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Figure 1. We propose an approach to automatically adapt Mixed Reality interfaces to the current context, for example, cognitive load, task and
environment. We leverage combinatorial optimization to decide when, where and how to display virtual elements. For tasks with low cognitive load,
our system displays more elements and in more detail (left). Increased cognitive load leads to a minimal UI with fewer elements at lower levels of detail.

ABSTRACT
We present an optimization-based approach for Mixed Reality
(MR) systems to automatically control when and where appli-
cations are shown, and how much information they display.
Currently, content creators design applications, and users then
manually adjust which applications are visible and how much
information they show. This choice has to be adjusted every
time users switch context, i.e., whenever they switch their task
or environment. Since context switches happen many times
a day, we believe that MR interfaces require automation to
alleviate this problem. We propose a real-time approach to
automate this process based on users’ current cognitive load
and knowledge about their task and environment. Our system
adapts which applications are displayed, how much informa-
tion they show, and where they are placed. We formulate this
problem as a mix of rule-based decision making and combina-
torial optimization which can be solved efficiently in real-time.
We present a set of proof-of-concept applications showing
that our approach is applicable in a wide range of scenarios.
Finally, we show in a dual-task evaluation that our approach
decreased secondary tasks interactions by 36%.
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INTRODUCTION
Mixed Reality has the potential to transform the way we in-
teract with digital information. By blending virtual and real
worlds, it promises a rich set of applications, ranging from
manufacturing and architecture to interaction with smart de-
vices. By their nature, Mixed Reality (MR) interfaces will
be context-sensitive: since users are no longer bound to a
particular location, MR systems need to adapt to a variety of
environmental conditions (e. g., indoor vs outdoors), external
(e. g., current task) and internal states (e. g., current concen-
tration level). This inherent context-awareness does, however,
pose significant challenges for the design of MR systems:
Many UI decisions can no longer be taken at design time but
need to be made in-situ, depending on the current context.

Consider the following example. While reading a demanding
text, which causes high cognitive load, a user would only want
minimal visual augmentations and only those that correspond
to the immediate task. However, simply changing location
and switching to another activity, such as moving to the living
room to take a break, completely changes the user’s capacity
to process information and the need for additional information
in the field of view. With existing approaches, users need to
manually adjust the information they see: their unread emails,
latest news, or a YouTube video. Switching tasks again (e. g.,
to a task with medium cognitive load) would require to re-
adjust the type and level of detail (LOD) of visible applications.
Users have to manually adjust this every time they switch
contexts, i. e., experience changes in cognitive load, task, and
environment, which happens many times a day. This process
is cumbersome, especially if applications become embedded
in space and in settings with reduced input bandwidth (i. e.,
without access to mouse and keyboard). We argue that an
automated process is necessary to assist users in switching
contexts and adapt which applications are shown, how much
information they show, and where they are displayed.

https://doi.org/10.1145/3332165.3347945


Current research in automated MR layout has focused on the
automatic positioning of virtual elements based on their vis-
ibility with respect to users (e. g., OptiSpace [12]), or based
on surface geometry (e. g., FLARE [15]). Approaches for AR
view management focused on placing contents such that legi-
bility is increased and clutter decreased (e. g., Bell et al. [6]).
None of these works, however, take users’ context into ac-
count, i. e., jointly adapts an interface based on cognitive load,
task, and environment. We argue that these aspects play an
equally important role, especially for MR interfaces.

In this paper, we present a first step towards dynamic context-
aware MR interfaces that automatically adapt to the users’
mental workload, their task and current view of the environ-
ment. We propose a combination of rule-based decision mak-
ing and combinatorial optimization as an approach for MR
systems to automatically control when applications are shown,
where they should be displayed and how much information
they should display.

Concretely, the input for our system are 1) individual applica-
tions with different LODs designed by content creators, and
2) a simple specification of which applications are relevant
when users perform a task (e. g., when working on a document,
relevant applications include email, news, messenger and a
todo app). At run time, the system takes the users’ current cog-
nitive load, estimated via the Index of Pupillary Activity [10],
their task, and their environment into account. We quantify
those factors and optimize the placement, LOD and time of
presentation of virtual contents. Our approach also can take
device-specific factors such as the field of view into account.

In summary, we contribute an optimization-based approach to
automatically adapt MR interfaces based on the user’s current
context. We mathematically formulate the relevant factors and
constraints in a multi-step optimization process that can be
solved efficiently in real-time using rule-based decision mak-
ing and integer linear programming. We show in an evaluation
that our approach is feasible and that our system decreases
the number of necessary interactions by 36% in a dual-task
scenario. The evaluation was performed in VR to avoid con-
founding effects of current MR display hardware. We believe
that our approach generalizes to MR interfaces, which we
show with a set of scenarios, implemented using our real-time
optimization-based approach and a camera-based see-through
HMD.

APPLICATION SCENARIOS
Before detailing our proposed multi-stage optimization ap-
proach, we briefly illustrate a number of application scenarios
to clarify the need for and the utility of computational ap-
proaches to UI adaptation in the context of MR interfaces.

Figure 2. The email application and its 5 LODs.
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Figure 3. We used a a prototypical implementation of our approach to
implement 6 scenarios where users experience different levels of cogni-
tive load, different tasks and carry these out in different locations. Thus
they are presented with different applications and with varying detail.

