one per
hand), our method can generate diverse grasping and artic-
ulation sequences across different objects, which is shown
in Fig. 8. Please see our SupMat video for more qualitative
examples.

C.1. Long Sequence with Multiple Objects

Our method can generate long motion sequences in environ-
ments with multiple objects, which is shown in Fig. 9. We
use a heuristics-based planner to compose the sequences.
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Figure 9. Long sequence with multiple objects. We show that our method can generate sequences of manipulating multiple objects. (A)
Approaching the mixer with the left hand. (B) Grasping the mixer with the left hand. (C) Articulating the mixer with the right hand while
the left hand is holding it. (D) Putting the mixer down on the table. (E) Approaching the box with both hands. (F) Grasping the box with
both hands. (G) Relocating the box on the table and moving the left hand to the ketchup bottle. (H) Grasping the ketchup bottle with the
left hand and opening the box with the right hand. (I) Relocating the ketchup bottle while the box is being held open. (J) Dropping the
ketchup bottle into the box. (K) Moving the left hand away from the box. (L) Closing the box with the right hand.

(a) Unnatural hand pose references

(b) Unnatural generated hand poses

Figure 10. Unnatural hand poses (a) Some of the hand pose
references we extract from the ARCTIC dataset contain unnatu-
ral hand poses. (b) Our method can output some unnatural hand
poses, which can be due to noise in the hand pose references or
because of the trade-off in the task objective.

Learning a high-level planning module to couple the differ-
ent phases is an interesting direction to explore in the future.
Note that while we propose a controlled setting to evaluate
the Dynamic Object Grasping and Articulation task, the or-
der of manipulations can also be reversed. For example, an

object can first be articulated, and then be moved to a dif-
ferent location.

C.2. Unnatural Poses

As shown in Fig. 10b, our method can generate unnatural
poses, which we argue occurs because of noisy pose ref-
erences from ARCTIC [18] as seen in Fig. 10a. We find
that especially the index finger is often poorly labeled in
the data, which translates to our policies. Developing hand
pose priors to incentivize natural poses could be one way to
mitigate this issue.
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