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Abstract

In robotics, grasping objects with unknown properties is becoming increasingly im-
portant, as we move from labratory setups to real world environments. In this work,
we present an approach to grasp unknown objects with multi-fingered grippers. We
model object contours with Elliptic Fourier Descriptors and calculate an optimal
gripper pose in order to grasp objects by considering the curvature value of the
contour at the grasping points and the ratio between initial position of fingertips
and grasping points. Our goal is to obtain grasping points at large surfaces and
concave areas of the object and have the fingers reach the grasping points simul-
taneously. The approach works with RGB-D images from single view and a 2D
approximation of the gripper. The framework we implement is versatile and can be
adapted to different gripper configurations. Experiments with an underactuated,
anthropomorphic hand that can execute a power grasp are carried out and show
that the pipeline is able to find grasps that work on simple objects, i.e., objects
with contours that have few edges and favorable grasping properties, but faces is-
sues with more complex objects, i.e., objects with contours that have several edges
and unfavorable grasping properties.
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Chapter 1

Introduction

Grasping seems to be an effortless task for humans. Once we have selected an object
we want to grasp, our brain unconsciously estimates the optimal grasp type, the
angle of approach and when we have to execute the grasp. Though it may seem
simple to humans, the brain is highly active during this process. Interestingly, the
areas dedicated to motor processing in the cortex of the brain for the hand and
fingers are much larger than the dedicated areas for other body parts, as illustrated
in Figure 1.1. This hints at the complexity that comes with a seemingly trivial task
such as grasping.

(a) Homunculus from Penfield
and Rasmussen [1]

(b) Model figure of motor ho-
munculus [2]

Figure 1.1: Homunculus that illustrates the relative size of different body parts
according to their dedicated areas in the brain.

Accordingly, in robotics the problem of grasping is very difficult. It is considered
one of the most complex problems to solve and has become a hot topic of research.
In the industry, most tasks are very specific, e.g., pick and place tasks for objects
on a conveyor belt. End-effectors such as suction cups or parallel-jaw grippers are
often used to accomplish such tasks. Even though such devices are very simple
and efficient for a specific task, they are not very versatile and may not gener-
alize to other tasks. End-effectors that allow more flexibility and adaptability are
needed. Through improvement in actuator technology and miniaturization, such de-
vices have emerged in the form of anthropomorphic, i.e., human-like, end-effectors.
Another distinction is made between underactuated and fully actuated devices. Un-
deractuated devices have less actuators than Degrees of Freedom (DoF)[3]. Fully
actuated devices, on the other hand, have an actuator for every joint and hence
every joint can be controlled individually. By making use of the natural dynamics
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Chapter 1. Introduction 2

of the system, underactuated devices are more power efficient and make movements
look smoother compared to fully actuated devices. In this project, we want to
explore the possibilites of synthesizing grasps with an underactuated, anthropo-
morphic hand.

The goal of grasp synthesis is to find an optimal pose, i.e., a position and orientation
of the gripper in space, such that a stable grasp on a given object can be executed
successfully. As shown by Borst et. al [4], it is often not required to find an optimal
grasp in order to meet certain criteria. A grasp with average quality is usually al-
ready sufficient. Hence, there may be many possible poses that lead to a successful
grasp. Generally, a grasping strategy should meet criteria such as stability, task
compatibility and adaptability to novel objects [5]. A grasp is considered stable if
a small disturbance on the finger force or object position brings the system back
to its original configuration through a restoring wrench [6]. Existing methods to
tackle grasp synthesis can be categorized in analytical and empirical approaches.
Analytical approaches consider geometric, kinematic and dynamic properties of the
object and gripper to compute a certain quality measure and optimize the pose for
it. The main issue with analytical approaches is computational complexity. Em-
pirical approaches, on the other hand, try to observe and mimic human strategies
for grasping with a set of heuristics [3]. In such approaches, the strategy is to
either learn grasps by observation of a human performing a grasp or find a grasp
by object observation. The latter strategy tries to learn how to associate object
properties with predefined grasps. Computation time is not an issue with empirical
approaches, but problems arise with selecting an optimal grasp for new objects. A
deeper survey into these approaches is provided by Sahbani et. al [7].

The grasp synthesis problem proves to be difficult in real world applications, as
different factors such as noisy sensor data, missing shape information or position
inaccuracies of the end-effector can generate uncertainties. The goal of this project
is to find a strategy to cope with these uncertainties and thus create a robust
grasp synthesis framework. A pipeline that takes images of unknown objects from
a RGB -D camera and finds an optimal end-effector pose as output should be im-
plemented. The term “unknown object” is used in the sense that there is no prior
information about the object. Additionally, the pipeline should be easily extendable
and generic, such that it works with different hand configurations. In the end, the
pipeline will be tested on a real robot, using an underactuated, anthropomorphic
hand that is limited to an one DoF power grasp (see Section 4.1.2). The test sce-
nario is a simplified workspace with only one object on a planar surface, which is
also the most studied scenario in literature [8]. In such a scenario, object segmen-
tation becomes easier, since there are no occlusions with other objects to be dealt
with. The goal for the robot is to reach the optimal pose, execute a grasp and pick
up the object.

The remaining chapters of this report are structured as follows: In Chapter 2, re-
lated literature is discussed. The methods used in the different stages of the grasp
synthesis pipeline are described in Chapter 3. In Chapter 4, the conducted exper-
iments are explained and the results are illustrated. In Chapter 5, we analyze and
discuss the results. Finally, a conclusion and an outlook are given in Chapter 6.