A prototypical implementation of our approach is used to adapt
a MR interface in various scenarios, see Figure 3. We designed
12 applications (e. g., email, task list, image browser). Each
application has 4 to 5 subviews (LODs, see Figure 2). In its
default state, only an icon (a cube in 3D space) is visible. To
automatically adapt the UI to the task we map the frequency
of usage of the applications on a scale from 1 (used rarely) to
7 (used always) to a set of tasks (e. g., task "office work" for
scenarios 3,4 and 6; frequency of usage for email: 6, tasks: 5,
calendar: 5, video call: 4, YouTube: 2).

During tasks such as doodling and cutting fruits (scenarios
1 and 2), users experience a low cognitive load. Our system
estimates this and therefore decides to display more informa-
tion (e. g., YouTube or banking). All applications have, in
their initial state, a user-defined position in the environment
(i. e., world-anchored). If the system determines that an ap-
plication should be shown but is currently not visible due to
viewing angle or occlusion, it is displayed view-anchored, i. e.,
as an heads-up display item. In scenario 2, for example, the
green email application is view-anchored, and contains the
information that there is one new email (Figure 3, left). Turn-



ing towards the location in space triggers a transitions from
view-anchored to world-anchored (Figure 3, right). Since the
available space increased, it is displayed with higher LOD, in
this case showing the subjects and senders of the last 3 emails.

During brainstorming and writing notes (scenario 3 and 4),
users experience a medium cognitive load. Therefore, fewer
elements are displayed. For brainstorming, only 3 applica-
tions with low LOD are displayed view-anchored (Figure 3,
left). The user then turns towards the image browser, which
allows our optimization to show more information, i. e., more
images (Figure 3, right). When performing maintenance on
electronics or reading a scientific paper (scenario 5 and 6),
users experience high cognitive load. Our system therefore
only displays the most frequently used applications (tasks ap-
plication for maintenance; calendar for reading) and with low
LOD to avoid increasing users already high cognitive load.

Manually adjusting the 12 applications in these different tasks
would be cumbersome for users. Similarly it is difficult for
designers to predict user’s cognitive workload during the dif-
ferent tasks and specify the corresponding UI. Our approach
automates this process so that content creators can focus on
the design of UI elements and end-users do not need to adjust
the UI every time they switch their context.

BACKGROUND AND RELATED WORK

Adaptive Mixed Reality
In the context of Mixed Reality there exists several challenges
related to the display of virtual content that have been ad-
dressed with computational methods. Several work address
the problem of automatically determining where to place vir-
tual objects in the real world. Fender et al. measured user
behavior and object positions to infer the positions of objects
for spatial augmented reality [12] and the position of displays
[13]. Nuernberger et al. inferred constraints from the physical
world to place virtual elements automatically [36]. Gal et al.
solved a constraint-satisfaction problem to generate layouts
of virtual content based on properties of the physical environ-
ment [15]. These approaches can be seen as instances of the
view management or label placement problem, addressed by,
for example, Bell et al. [6], Azuma et al. [2], Rosten et al.
[42], Grasset et al. [18], and Madsen et al. [30].

Few works investigate the problems of how virtual content
should be shown to the user. Julier et al. performed informa-
tion filtering based on users’ location and task using a region-
based approach [27] . DiVerdi et al. proposed to use different
LODs of content presentations as a basis for adaptive AR, a
concept we also use for our approach [9]. Tatzgern et al. used
hierarchical clustering to control the the number of labels that
are presented to users [46]. Ghouaiel et al. proposed adapting
virtual contents based on the environment (illumination, target
distance and noise) [16].

In our work, we are jointly concerned with when, where and
how to display content. We make these decisions based on
users’ current cognitive load, and knowledge about their task
and environment. Aforementioned work could be used as a
pre-processing step to our approach to automatically determine
the possible locations to place virtual elements.

Researchers have made different observations on the impact
of MR systems on mental workload. Grubert et al. [19]
found no impact using mobile AR in an industrial setting,
while Tang et al. [45] found that the use of AR increased the
mental effort of assembly line workers. In contrast, the use of
virtual objects was found to play an important role to reduce
subjective workload in collaborative settings where they could
be used as spatial cues [34]. Similar to Grubert et al. [20], we
argue that context-awareness is a key feature for an elevated
user experience. Our work presents a first step towards a
holistic system that also incorporates user’s mental state.

UI Optimization and adaptation
In the context of mobile UIs and desktop computing, there is
a vast range of work calling for and proposing context-aware
user interfaces that adapt to the user and their environment (see
e. g., [8, 29, 33] for overviews). However, many approaches
are based on handcrafted rules and heuristics. Combinatorial
optimization has been proposed as a general purpose method
to automatically generate and adapt UIs (cf. Oulasvirta [37,
39]) and input devices such as keyboards [11, 28]. For ex-
ample, Gajos et al. [14] and Sarcar et al. [43] have used
optimization methods to adapt desktop and mobile interfaces,
respectively, to a user’s abilities to interact with a UI (e. g.,
[14, 43]. However, current approaches are mostly concerned
with design-time optimization, customizing a UI once before
the user interacts with it. In constantly changing contexts such
as MR, a more dynamic approach is needed that continuously
adapts UIs in real-time. Park et al. [40] proposed Adam, a
system to automatically adapt distributed user interfaces at
run-time based on features such as device capabilities and user
permissions. Similar to their work, we use an integer linear
programming approach to adapt an MR interface but we focus
on taking into account users’ cognitive load, their task, and
their current environment.

Cognitive load estimation
Inferring users’ current mental state, e. g., workload or cog-
nitive load, and using this knowledge to adapt interfaces and
devices has been a long-standing challenge in HCI. Cognitive
load theory (cf. Sweller [44]) states that humans only have
a finite amount of cognitive processing capacity. We refer
readers to Hollender et al. [25] for a review of cognitive load
theory and its applications in HCI. Existing approaches exploit
this knowledge e. g., to schedule interrupts (e. g., Bailey et al.
[3]) or to adapt user interfaces (e. g., Yuksel et al. [47]). There
are three general ways to measure cognitive load: subjective
measures such as the NASA TLX [22], performance metrics
such as response time, or physiological measures, such as elec-
tromyography, skin conductance and respiration (cf. [23, 21]).
We use pupil dilation, which Hess and Polt [24] found to be
connected to mental difficulty of tasks, and can be measured
without instrumenting users (other than tracking their eyes)
and computed in real time. Since pupil dilation is confounded
with ambient light (cf. [41]), several metrics exist that do not
measure absolute size but change in size, such as the propri-
etary Index of Cognitive Activity et al. [31, 5], and the Index
of Pupillary Activity (IPA) by Duchowski et al. [10], which
we use in our work. Our pipeline, however, would be able to
incorporate other approaches if desired.



OPTIMIZATION APPROACH
Given a set of UI elements in an MR environment, our goal
is to automatically determine each element’s visibility, the
amount of information it provides (LOD) and its placement
(in the environment or a position within the user’s field of
view), at any point in time. Our objective is to maximize the
usefulness of the UI while taking into account the user’s view
of the environment and an estimation of their current cognitive
load. We propose a 3-step process that uses a mix of rule-
based decision making and combinatorial optimization. For
all elements e ∈ E = {1, . . .n}, our approach first determines
if elements should be anchored relative to the user’s view or
to the world. It then decides their visibility and LOD for all
elements by solving a integer linear program. In a third step,
we then determine the placement of elements anchored in
the user’s view using a greedy approach to maximize their
legibility. In the following, we first describe the inputs and
parameters needed by our process and then formulate the
optimization problems and constraints.

Inputs
Our approach requires two main sources of input: application-
specific parameters which are given by content creators once
before the system is used, and context-specific parameters that
are determined during runtime (see Table 1).

Application-specific input supplied by content creators
Each element e requires a set of specifications before its visibil-
ity, LOD and placement can be determined. De = (1, . . . ,me)
denotes the list of subviews that provide different levels of
detail, where me denotes the number of specified subviews for
element e. Each subview de ∈ De has an associated cognitive
cost ce,de ∈ [0,1], which is an approximation of how much
cognitive strain a subview puts on the user. For an individual
task t, pt

e denotes the usage frequency of e. Note that while
specifying the frequency of use per LOD would be a straight-
forward extension of our approach, this would require content
creators to set more parameters, which we chose to avoid.

ut
e,de

denotes the utility of e at the LOD de. It approximates
how much (useful) information a subview holds. For sim-
plicity, we chose the maximum utility to be similar to the
elements frequency of use pt

e, normalized by the sum of pt

of all elements. For each LOD, the utility is then the ratio to
the element’s maximum utility. As an example, a subview
with LOD 0 might be an application icon, having a rather low
utility. At the highest LOD, an application could contain a list
of the 10 recent emails and subjects, yielding a high utility,
but also a higher associated cognitive cost.

We provide a simple interface for content creators to specify
these parameters on a scale from 1 to 7, which is normalized
and used as input. This is done once per application and task.
Users do not have to provide any input, but can adjust the po-
sition and LOD of applications with dedicated buttons during
run time. Our algorithm then takes these as constraints into
account. This manual procedure could be replaced with an
automatic analysis. Note that the focus of our approach is not
to automatically infer user’s current task, nor determining a
mapping between the task and a virtual element e. There exist

APPLICATION-SPECIFIC INPUT (SPECIFIED BY CONTENT CREATOR)

Parameter Description

E = (e1, . . . ,en) All virtual elements
n∈ Z+ Number of virtual elements

De = (d1, . . . ,dme) Available LODs for element e
me∈ Z+ Number of LODs for element e

ce,de ∈ [0,1] Cognitive cost of the LOD de ∈
De of element e

ut
e,de
∈ [0,1] Utility of the LOD de ∈ De of

element e during task t

pt
e∈ [0,1] Usage frequency of element e

during task t

CONTEXT-SPECIFIC INPUT (DETERMINED BY SYSTEM)

Parameter Description

ve∈ {0,1}
Determines if an element e can
be seen in the user’s current view
of the environment

Lest ∈ [0,1] The estimated cognitive load of
a user at the time of optimization

Lmax∈ [0,1] The maximal cognitive load ca-
pacity of a user

Table 1. Description and ranges of input parameters.

approaches for human activity recognition (see [1] for a re-
view) which would plug into our system. A mapping between
current task and application importance could be gathered us-
ing data-driven approaches (cf. [4]), and the perceptual costs
of individual LODs could be determined using the Aalto Inter-
face Metrics [38]. Our main focus is on developing a flexible
and general approach to MR online UI adaptation. Connecting
this with more advanced sources of information is a natural
extension of our work.

Context-specific input
At run time the process continuously determines if a UI ele-
ment is visible in the user’s current view of the environment
and estimates users’ current cognitive load. We determine if
an element e is visible to the user in their current view of the
environment, denoted by ve, as follows:

ve =


0, if e is occluded,
0, if ωe > f ,
1 otherwise

(1)

ωe is calculated as the angle between the user’s current posi-
tion, and the element’s position in space. f ∈ R denotes the
diagonal field of view of the device. Occlusion is checked
through ray casting from the user’s point of view to the in-
dividual elements and intersecting the ray with the virtual
environment (in VR) or the acquired geometry of the environ-
ment (in AR using devices with front facing depth camera).