Chapter 2

Related Work

Several different strategies for grasping unknown objects have been explored in lit-
erature. Generally, RGB-D cameras are most commonly used as sensor input for
grasp synthesis, while some approaches additionally use contact-reactive feedback
from tactile sensors to improve grasps.
Richtsfeld and Vincze [9] consider grasps only from the top surface of objects.
Grasp synthesis is done using depth images. The objects are first segmented and
then grasping contact points close to the center of mass of the object are selected.
This approach works for different grippers, but requires an accurate 3D model of
the selected gripper. Hsiao et. al [10] also use depth images for the synthesis of
grasping with a parallel jaw gripper. An optimal grasp is selected from a set of
possible grasps based on an estimation of the object’s overall shape and local fea-
tures. To execute a more robust grasp and react to disturbances, tactile sensors
are attached to the fingertips. They sense contacts that indicate whether a grasp
will push the object away and thus adapt the grasp to increase the likelyhood of
being successful. Schiebener et. al [11] also make use of tactile sensors to prevent
undesired contacts during grasp execution. For their approach, they calculate an
estimate of the object’s principle axis and align the gripper, a pneumatically ac-
tuated anthropomorphic hand, with it. For object segmentation, they use camera
images to recognize potential objects and then push them with their end-effector to
verify that the segemented parts really constitute of objects. A limitation is that
they require the object surfaces to be textured, i.e., they cannot segment unicolored
objects or objects with weak texture surfaces. Cordella et. al [12] suggest a method
for optimal grasping of cylindrical objects, e.g., rails and handles, with anthropo-
morphic grippers. The algorithm minimizes the distances of the hand joints from
the object surface. The drawback of this approach is that it is limited to cylindrical
objects. Krug [3] calculates Independent Contact Regions on the object’s surface.
They help qualify different grasps, e.g., they indicate the robustness of a grasp to
position inaccuracies. In this work, they use observations from human grasping
to impose constraints on the corresponding optimization problem and thus reduce
the grasp solution space. The approach works for different types of grippers, but
requires an object database, which may not be feasible for online operation in un-
known environments. The method proposed by Gallardo and Kyrki [13] use a single
stereo image pair to generate a partial three-dimensional point cloud describing the
objects. They assign shape primitives, e.g. cylinders or boxes, to the objects, as-
suming that this information is sufficient for grasping. Then, grasps that have been
previously assigned to different shape primitives are executed using a parallel jaw
gripper.
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Chapter 2. Related Work 4

A fundamental basis of our work is provided by Calli et. al [14]. They present a novel
approach to grasp unknown objects using active vision. They use Elliptic Fourier
Descriptors (EFD) to model object contours in 2D and define grasping points as
concave local extrema of curvature. In order to find the optimal grasp, grasping
point sets are formed and evaluated using the sum of curvature of the grasping
points and a force closure test to guarantee stability. In a last step, visual servoing
helps moving the gripper to a position where the curvature of the optimal grasping
points are maximized, i.e., an optimal viewpoint. The visual servoing works under
the assumption that the grasping points are still reachable for the gripper after the
change of viewpoint. The suggested method is well suited for grippers with two
or three fingers, but obtaining and reaching a set of optimal grasping points as
local extrema of curvature with five fingers becomes much more difficult. Also, our
conditions are different due to kinematic restrictions of the gripper, i.e., the gripper
only has one actuated DoF and is thus limited to a power grasp. This leads to the
following consequences for our approach:

1. Synthesizing for local extrema of curvature as grasping points does not work,
because the anthropomorphic end-effector will likely not be able to reach all
of those points. Instead of looking for local extrema, we optimize for poses
that lead to grasping points with high curvature value.

2. Visual servoing is not possible, since it can not be guaranteed that the grasping
points will still be reachable after a change of viewpoint. Therefore, we limit
our approach to single view and do not use viewpoint optimization.

There are several advantages of this approach over the above mentioned methods:
It does not require a 3D model of the object or gripper. Furthermore, there are no
restrictions on object properties such as shape or surface texture. Additionally, it
does not require any prerequisites, such as predefined grasps or shape primitives.
Lastly, it uses the assumption that concavities and flat, large surfaces are optimal
grasping regions, which seems to be where humans would intuitively grasp an object.
Therefore, we use the general idea of finding grasping points at concave curvature of
the modeled object contour from single view and try to adapt this to our conditions.



Chapter 3

Methodology

In this chapter, the different steps of the grasp synthesis pipeline are explained in
detail. We impose the restrictions that grasp synthesis from single view is sufficient
and that the image plane is always kept parallel to the ground. The whole pipeline
is illustrated in Figure 3.1. In a first step, RGB and depth images are combined
to calculate an object contour as explained in Section 3.1. We then describe this
contour with Elliptic Fourier Descriptors as shown in Section 3.2. In Section 3.3,
we show our finger model and explain the computation of the optimal end-effector
pose to reach the desired grasping points on the contour in Section 3.4.

Figure 3.1: Grasp synthesis pipeline from image output to grasp execution

3.1 Object Contour Recognition

The goal of the object contour recognition is to get a 2D estimation of the object
shape. We therefore extract a contour from RGB images and combine it with
information from the depth camera to get an approximation of the object contour
in meters. The extraction of the contour from the RGB image consists of the
following steps explained below:

1. Conversion to grayscale

2. Median blurring

3. Adaptive thresholding

4. Closing operation (dilation and erosion)

5. Finding all closed contours in image

6. Finding largest object contour

5



Chapter 3. Methodology 6

(a) Example object (b) Binary image after thresholding

(c) Binary image after closing operation (d) Contour extracted from RGB image

Figure 3.2: Different steps of the object recognition process

In a first step, the RGB-image is converted to grayscale for further processing. Since
we only use the RGB-image for edge detection, a grayscale image is assumed to be
sufficient. Converting to grayscale also reduces computational complexity. In a
next step, median blurring is applied to smoothen the grayscale image. Thus, some
edges, such as shadows or edges within the object, will get weaker or even blur out.
Adaptive thresholding converts the smoothened image into a binary image. It is
an extended form of thresholding, which decides for each pixel whether it is below
or above a certain threshold, also taking into account neighboring pixels. Our goal
is to find an outer contour of an object without any holes or gaps. This can be
achieved with the closing operation, which is a two step process to strengthen edge
connections. The first step consists of a convolution of the binary image with a
structuring element that leads to expansion of shapes and closing of small holes,
which is called dilation. The second step, erosion, uses a structuring element that
expands the background and makes shapes smaller. Thus, the object contour is
first strengthened and expanded through dilation and then reduced through erosion.
Finally, we extract all closed contours in the image. A contour is defined by adjacent
pixels that have the same intensity value. For further analysis, the largest contour
found in the optical frame is assumed to be the object contour. The visualization of
different steps of the contour extraction are shown in Figure 3.2. For the example
object shown in 3.2(a), the described steps will lead to a contour as seen in Figure
3.2(d). The next step is the conversion of the contour from pixel values to meters
in the optical frame. This is achieved using the intrinsics of the camera and the
information of the depth image at the object location, leading to the following
formulas:

x[m] =
1

fx
(qx − ppx)zmax (3.1)
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y[m] =
1

fy
(qy − ppy)zmax (3.2)

The point q is the pixel point that has to be converted. The information retrieved
from the depth image at point q is the depth zmax. The values fx and fy indicate
the focal length of the image plane as a multiple of pixel width/height. The values
ppx and ppy are the coordinates of the principal point of the image as pixel offsets
from the left/top edge. Due to noisy or missing sensor data from the depth sensor
at some locations on the contour, the maximum depth found on the contour is used
for the conversion of all points.

3.1.1 Depth Value

For the grasp execution (see Section 4.1.4), we need to find a value z that indicates
how far the end-effector should move in the direction perpendicular to the camera’s
image plane. In the current implementation, we assign the minimum depth value
that is found within or on the contour to z and add a small offset, since we do not
want the end-effector to collide with the object.

3.2 Elliptic Fourier Descriptors

To model the object contours, we use Elliptic Fourier Descriptors (EFD) [15]. EFD
can be used to mathematically describe a closed contour in 2D with a Fourier series.
They are defined by the following parametrization:

xcontour(t) = A0 +

k∑
n=1

ancos(
2nπt

T
) + bnsin(

2nπt

T
) (3.3)

ycontour(t) = C0 +

k∑
n=1

cncos(
2nπt

T
) + dnsin(

2nπt

T
) (3.4)

where k indicates the number of harmonics, A0 and C0 are the DC components, i.e.,
the geometric locus of the contour, and an, bn, cn and dn the Fourier coefficients.
For any given t, a point on the contour is defined by xcontour and ycontour. Using
low harmonics, we obtain concave curvature at flat surfaces and concave areas of
the object. These are the areas that we assume to be best for grasping. Using
higher harmonics, the model precision increases, but it will also lead to higher
computational cost. Furthermore, flat surfaces may not have a high curvature
anymore, which is undesired in our case, since we assume that both flat surfaces
and concave areas are optimal grasping regions [14]. The curvature value can be
extracted from the second derivative of the EFD parametrization:

Ccurvature(t) = |N(t)| =
∣∣∣∣[NxNy

]∣∣∣∣ (3.5)

where

Nx(t) = ẍcontour(t) =

k∑
n=1

−an(
2nπ

T
)2cos(

2nπt

T
)− bn(

2nπ

T
)2sin(

2nπt

T
) (3.6)

Ny(t) = ÿcontour(t) =

k∑
n=1

−cn(
2nπ

T
)2cos(

2nπt

T
)− dn(

2nπ

T
)2sin(

2nπt

T
) (3.7)
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Curvature is an indication of how convex or concave a certain point is. It should
be noted that a high curvature value can imply both a convex or concave extrema.
Therefore, a further check is necessary in the optimization (see Section 3.4) to
find out whether a point is convex or concave. We do this by making use of the
cross product of two adjacent points. Assuming the contour is read in a clockwise
direction, a point is concave if:

N(t)×N(t+∆t) > 0 (3.8)

In case the contour is read in a counter-clockwise direction, the sign in Equation
3.8 changes.

3.2.1 Calculation of EFD Parameters

The Fourier coefficients for a closed contour array can be calculated using the fol-
lowing formulas:

an =
T

2n2π2

K∑
i=1

∆xi
∆ti

[
cos(

2nπti
T

)− cos(
2nπti−1

T
)

]
(3.9)

bn =
T

2n2π2

K∑
i=1

∆xi
∆ti

[
sin(

2nπti
T

)− sin(
2nπti−1

T
)

]
(3.10)

cn =
T

2n2π2

K∑
i=1

∆yi
∆ti

[
cos(

2nπti
T

)− cos(
2nπti−1

T
)

]
(3.11)

dn =
T

2n2π2

K∑
i=1

∆yi
∆ti

[
sin(

2nπti
T

)− sin(
2nπti−1

T
)

]
(3.12)

ti =

i∑
j=1

∆tj (3.13)

where ∆ti are the euclidean distances between two adjacent points in the contour
array and ti is the summed up distance of all edges from the inital point in the array
to i. The value K is the total number of points in the contour array, the values
∆xi and ∆yi indicate the difference in distance between two adjacent points on the
contour in x and y direction. Furthermore, the DC components are calculated as
follows:

A0 =
1

T

K∑
i=1

[
∆xi
2∆ti

(t2i − t2i−1) + µi(ti − ti−1)

]
(3.14)

C0 =
1

T

K∑
i=1

[
∆yi
2∆ti

(t2i − t2i−1) + δi(ti − ti−1)

]
(3.15)

where

µi =

i−1∑
j=1

∆xj −
∆xi
∆ti

i−1∑
j=1

∆ti and µ1 = 0 (3.16)

δi =

i−1∑
j=1

∆yj −
∆yi
∆ti

i−1∑
j=1

∆ti and δ1 = 0 (3.17)



9 3.3. Finger Model

3.3 Finger Model

In this section, we describe how we approximate the finger closing motion in 2D.
Our basic approximation of a finger trajectory in the image plane is a ray. We
assume this approximation is accurate enough to get a good estimation of the points
on the object surface where the fingers will touch the object. Mathematically, a
parameterized way to write this is as follows:

(
xray(λ)
yray(λ)