To estimate the cognitive load Lest of the user, we compute the
Index of Pupillary Activity (IPA) [10]. The IPA measures the
frequency of changes in pupil diameter, which is an indicator
for cognitive load. We adapted the implementation provided
by Duchowski et al. as detailed in the Implementation section.

In addition to continuously estimating the current cognitive
load, we take into account an overall cognitive capacity Lmax,
which is a constant per user. In a pre-study with 5 users, we
observed IPA values between 0.05 for tasks with low cognitive
load (watching classical music video) and 0.50 for task with
high cognitive load (counting backwards in steps of 17, cf.
[10]). Based on these tests we set Lmax := 0.6. This factor
could be refined by a user-specific calibration in the future.
In our experiments and the evaluation, however, using these
values yielded good results.

Step 1: View- or world-anchored
For each element e we first decide if it should be view- or
world-anchored, captured by the binary decision variable ze ∈
{0,1}. We first determine the elements’ visibility ve by the
user in their current field of view, as described above. If
ve = 1, the element is decided to be world-anchored (ze = 0),
otherwise it is view-anchored (ze = 1) and will be placed
relative to the user’s field of view.

Step 2: Visibility and level of detail
In the second step, our goal is to decide if a UI element is dis-
played and at which LOD. We use integer linear programming
to maximize the utility of the UI for the user. The binary deci-
sion variable xe ∈ {0,1} captures if an element e is displayed
or not. ye,de ∈ {0,1} denotes if element e has LODs de. Our
goal is then to display those elements that are frequently used
(pe) and to maximize their utility ue,de . This can be formulate
as follows:

max
n

∑
e=1

me

∑
de=1

xeye,de(pe +ue,de) . (2)

The usage frequency and utility are calculated for the current
task t of the user but for simplicity we drop the superscript.
The following constraints restrict the space of feasible solu-
tions and take into account the current cognitive load of the
user in order to decide if an element should be displayed and
at which LOD.

Cognitive load constraint
Our goal is not only to maximize the usefulness of the dis-
played elements, but to constrain the cognitive load of users
when interacting with an MR interface. Therefore we intro-
duce the constraint that the cognitive cost Lvir induced by all
displayed virtual elements together with the estimated cogni-
tive load of the user Lest under the current task and environ-
ment cannot exceed the overall cognitive capacity Lmax and
should leave a minimum remaining capacity α .

Lest +Lvir ≤ Lmax−α (3)

where

Lvir =
n

∑
e=1

me

∑
de=1

xeye,dece,de (4)

Lvir denotes the sum of the costs of the displayed elements
depending on their LOD. In our implementation we set α :=
0.1, based on the results of aforementioned pre-study.

Level of detail constraints
To ensure continued usefulness of individual apps, we add
several constraints related to the LOD an element is displayed
with. The first constraint, formulated as,

me

∑
de=1

ye,de = 1 ∀e ∈ {1, . . . ,n} (5)

ensures that each element is displayed with only one LOD.

If a user is currently interacting with an application, it would
be disturbing to automatically change the LOD. We therefore
introduce a regularizer that fixes the LOD if the time ∆e,de
since a user has been last interacting with an element is below
a threshold γ (in our case 60 seconds). This can be formulate
as

∆e,de < γ ⇒ ye,de = 1 ∀e ∈ {1, . . . ,n},de ∈ {1, . . .me} (6)

If a user has been interacting with multiple LODs (e. g., by
manually decreasing or increasing), we pick the last one they
have interacted with. Note that in the case where a user closes
an element we can use a similar constraint but require xe = 0.

Finally, we constrain the LOD of elements that are view-
anchored. Continuously displaying an element in the user’s
field of view typically means that less information should be
displayed to not overload users (e. g., by displaying a full news
article close to user’s focal view). This is captured by the
following inequality constraint

ze = 1⇒ ye,de = 0 ∀e ∈ {1, . . . ,n},de ≤ 2 (7)

which states that in the case where an element is view-
anchored, it cannot take levels of detail which are greater
than 2, assuming they are ordered by amount of information.

Note that in our prototype implementation, even if the opti-
mization decides that an element is not visible, we still display
a simple icon representing the application, so that users can
access it if necessary. If applications could be launched using
a menu or controller button, for example, this would not be
necessary and elements could be hidden completely.

Step 3: Placement within view
The final step determines the placement of elements that are
anchored in view. We assume a predefined set of slots in the
field of view which can host elements at different levels of
detail as determined in the previous step. Our goal is to show
the elements with the highest usage frequency and utility at
the best slots. Therefore, we assign a score to each of the slots,
based on their quality in terms of their position and legibility.
Formally, the quality qs of a slot s is defined as

qs = e−(10·(
√

s2
x+s2

y−0.5)2) (8)

sx,sy ∈ [−1,1] denote the (x,y) position of the center of the
slot relative to the headset, e. g., the point (0,0) is the center
of the user’s view, (1,1) is the top right corner of the headset.
We chose this function to balance keeping elements out of the



user’s central field of view to avoid occlusion, with not placing
elements too far in the periphery, where contents tend to look
blurry due to current hardware limitations. A visualization of
the distribution of scores can be seen in Figure 4. Assignment
of virtual elements to slots is performed in a greedy manner,
with elements with higher utility assigned to slots with higher
quality. If an element has previously been assigned to a slot, it
will be re-assigned to it to exploit user’s spatial memory.

quality of 
placement slot

high

low

Figure 4. Quality of the view-anchored placement slots. The quality
function can be adapted based on hardware capabilities or user’s prefer-
ences (e. g., prefer left over right).

IMPLEMENTATION
For delivering a see-through MR experience, we used a HTC
Vive Pro VR headset, augmented with a front-facing RGB-D
camera (Stereolabs Zed Mini). We decided against using a
optical see-through AR headset (e. g., Microsoft Hololens)
because of their limited field of view (usually around 30°to
45°). The combination of VR headset and RGB-D camera
resulted in a field of view of approximately 90° (H) x 60° (V).
For gaze tracking, the headset was equipped with an integrated
eye tracker (Pupil Labs HTC Vive Binocular Add-on, 120 Hz
per camera).

We implemented our software in Unity 2018, which allows for
using it in AR and VR scenarios. Gurobi 8.1 is used to solve
the integer program formulated above. We use Python 3.6
to interface with the Pupil SDK and to compute the Index of
Pupillary Activity. The calculated IPA is sent to Unity through
a local socket. Inputs for the optimization are provided in
Unity through a custom plugin. Content creators can spec-
ify tasks and set the frequency of use for individual virtual
elements (see Figure 5).

Figure 5. Content creators specify the frequency of use of individual
elements, in this example for the task office work.

Temporal smoothing
In our early tests, we found that our optimization tended to
jump between solutions, meaning that elements appeared and
disappeared quickly, depending on the current context. This
behavior is typical for discrete optimization formulations such
as the integer linear program presented above. To alleviate
this challenge, we introduce a temporal smoothing that en-
sures improved transitions between solutions. A state manager
stores the state of the optimization (i. e., visibility, LOD and
placement of the virtual elements) every time the optimiza-
tion completes. Only if a user’s cognitive load changes by
more than 5%, the optimization is restarted. Similarly, if a
user changes position or viewing direction, the optimization
restarts. To avoid that virtual elements change their position
or appearance every time a user moves, we delay the optimiza-
tion for 60 seconds and only restart it if the change in state is
still present. This avoids situations where users turn their head
to look up information and then resume with their task, only
to find that their interface has changed.

Computing the IPA
We base our implementation on the work of Duchowski et al.
[10]. We chose this metric since it can be computed without
instrumenting users (apart from an eye tracker in the MR head-
set), as well due to the possibility to compute it during inter-
action. Initial tests showed that a 60 seconds sliding-window
provided a good balance between real-time computation and
resilience to noise. We found that shorter sliding windows
(e. g., 30 seconds) yielded a less reliable signal with more
fluctuations. Longer sliding windows of up to 3 minutes did
not provide visible improvements over 60 seconds, while in-
troducing an even longer delay. To account for noise between
measurements, we apply exponential smoothing on the com-
puted IPA with α = 1

f , where f denotes the sampling rate of
the eye tracker, in our case f = 120 fps, i. e., α = 0.0083.

Computational considerations
In our initial evaluation, detailed in the next section, we found
that the optimization of 12 elements with four to five levels
of detail each, took 7.1 ms on average (SD = 4.9 ms) on a
commodity gaming PC (Intel Core i7-8086K, 4GHz with 6
cores, 32GB Ram, Windows 10, NVIDIA GeForce GTX 1080
Ti), allowing for real-time interaction. During the experiment,
the optimization ran approximately 1200 times in total. We
note that the integer program formulated above is an instance
of the knapsack problem, which is known to be NP-hard [32].
Thus, to ensure that our approach also runs in real-time for
more elements, we set out to test the scalability of our ap-
proach. We populated the optimization with 30, 60, 100 and
200 elements, respectively, with 4 levels of detail per element.
Each element was initialized with random values for frequency
of use, utility, and cost. We then ran the optimization 1000
times for each set, each time with a different randomly cho-
sen cognitive load. For 30 elements, the optimization took
M = 6.14 ms (SD = 1.29 ms), and for 200 elements 43.55 ms
(SD = 4.78 ms), with approximately linear growth for 60 and
100 elements. This indicates that even with 200 elements and
their total of 800 levels of detail, our optimization can easily
run at interactive rates.



EVALUATION
To explore the benefits and limitations of the automatic adap-
tation, we analyzed its performance and perceived usability
in an empirical user study. In our experiment, 12 participants
subsequently performed three tasks exhibiting different cog-
nitive load. During each task they were asked to perform a
secondary task (verbally answering questions) in which they
relied on information provided by the elements placed in their
environment. Participants performed the tasks with and with-
out our system enabled. In terms of research questions, we
were interested in 1) how our approach influences task per-
formance, 2) how our system influences perceived usability
and distraction and 3) if participants will be able to predict the
actions of our system.

Participants
We recruited 12 participants between 23 and 36 years (M
= 29 years, 4 female, 8 male) from a local university. All
participants had little to no experience using AR systems. 3
participants rated themselves as experienced users with VR
systems, all others reported little to no experience. Partici-
pants had corrected or corrected-to-normal vision based on
self reports. No participants reported elevated susceptibility
for motion sickness when queried using the Motion Sickness
Susceptibility Questionnaire Short-form (MSSQ-Short) [17].