)
=

(
xp
yp

)
+Rϕp

(
xf
yf

)
+ λRϕp

(
mx

my

)
(3.18)

Rϕp
=

(
cos(ϕp) sin(ϕp)
−sin(ϕp) cos(ϕp)

)
(3.19)

where xp, yp and ϕp define the pose, i.e., the position and orientation of the end-
effector. The values xf and yf indicate the finger position relative to the gripper
pose if the gripper is fully open and mx and my indicate the closing direction of the
fingers relative to the pose. The rotation matrix Rϕp

orients the fingers according
to the value ϕp. The value λ implies the location of a point on the finger trajectory.
E.g., in the case of an anthropomorphic hand, the trajectory would be a ray from the
initial position of the finger tip when the hand is fully open into the direction of the
knuckle towards which the finger is closing. An illustration of such a model, based
on measurements from the gripper used in the experiments, is given in Figure 3.3(a).

(a) Five finger hand model with a linear thumb
trajectory

(b) Five finger hand model with a curved
thumb trajectory

Figure 3.3: Hand model with five fingers and different types of thumb trajectories

Through observation, we found that the thumb of our gripper has a slightly curved
trajectory. Thus, in some cases, a linear approximation of a finger trajectory might
not be sufficient. We therefore consider curved trajectories as well, as shown in
Figure 3.3(b). The basic idea is to replace the values mx and my in Equation 3.18
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by an ellipse and then consider only an arc of the ellipse for the trajectory. We can
write this as follows:

(
xray(λ)
yray(λ)

)
=

(
xp
yp

)
+Rϕp

(
xf
yf

)
+Rϕp

(
Acoscos(λ+ ϕoff)
Asinsin(λ+ ϕoff)

)
−
(
xoff

yoff

)
(3.20)

(
xoff

yoff

)
= Rϕp

(
Acoscos(ϕoff)
Asinsin(ϕoff)

)
(3.21)

where Acos and Asin indicate the radii of the ellipse or in other words the amplitudes
of the elliptic arc. The value ϕoff is an angular offset on the arc and the values xoff

and yoff imply the offset of the finger tip from the center of the ellipse in x and y
direction. The value λ indicates a position on the arc relative to the initial position
of the finger tip and is periodic between λ = [0, 2π).

3.4 End-effector Pose Optimization

In this section, we show how to find the optimal pose, given the EFD contour as
input as described in Section 3.2. The general idea is to find a pose where the
fingers will reach grasping points at flat surfaces or concavities of the object. Due
to the nature of the problem, where grasping points that are needed for the cost
function can only be calculated after we have defined a pose, we created a nested
optimization with an inner and outer optimization. In the inner optimization, we
calculate grasping points for a given pose. In the outer optimization, we sample
over different poses and find the pose that will lead to an optimal grasp.

3.4.1 Inner Optimization

The inner optimization solves the problem of finding grasping points between the
parameterized description of the contour provided by Equations 3.3 and 3.4 and the
parameterized rays of the fingers given in Equation 3.18. Our goal is to minimize
the distance between the points on the EFD contour and their corresponding points
on the finger trajectories. The problem is defined by:

argmin
ξ

h

subject to l(ξ) ≤ 0
(3.22)

where h is the cost function and l(ξ) are the constraints. ξ indicates the intersection
points between the finger trajectories and the contour and is defined as follows:

ξ =


t1
...
tnF

λ1

...
λnF

 (3.23)

where nF indicates the number of fingers, the t values imply where the grasping
points are on the EFD contour and the λ values are the location of the grasping
points on the finger trajectories. We now discuss the cost function and constraints
in detail.
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Cost Function

The cost function is the summed up, squared difference of distance between the
points on the EFD contour and their corresponding points on the finger trajectories
for all fingers. It is defined as follows:

h =
1

2

nF∑
i=1

d2
i (3.24)

where

di =

∣∣∣∣[dx,idy,i

]∣∣∣∣ (3.25)

dx,i = xcontour(ti)− xray(λi) (3.26)

dy,i = ycontour(ti)− yray(λi) (3.27)

where the values dx,i and dy,i indicate the distance between a point pair in x and
y direction. The equations for xray(λi) and yray(λi) depend on ρ, which is why the
problem is not solvable in a single numerical optimization and we thus require a
nested optimization.

Constraints

We find two kinds of inequality constraints for Equation ??. The first type is due
to kinematical limitations of the finger joints, i.e., the finger trajectories are limited
in distance:

λi ≥ 0 for i = 1, . . . ,nF (3.28)

Fi − λi ≥ 0 for i = 1, . . . ,nF (3.29)

where Fi is the distance from the initial position of each finger to a fully closed
position. Equation 3.28 accounts for the fingers only closing in one direction and
Equation 3.29 for the maximum distance of the finger trajectories. The second type
of constraint we impose on the points ti on the EFD contour. Since the functions
given in Equations 3.3 and 3.4 are periodic between t = [0, T ), we add the following
constraints:

ti ≥ 0 for i = 1, . . . ,nF (3.30)

T − ti > 0 for i = 1, . . . ,nF (3.31)

3.4.2 Outer Optimization

For a single pose ρ, we are able to calculate grasping points, given by ξ, in the
inner optimization (see Section 3.4.1). We can now solve the outer optimization.
We find the optimal pose by sampling over different poses and solving the inner
optimization for each sample pose. The outer optimization is defined as follows:

min
ρ

f(argmin
ξ

h)

subject to g(ρ) ≤ 0
(3.32)

where f is the cost function and g(ρ) are the constraints. ρ indicates the pose and
is defined as follows:
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ρ =

xpyp
ϕp

 (3.33)

where xp and yp imply the location and ϕp the orientation of the end-effector in the
image plane of the optical frame. We now discuss the cost function and constraints
of the outer optimization in detail.