Study design
We used a within-subject design with two independent vari-
ables: Task with 3 levels (Count17, Count2 and IconSearch,
inducing different cognitive loads) and Method with 2 lev-
els (Optimized and Manual), yielding 6 conditions. In each
condition, participants were asked to complete a secondary
task, which involved answering questions posed via computer-
generated audio. As dependent variables, we measured pri-
mary and secondary task performance (time and errors), and
number of interactions with the UI elements. For each level of
Method, participants performed each primary task once for 4
minutes. The order of Task and Method was counterbalanced
across participants, but Task order was kept the same within
the Method conditions of individual participants.

Primary tasks
For Count2 and Count17, participants were asked to count
backwards in steps of 2 and 17, respectively, starting
from a random 3-digit number between 600 and 800 (cf.
Duchowski et al. [10]). Participants saw the starting num-
ber as a virtual element at a fixed position and were asked to
input their responses on a number pad with the VR controller
(Figure 6, left). For IconSearch, participants were presented
with a set of 30 randomly selected icons and indicate if a target
icon was contained in the set (Figure 6, right) by pressing a
virtual button. The target icon and the icon set were changed
after every trial to avoid learning effects. The primary tasks
were designed to yield different cognitive loads, from high
(Count17) to low (Count2). Switching tasks also meant switch-
ing physical position, since each task was located at a different
position, as shown in Figure 6. Participants were instructed to
perform the task as fast as possible without making any errors.

Secondary task
As a secondary task, participants were asked questions (prede-
fined but unknown to them). In each Task, 9 questions were
randomly selected from a set of 20 questions. They were re-
lated to 4 to 5 different applications specified as relevant for
the current primary task, and the answer could be found by
opening the correct LOD. Questions were posed verbally by
the software at a randomly-set interval between 25 to 30 sec-
onds. As an example, participants were asked "When did Sam
write you the last email?", which could be answered when
opening the second LOD of the email application. Participants
were instructed to answer all questions in a timely manner.

We chose this task since it closely resembles the spontaneous
recall of information or an interrupt by a third party. In such
situations, users have to consciously make an effort to look
for information in the interface. Depending on the currently
visible UI elements and their LOD, users have to perform more
or less interactions to gather the information, and may need
longer or shorter time for completing this task.

We did not expect to see large differences in quantitative task
performance, since we believe that the cognitive load and
performance is largely dominated by the primary task, and
less by occasional actions for the secondary task.

Method
We compared our optimization-based approach (Optimized)
against a manual approach (Manual). To perform the sec-
ondary task, in both cases, participants could increase or de-
crease the levels of detail of applications using two dedicated
buttons on top of every virtual element. In the Manual con-
dition, all applications started in their lowest LOD, i. e., only
the icon was shown. Applications that were opened by partici-
pants were shown view-anchored in the selected LOD when
they would not be not visible in the user’s current view of
the environment. In the Optimized condition, the visibility
of elements anchored to the users’ view and their LOD was
automatically chosen by our optimization process. As input
to the process, we defined the usage frequency of the virtual
elements for each task pt

e roughly consistent with the number
of questions related to that element. No other study-specific
input was provided to the process. All parameters were kept
constant throughout the experiment for all participants.

Figure 6. Environment of the experiment. In the center are the 12 appli-
cations needed to complete the secondary task. Left and right are two of
the primary tasks, counting and icon search, respectively. Note that only
one primary task was visible to participant at a time.



Apparatus
We used the same apparatus as described in the Implemen-
tation section, except the front-facing depth camera. The
camera-based pass-through MR solution introduces a camera-
to-display lag of approximately 60 ms, which we found to
be uncomfortable for participants. This delay is purely due
to the camera setup, not because of our optimization, and is
not present when using the VR headset. We chose a pure VR
environment since it is offers a lag-free viewing experience
with large field of view that is fully controllable and consistent
across participants. The experimental software was written in
Unity 2018. Secondary task questions were posed using the
built-in Windows 10 text-to-speech module. The experiment
was performed in a distraction-free experimental room (size 3
× 3 meters), with a play area in VR of 2.5 × 2 meters. This
was sufficient for participants to move freely without having
to worry about colliding with the environment.

Procedure
After signing a consent form, participants completed the demo-
graphic questionnaire and the MSSQ-Short. They could famil-
iarize themselves with the tasks and environment in a 5 minute
training. When they stated to feel comfortable performing the
tasks, the experiment started. After completing the 3 Tasks in
one Method condition, participants completed the Nasa-TLX
[22] and the SUS questionnaire [7], extended with questions
specific to the experiment. All questions were answered on a
5-point scale from low (1) to high (5). After completing all
conditions, participants filled in a post-experiment question-
naire and were debriefed. The full study lasted ca. 60 minutes
per participant.

Data collection and analysis
Data was collected by logging all events in Unity. We defined
primary task completion time as the time from appearance of
the trial until it was completed, either by inputting the correct
number (Count17 and Count2) or by deciding if an icon is
part of the displayed set (IconSearch). We removed trials were
participants made an error, between 5 and 24 per participant,
overall 6% of the data. For secondary task completion time, an-
swer timestamps were recorded when the experimenter pressed
a button. We counted the number of interactions performed
to increase the LOD to reveal the necessary information for
answering the question. To not bias the analysis in favor of
Optimized, we did not include interactions performed to close
an application (in Manual an opened application was shown
view-anchored until closed).

To analyze the dependent variables, we performed a series of
Kruskal-Wallis tests to identify main effects, and Wilcoxon
signed-rank tests with Bonferroni correction (α = 0.017) for
post-hoc comparisons. Differences between questionnaire
answers were tested for significance using Wilcoxon signed-
rank tests (Bonferroni corrected α = 0.017).