Cost Function

The cost function we use is a weighted average between a cost of curvature and a
cost of ratio:

f =

nF∑
i=1

αiCcurvature(ti) + βiCratio(ti) (3.34)

where the values αi and βi allow for adjustment of the gains for each finger in-
dividually. E.g., if it is more important for the thumb to reach a concave point
than it is for the other fingers, a higher α gain can be put on the thumb. The
term Ccurvature(ti) is defined by the second derivative of the EFD contour, as shown
in Equation 3.5, and is a measurement of how concave or convex a grasping point is.

The cost of ratio influences the ratio between a finger’s initial distance to the object
and the average initial distance of the other fingers to the object. The cost Cratio

for a finger i is defined as follows:

Cratio(ti, λvirt,i) = dist(ti, λvirt,i)−
1

nF− 1

nF∑
j=1

dist(tj , λvirt,j) (3.35)

where

dist(t, λvirt) = |pvirt − pgrasp| =
∣∣∣∣[xray(λvirt)− xcontour(t)
yray(λvirt)− ycontour(t)

]∣∣∣∣ , (3.36)

pvirt =

(
xray(λvirt)
yray(λvirt)

)
, (3.37)

and

pgrasp =

(
xcontour(t)
ycontour(t)

)
. (3.38)

It may occur that not all fingers close at the same velocities, which we need to
consider in the cost of ratio. Thus, the values pvirt are virtual initial points of the
fingers which may be further away or closer to the object depending on the velocity
of the closing finger. The virtual initial points can be calculated with Equation 3.18
and the values λvirt, which can be determined through measurement. The grasping
points on the contour can be calculated with Equations 3.3 and 3.4. This allows
control of the time at which fingers ideally touch the object. E.g., suppose we want
all fingers to reach the object at the same time, while we observe that one finger is
closing slower than all others. We measure the closing velocity for each finger and
hence determine the virtual initial points. The finger that is closing slower has a
virtual initial point further away to the closed finger position than the initial point
of the fingertip. This way, the cost of ratio will try to move this finger closer to the
object than the other fingers.
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Constraints

The constraints we impose on the outer optimization are the following:

|xp −A0| −Dmax,x ≤ 0 (3.39)

|yp − C0| −Dmax,y ≤ 0 (3.40)

where A0 and C0 are the DC components of the EFD contour and Dmax,x and
Dmax,y are the values for the maximum distance away from the DC components
we want the initial pose to be positioned at. Hence, by limiting the possible pose
locations in x and y direction, we can decrease the search space. Further, we also
define the following constraints on the initial position of the fingers:

dist(ti, 0)−Dmin ≥ 0 for i = 1, . . . ,nF (3.41)

where the distance dist(ti, 0), with λvirt values equal to zero, which indicates the
actual initial location of the fingertips, can be calculated with Equation 3.36. The
constraints force the initial points of the fingertips to be at a minimum distance
Dmin (in the direction of the closing finger) away from the contour in order to
achieve better grasps.



Chapter 4

Experiments and Results

In this chapter, we first illustrate the setup, i.e., the used hardware, software and
the workspace in Section 4.1 and then show the results of different stages of the
grasp synthesis pipeline and the grasping experiments on the real robot in Section
4.2.

4.1 Setup

4.1.1 Software Implementation

The grasp synthesis pipeline was implemented with the Robot Operating System
(ROS) [16] and written in C++ [17]. Visualization plots were implemented with
Python [18]. For the implementation of the outer optimization (see Section 3.4.2),
we created a sampling grid around the recognized contour, where each sampling
point indicates a pose. We vary x and y for position and ϕ for different orientations
of the end-effector. The grid resolution parameters are shown in Table 4.1. An
example of a sampling grid is illustrated in Figure 4.1. The extent of the grid in x
and y direction is restricted through the constraints of the outer optimization. The
parameters used in all experiments for the constraints of the outer optimization are
given in Table 4.2.

xresolution 0.05
yresoltuion 0.05
ϕresoltuion 2°

Table 4.1: Parameters for sampling grid resolution

Dmax,x 0.15
Dmax,y 0.15
Dmin 0.015

Table 4.2: Parameters for constraints of the outer optimization

14
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Figure 4.1: Example of a sampling grid with a sample pose of a five fingered hand

4.1.2 Hardware

An overview of the whole setup can be seen in Figure 4.3. The robot consists of
an end-effector that is attached to a six DoF Anypulator robotic arm manipulator
[19]. As shown in Figure 4.2(a), the end-effector used is an underactuated, anthro-
pomorphic five-finger hand (qbHand1). It has one actuated DoF and is thus limited
to a power grasp, i.e. a grasp where the fingers enclose an object. To get a better
grip while grasping, a glove is put on the hand. Additionally, a RGB-D camera
(Intel®RealSenseTM SR3002) was mounted on the wrist as can be seen in Figure
4.2(b). The camera has a RGB camera and a depth sensor, thus captures colored
images as well as depth images. The range of the depth sensor is from 0.2m to
1.5m.

(a) (b)

Figure 4.2: (a) Detailed view of qbHand (b) Detailed view of underactuated, an-
thropomorphic hand with glove and wrist mounted RGB-D camera

1http://www.qbrobotics.com/products/qbhand/
2https://www.intel.com/content/dam/support/us/en/documents/emerging-

technologies/intel-realsense-technology/realsense-sr300-datasheet1-0.pdf
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Figure 4.3: Overview of the robot with the Husky base, the Anypulator arm and
the qbHand with the wrist mounted RGB-D camera

4.1.3 Workspace

For the general setup of the grasping experiments, we created a simplified workspace.
The following assumptions are made:

• There is only one object in the workspace

• The object is of reasonable size for the hand to grasp

• The objects are unknown, i.e., the grasp synthesis pipeline has no prior infor-
mation about the object properties.