Results
We found that participants required M = 36% less interactions
to complete their secondary tasks in the Optimized than in
the Manual condition. The primary task dominated partici-
pants’ performance, which is exhibited in the fact that Method
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Figure 7. Primary task completion time for all conditions. Error bars
indicate standard error.

did not significantly influence the other dependent variables
(primary and secondary task performance). Optimized and
Manual exhibited similar task performance, showing that our
system performed similar to a traditionally designed UI. In
the Optimized condition, participants rated themselves to be
less distracted, found little inconsistency in the system, and
reported that they could predict the actions of the system well.

Performance
Figure 7 shows the primary task completion times and sta-
tistical significant differences between Tasks (α = .05). We
found a main effect of Task (χ2 = 555.994, p < .001), but no
main effect for Method (p = 0.232). Post-hoc tests revealed
that primary task completion time was highest for Count17,
followed by Count2 and IconSearch (all p < .001). For sec-
ondary task time, we did not find a main effect for neither Task
nor Method. In all conditions, participants took on average be-
tween 9.27 sec (SD= 4.32 sec) and 10.54 sec (SD= 3.63 sec).
Given that the timestamps were recorded manually, this falls
within the margin of human error when pressing a button.

We found a significant difference in the number of interac-
tions between Tasks (χ2 = 10.37, p = .006) and Methods
(χ2 = 24.24, p < .001). As shown in Figure 8, Optimized
yielded a statistically significant lower number of interactions
in all conditions (all p < .01). For the Manual condition, par-
ticipants increased the LOD 57.2% of the time, and decreased
the LOD 42.8% of the time. This suggests that participants
preferred showing less information to avoid clutter. Other-
wise they would have kept the application at a high LOD in
anticipation of upcoming questions.

To evaluate the accuracy in showing the correct LOD, we com-
pared the target LOD (i. e., minimum LOD to find the answer
to the secondary task) to the LOD presented by our approach.
The result is shown in Figure 9. Our system generally performs
better for lower LOD targets. For example, when the answer
can be found in LOD 2, the optimization displays the correct
LOD 50% of the time and shows too little information 37% of
the time, requiring participants to manually increase the level
of detail by 1. For higher LOD, our system tends to act conser-
vatively and shows lower-than-needed LODs. In addition to
the target application, our optimization shows M = 2.21 LODs
(SD = 1.47) of other applications across all tasks and target
LODs. This is because it only knows the general task of par-
ticipants (i. e., a set of potentially relevant applications) but
not the specific question posed during the study.
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Figure 8. Number of interactions required to complete the secondary
task. Error bars indicate standard error.

Questionnaire
Participants rated Optimized (M = 1.91, SD = 1.00) less dis-
tracting than Manual (M = 3.00, SD= 0.95), Z =−0.846, p=
.052. On the question "I thought there was too much inconsis-
tency in this system.", participants rated Optimized (M = 1.16,
SD = 0.37) lower than Manual (M = 2.42, SD = 1.32), Z =
−1.00, p = .021. However, the differences did not reach statis-
tical significance (α = .017). On the question "I could predict
the actions the system was performing.", participants rated Op-
timized (M = 4.08, SD= 0.95) higher than Manual (M = 2.42,
SD = 1.19), Z = 0.359, p = .010. No significant differences
were found between Methods for any other question. In gen-
eral, participants rated themselves reasonably successful for
performing the tasks for Optimized (M = 3.58, SD = 0.51)
and Manual (M = 3.66, SD = 0.65) on a scale from failure (1)
to perfect (5), p = .77.

Discussion of results
While participants completed the secondary task with signif-
icantly fewer interactions using our approach, no difference
was present for primary and secondary task completion time.
This shows that the tasks dominated the cognitive load and
performance, rather than the interaction with elements. This is
not unexpected. We believe that while our approach generally
has the potential to improve this type of interactions, it might
be more suitable for a longer lasting adaptation of an interface
after a context switch. Participants were able to anticipate
new questions, and were therefore more interested in a very
fast interaction technique than a system that decreased their
overall cognitive load. They acknowledged, however, that our
system has the potential to decrease distraction. Participants
also commented that the view-anchored items were generally
helpful, however were often blurry, thus hard to read, due to
hardware limitations. Since for most participants the base-
line and our system were novel, and we never introduced the
system as "made to decrease distraction", we believe that this
should not be attributed to a good participant effect. Our opti-
mization approach does, however, require more longitudinal
investigation, potentially having participants using the system
throughout the day while performing multiple long running
tasks. Current hardware, however, with limited field of view
and prohibitive weight and tracking restrictions does not allow
for such true in-the-wild studies. We hope to perform such
a longitudinal study on a small number of participants in the
future as technology advances.
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Figure 9. Difference between target LoD for the secondary task and
suggestions by our optimization. Our optimization acts rather conser-
vatively and tends to display lower LOD, rather than overshooting and
showing too much information.

DISCUSSION, LIMITATIONS AND FUTURE WORK
In this paper, we propose an optimization approach that auto-
matically adapts virtual elements in an MR interface to user’s
current cognitive load and view of the environment, using
knowledge about the task they perform. Our goal was to facil-
itate the design of MR applications by automating the process
of adapting UI elements to the context of users which varies
frequently in MR setting. Our optimization process automati-
cally decides which applications to display, where they should
be displayed, and how much information they should contain.
This allows content creators to focus on the design of UI ele-
ments rather than specifying their behavior for any change in
the user’s context. In the following, we discuss the different
aspects of our system in the light of our first exploratory user
study and the set of implemented applications.

Automatically placing elements
In an early version of our system, we automatically and con-
tinuously computed the best placement of virtual elements
anywhere in the world based on their current utility and vis-
ibility (similar to HeatSpace [13]). This lead to objects con-
stantly changing their position, which would prohibit users
exploiting spatial memory and lead to confusing behavior. We
believe that automatic placement systems can be useful as a
pre-processing step to provide an initial estimate where ob-
jects should be placed. Once the elements are placed either
manually by users or an automated system, we recommend
keeping their position fixed but only changing their visibility
if necessary.

Our approach of automatically deciding if an object should
be world- or view-anchored provides a balance between quick
access to information and predictable location of elements.
View-anchored elements are an alternative to automated place-
ment that allow users to access information without disturbing
spatial memory even when world-anchored elements are not in
the view. Users can then choose to turn to world-anchored ob-
jects if they need to gather more information. In our user study,
we found that while users appreciated the view-anchored el-
ements, they oftentimes had problems reading the available
information, which appeared blurry. Limited visual quality
and field of view is a challenge with recent MR headsets,
which we hope will be solved in the near future. This would
also allow us to further investigate the limits of how much
information should be displayed close to user’s field of view.
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Applications vs. augmentations
The applications we implemented are based on existing ap-
plications (e. g., mail, messengers), therefore are more text-
focused and rectangular. MR has the potential for more com-
plex augmentations of physical objects, such as recoloring or
hiding them. While we believe that our optimization-based ap-
proach generalizes to those scenarios, further testing is needed
to evaluate its applicability, benefits and challenges. Creating
MR interfaces in complex environments with a rich set of
applications and augmentations will be even more challeng-
ing for content creators when using a manual workflow. We
therefore believe that this is also where the strengths of our
approach come into play, and that context-aware automatic
adaptation is a necessity to make such interfaces feasible.

Cognitive load estimation and user state
In our experiment, the IPA was a good indicator of cogni-
tive load for most participants. However, a behavior that we
frequently observed is a peak in cognitive load after about
2 minutes into each condition, and a decline thereafter, as
shown for two participants in Figure 10 (similar graphs for all
participants can be found in the Appendix, Figure 11). This
might be attributed to participants adjusting to the task. Inter-
estingly, we could not find statistically significant differences
when comparing the IPA across different Tasks. This suggests
that either our experimental method saturated the cognitive
capacity of participants, or that the IPA can only be used as
a relative load indicator with a reliability of several minutes.
While for our purposes, the IPA was a useful indicator of cog-
nitive load, in particular within a condition, more investigation
is needed to prove the reliability of the IPA during everyday
use. During our experiments, the parameters of the cogni-
tive load estimation and the optimization in general were kept
constant as described in the Implementation section. While
we believe they were sufficiently robust across users for our
purposes, further testing is needed to find out if personalized
parameters might improve its accuracy.

One challenge of the IPA, and cognitive load estimation in
general is their real-time usage. While the IPA can be eas-
ily computed in real-time, it relies on data that incorporates
e. g., the last 60 seconds. Therefore, sudden events such as

the start of a conversation can only be detected with a delay
of approximately 30 seconds, although they will influence
cognitive load immediately. This has also been discussed by
Hudson et al. [26], who found that the most reliable metric
for interruptability are conversations. Therefore, we believe
that relying on a sensor fusion approach for cognitive load
estimation and interruptability will yield the best real-time
results. Our approach easily allows using other real-time esti-
mates of cognitive load (e. g., measured through galvanic skin
response such as by Nourbakhsh et al. [35]) if they prove to
be more reliable. We hope to investigate this in the future and
expand our framework with different sources of cognitive load
estimation and user state analysis.

Predictability
For any system that automates how an interface appears in real
time, users’ ability to predict current and future states is key.
We introduced a set of regularizers to avoid sudden changes
to the interface when users are interacting with it, as well
as avoided automated spatial placement. In our experiment,
we found that participants were able to predict the actions
of the system at a high rate. We believe that our approach
provides a good balance between automation and consistency.
The main challenge is that any system that provides more
automation essentially has to be an "oracle" and must be able
to perfectly predict user’s future state and which applications
will be needed.

Besides estimating user’ current cognitive load, our current
system relies on the manual specification of users’ current
task, which could be replaced by a task or activity estimation
approach and automated scene understanding. It is unclear,
however, how fine-grained this task estimation has to be, e. g.,
should the task be more general such as "cooking" or more fine-
grained such as "chopping vegetables". We plan to explore
this further in the future.

CONCLUSION
We presented a computational approach based on a combina-
tion of rule-based decision making and integer linear program-
ming to decide where and when virtual elements should be
placed in a Mixed Reality context, and how much information
those element should provide. By leveraging information on
the user’s current environment, task and cognitive load, we
automatically adapt MR interfaces, which are highly dynamic
by nature, to fit user’s current context. Our approach allows
content creators to move from a purely manual workflow of
content creation, where every situation has to be dealt with
separately, to a flexible assignment of task and application.
Our system then decides if an application should be displayed,
and with which level of detail.

We believe that automatic adaptation in general is the only way
to handle a constantly changing context and provide users with
useful information and content at the right time, place and
with the right level of detail. Currently, content creators would
have to guess how an interface should behave when a user
performs a particular task. Our optimization approach is a first
step towards making MR interfaces more usable by moving
from a manual workflow of content creation to a process that
is computationally supported.
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APPENDIX
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Figure 11. Computed normalized IPA values for 9 participants of our experiment per condition.
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