• The object is completely visible in the optical frame

• The object is within the range of the depth sensor (0.2m to 1.5m)

• The object is placed on a table with a texture that does not interfere with the
object recognition algorithms

• The hand is able to reach the desired pose in the workspace

We selected five objects with different properties such as shape, weight, texture
as seen in Figure 4.4. For each try, an object was placed on a table in a random
orientation and the grasp synthesis pipeline was started. A grasp was declared
successful if the hand was able to grasp the object and pick it up without slippage.
If the hand could not grasp it or let the object slip, the attempt was unsuccessful. In
case of the hand not being able to reach the pose due to a singularity configuration,
the attempt was repeated.

4.1.4 Grasp Execution

In this section, we explain how the pose calculated in the optimization is executed.
Particularly, the optimal pose we calculate is in 2D and lies within the image plane,
but the pose of the end-effector has six DoF in 3D. Accordingly, we want the
gripper to stay parallel to the image plane. Once the end-effector is aligned with



17 4.2. Results

Figure 4.4: Objects used in the experiments from top left to bottom right: stone 1,
stone 2, water bottle, glasses case, can

the camera’s image plane, we neglect 2 rotational DoF. Thus, the only additional
information we need for the grasp execution is the depth value z in the direction
of the surface normal of the camera’s image plane. The value z indicates how
close we move our optimal pose to the object before executing the grasp and is
extracted as explained in Section 3.1.1. In the current implementation, the end-
effector autonomously aligns with the image plane of the camera’s optical frame and
moves to the calculated optimal pose within this plane. The control of the depth
value z, however, makes the end-effector stop at a short distance from the object
within the direction perpendicular to the image plane to avoid undesired collision
with the object. The last part of the execution, i.e., lowering the hand to be slightly
above or on the surface and executing the grasp, has to be carried out manually.

4.2 Results

In this section, we present the results of different stages in the pipeline. First, we
take a closer look at the influence of different number of harmonics on the EFD
contours in Subsection 4.2.1 and then illustrate the results of EFD contour calcula-
tions on the test objects in Subsection 4.2.2. In Subsection 4.2.3, we demonstrate
how the grasp synthesis pipeline works for different hand configurations through
our generic interface. Finally, we present the results of our grasping experiments
with the real robot in Subsection 4.2.4.

4.2.1 EFD Harmonics Analysis

The choice of number of harmonics for the EFD contour is of utter importance for
our project. As explained in Section 3.2, we need a model in which flat, large surfaces
and concave areas become concave. Our goal is to find a number of harmonics that
on one hand does not oversimplify the object contour and on the other hand is
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not too complex such that flat surfaces would not be concave anymore. In Figures
4.5(a)-(d), EFD contours with different number of harmonics for a simple stone
are shown. As can be observed, only using one or two harmonics oversimplifies
the object too much, as there are no concave areas at all. Using four harmonics,
the largest surface has a concave curvature, which vanishes in the case of eight
harmonics. Thus, for this object, the desired number of harmonics for our purposes
would be four.

(a) 1 harmonic (b) 2 harmonics (c) 4 harmonics (d) 8 harmonics

Figure 4.5: EFD contours with different number of harmonics for a simple stone

EFD contours for a more complex object, i.e., an object that has more edges and
a more complex symmetry, is shown in Figures 4.6(a)-(d). We see that some con-
cavities become convex with four harmonics. Using eight harmonics, these areas
remain concave and hence higher harmonics would lead to a more useful model of
the object contour. Thus, we notice that the optimal choice of the harmonics may
not be the same for different objects.

(a) 1 harmonic (b) 2 harmonics (c) 4 harmonics (d) 8 harmonics

Figure 4.6: EFD contours with different number of harmonics for a complex stone

4.2.2 EFD Results

In this section, we show the resulting EFD contours using four harmonics for the
test objects in Figures 4.7(a)-(e). As can be easily observed, larger surfaces tend
to have a concave curvature, while smaller surfaces and edges become convex. For
stone 2, one smaller concavity is missed at the top left of the object, but the two
largest surfaces still show a concave curvature. Since it is not possible to select
the number of harmonics used in the EFD calculations adaptively per object in
the current implementation, we had to find the balance between oversimplification
and being too exact. We determined empirically that using four harmonics works
well as a compromise. For further visualization of different harmonics for the test
objects, refer to Figures A.1-A.4 in the appendix.
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(a) Can (b) Glasses case

(c) Stone 1 (d) Stone 2

(e) Water bottle

Figure 4.7: EFD contours with 4 harmonics for the test objects

4.2.3 Synthesis Results for Different Hand Configurations

In this section, we show the results of the end-effector pose optimization on two test
objects for three different hand configurations. First, we illustrate a configuration
with a high gain on one finger for the cost of curvature. Secondly, we show that the
synthesis pipeline also works for a three finger gripper with equally weighted cost
of ratio and cost of curvature. Lastly, we present the configuration that was used
for the grasping experiments in Section 4.2.4.

Five Fingers with Curved Thumb Trajectory

In this case, we configured the end-effector to have five fingers with a thumb that
has a curved trajectory (see Equation 3.20) and assuming all fingers close at the
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same velocities. The gains were set such that the cost of curvature for the thumb
was the most important factor, while having relatively smaller gains on the cost
of ratio and almost completely neglecting the gain on the other four fingers. The
parameters for the configuration can be found in Table A.1 in the appendix. As
shown in Figure 4.8, the thumb has grasping points at the larger surfaces of both
objects as desired. In Figure 4.8(a), we observe the ratio not having a significant
influence on the result for this object, as the thumb reaches the object later than
the other fingers. In Figure 4.8(b), two of the fingers have grasping points close to
a convex local extrema, which is due to the low gains on these fingers.

(a) Optimal pose for the can (b) Optimal pose for stone 1

Figure 4.8: Output of grasp synthesis for two test objects with a five finger hand
and a curved thumb trajectory

Three Finger Gripper

(a) Optimal pose for the can (b) Optimal pose for stone 1

Figure 4.9: Output of grasp synthesis for two test objects with a three finger gripper

To further demonstrate that the pipeline also works with other configurations, we
show the results for a gripper with three fingers in Figure 4.9. For this configuration,
the gains for cost of ratio and cost of curvature were set to have a roughly equal
influence on the cost function and the closing velocities of the fingers are assumed
to be equal. As can be seen in both figures, the ratio between initial position of the
finger tips and grasping points is similar for all fingers. Furthermore, the grasping
points are on the two large surfaces with concave curvature of the object in Figure
4.9(a) and on the three larger surfaces of the object in Figure 4.9(b), which is what
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we desired. For more information about the parameters for this configuration, refer
to Table A.2 in the appendix.

Five Fingers with Linear Thumb Trajectory

In this case, we configured the end-effector to have five fingers with a thumb that
has a linear trajectory. We found this to be the most accurate 2-D model for our
underactuated, anthropomorphic hand. Thus, for the experiments in Subsection
4.2.4, we used this configuration. The details of the parameters are given in Table
4.3. The α gains and β gains are not normalized in the current implementation.
By trying different parameter sets through trial and error for the kinematic power
grasp of our underactuated hand, we came to the conclusion that grasps are most
successful when:

• all fingers have equal gains α for curvature

• all fingers have equal gains β for the ratio

• the gains for curvature α have a slightly larger influence on the cost function
than the gains for the ratio β.

• the thumb is virtually shortened for the cost of ratio, as it starts its closing
motion before the other fingers and has the fastest closing velocity.

• the ring and little fingers are also virtually shortened, because they start
closing before the index and middle finger do, but after the thumb.

In the ideal case, given the stated observations, all fingers would grasp larger surfaces
or concavities instead of edges. Moreover, the thumb is ideally located farther away
to the object contour than the other four fingers. The ring and little finger should
have a slightly longer distance to the object surface than the index and middle
finger. In Figure 4.10(a), the effect of the cost of ratio can be observed, as the
thumb is located farther away from the contour than the other four fingers. Also,
the ring and little finger show larger distances from initial to grasping points than
the index finger. Furthermore, all fingers but the little finger reach grasping points
in areas with concave curvature. In Figure 4.10(b), the thumb is again located
farther away than the other fingers as expected. The grasping point of the thumb
is on a smaller surface with convex curvature, while the other four fingers touch
the object on the largest surface with concave curvature. The ring and little finger
may touch the object first during grasp execution, as they are at about the same
distance to the object as the index finger.

(a) Optimal pose for can (b) Optimal pose for stone 1

Figure 4.10: Output of grasp synthesis for two test objects with a five finger hand
and a linear thumb trajectory
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Thumb Index Middle Ring Little
xf -0.115 -0.03 0.0 0.02 0.045
yf 0.1 0.2 0.215 0.2 0.195
mx -0.994 -0.067 0.0 0.0 0.071
my -0.106 0.998 1.0 1.0 0.997
F 0.09 0.055 0.055 0.055 0.055
λvirt -0.03 0.0 0.0 -0.01 -0.01
α 25.0 25.0 25.0 25.0 25.0
β 10000.0 10000.0 10000.0 10000.0 10000.0

Table 4.3: Parameters for a five finger hand with a linear thumb trajectory

4.2.4 Results Grasping Experiments

In this section, we present the results of the grasping experiments, carried out in
the simplified workspace shown in Subsection 4.1.3. The parameters used for the
model of the hand are given in Table 4.3. In Table 4.4, the results of the grasping
experiments are illustrated.

Test ID Can Case Bottle Stone 1 Stone 2
1 success fail success fail success
2 success fail success success fail
3 fail success success fail success
4 success success success fail fail
5 success fail fail fail success
6 success fail success fail fail
7 success success success fail success
8 fail fail fail fail success
9 success fail fail fail success
10 succes success success success fail

success rate 80% 40% 70% 20% 60%

Table 4.4: Results of the grasping experiments

For the can and the water bottle, the success rates are at 80% and 70%. Both these
objects have properties such as weight, texture and shape that provide favorable
grasping conditions. Reasons of failure were due to position offsets and the object
being moved before all fingers reached the surface. The glasses case could be grasped
successfully four out of ten times, where reasons of failure were mainly due to all
grasping points laying on the same surface. Stone 1 and stone 2 show success rates
of 20% and 60%. Stone 1 is the most complex test object, as it is the heaviest
and largest object. Even though the shape of stone 2 is a little more complex, it is
significantly lighter and smaller than stone 1. Failures when grasping stone 1 were
mainly caused by the fingers not being able to exert enough force on the object’s
surface, even when the synthesized grasps looked good. A further discussion of
these results is given in Chapter 5.
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Discussion

In Section 4.2.4, we saw that it is possible to reach success rates of up to 80% for
easily graspable objects. On the other hand, we observed that for a more complex
object, the success rate is as low as 20%. In the experiments, the reasons of failure
were the following:

1. A position offset when trying to reach the optimal pose

2. All grasping points laying on the same surface

3. The fingers not being able to exert enough force on the object

4. The object being moved by fingers that reach the object surface first

5. Collision with the object surface when trying to reach the grasping points

The first failure can occur due to estimation errors in the object recognition part
of the framework. The depth sensor of the RGB-D camera has an accuracy range
of +-5%, which can cause the object contour to become larger or smaller than it
actually is. A calibration of the camera extrinsics may lead to minor improvements
of estimation errors. Also, there are small angular offsets between the RGB-D
camera and the wrist that are very difficult to measure. This can lead to errors in
the estimation of the object’s position. The second failure occurs when there is a
large surface, e.g., the long sides of the glasses case, such that possibly all grasping
points will touch the object on the same side. It may be prevented by adding a force
closure test. For the third type of failure, poses that seemed to produce successful
grasps failed. The fingers would reach the grasping points but slip out of the hand
when trying to lift them up. This type of failure occurred on the heavier objects,
i.e., stone 1 and stone 2. We think this is due to the fingers not being able to
exert enough force or create enough friction to reach a stable grasp on the object.
The object being moved by fingers that reach the object first is an error we try to
prevent with the cost of ratio. Such an error shows that either the gains for the cost
of ratio in the optimization are set too low or the estimation of the closing velocities
of the fingers are not accurate enough. The latter may certainly be the case, since
we estimated the velocities by visual observation. We also noticed that the fingers
not only close at different velocities, but also start their motion at different times,
which complicates the issue further. The thumb starts closing first, with the ring
and index finger following shortly after. After a small delay, the index and middle
finger also start closing, but at a slightly higher velocity than the ring and little
finger, until they catch up with each other at about two thirds of their closing
trajectories. From this point on, these four fingers close roughly synchronous. We
therefore notice that it is very difficult to find an accurate model for the cost of

23
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ratio. Thus, there may be the requirement for a more sophisticated or improved
method to consider this correctly. Another way to avoid this problem would be to
add tactile sensors to the finger tips. Once a conact with the object is detected, the
grasp execution could be aborted if not all other fingers reach the surface within
a short time interval. This solves the problem of false grasps being executed, but
the challenge of finding a better model for the cost of ratio still remains. Collision
when trying to reach grasping points may occur because of our approximation of
the finger trajectories as rays. The thickness of the fingers are not considered in
the current implementation. Thus, it may happen that a ray comes fairly close to
the object surface before reaching the desired grasping point, which will ultimately
lead to a collision in the experiments. This can be fixed by including a collision
detection mechanism either in the grasp synthesis or in the grasp execution with
tactile sensors. The latter could be implemented by estimating the time the fingers
need to reach the object surface from a fully opened position. If the time difference
between the detected contact and the estimation exceeds a certain value, the grasp
execution could be aborted.
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Conclusion

The goal of this project was to find an optimal gripper pose in order to grasp objects
with unknown properties. We implemented a pipeline that takes RGB-D images
as input and calculates an optimal gripper pose as output. Under the assumption
that grasp synthesis in 2D is sufficient, we use Elliptic Fourier Descriptors to model
the contour of an object. Then, we find an optimal pose through maximizing the
curvature value of grasping points as well as minimizing the difference of ratios
of the distance between the object surface and the closing fingers. We tested the
algorithm on a real robot, using an underactuated, anthropomorphic hand, that
can execute a power grasp with one actuated DoF, as an end-effector. Results
show success rates as high as 80% easily graspable objects and as low as 20% for
more complex objects in a simplified workspace. This project can be considered a
successful step into creating a grasp synthesis pipeline that can be generically used
for various types of end-effectors.

6.1 Outlook

There are several things that can be done in order to improve and extend the
pipeline. The following steps could be taken:

1. The control of the end-effector in the z-direction (perpendicular to the im-
age plane) should be improved, such that the grasp can be executed fully
autonomous.

2. A force closure test can be added to guarantee stability of the optimal grasp.
Another way to do this for an anthropomorphic hand would be to calculate
an estimate of the principle axis of the object and check whether the thumb’s
grasping point lays on the other side of the axis than the grasping points of
the other fingers.

3. The number of harmonics of the Elliptic Fourier Descriptors could be adaptive
to the object complexity, i.e., the more edges on the object contour, the higher
the order of the EFD should be. This would lead to a more realistic modeling
of the objects and prevent oversimplification, e.g., where concave regions of
complex objects might be modeled as convex due to a low order harmonic of
the EFD.

4. The efficiency of the optimization can be improved by limiting the search space
and thus lowering the computational load. This could be done by imposing
constraints gathered from observation of human grasping such as suggest by
Krug [3].

25
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On the hardware side, tactile sensors could be added to the fingertips. This could
help improve grasps during execution and prevent unwanted contacts. Furthermore,
parameters used for the optimization were determined empirically through trial and
error. A more thorough analysis for different parameters could be carried out to
find an optimal parameter set for a given end-effector. Lastly, an idea to extend
this approach to not only having a single view for grasp synthesis would be to
systematically or randomly check different viewpoints and find the pose that has
the lowest overall cost.
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Appendix A

A.1 Glossary

A.1.1 Symbols

α gains for fingers on curvature

β gains for fingers on ratio cost

λ point on finger trajectory

q point in the depth image

nF number of fingers

ρ pose of end-effector

t point on EFD contour

ξ grasping points

z depth value

A.1.2 Indices

f finger

p pose

virt virtual

x x axis

y y axis

A.1.3 Acronyms and Abbreviations

DoF Degree of Freedom

EFD Elliptic Fourier Descriptors

ETH Eidgenössische Technische Hochschule

RGB-D Red, Green, Blue and Depth
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A.2 EFD Results for Test Objects

(a) 1 harmonic (b) 2 harmonics (c) 4 harmonics (d) 8 harmonics

Figure A.1: EFD contours with different number of harmonics for a can

(a) 1 harmonic (b) 2 harmonics (c) 4 harmonics (d) 8 harmonics

Figure A.2: EFD contours with different number of harmonics for a glasses case

(a) 1 harmonic (b) 2 harmonics (c) 4 harmonics (d) 8 harmonics

Figure A.3: EFD contours with different number of harmonics for a water bottle

(a) 1 harmonic (b) 2 harmonics (c) 4 harmonics (d) 8 harmonics

Figure A.4: EFD contours with different number of harmonics for stone 2
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A.3 Parameters for Different Hand Configurations

Thumb Index Middle Ring Little
xf -0.115 -0.03 0.0 0.02 0.045
yf 0.1 0.2 0.215 0.2 0.195
mx - -0.067 0.0 0.0 0.071
my - 0.998 1.0 1.0 0.997
F 0.09 0.055 0.055 0.055 0.055
Acos 0.055 - - - -
Asin 0.04 - - - -
ϕoff 3.77 - - - -
λvirt 0.0 0.0 0.0 0.0 0.0
α 100.0 1.0 1.0 1.0 1.0
β 10000.0 10000.0 10000.0 10000.0 10000.0

Table A.1: Parameters for a five finger hand with a curved thumb trajectory

Finger 1 Finger 2 Finger 3
xf 0.0 0.069 -0.069
yf 0.08 -0.04 -0.04
mx 0.0 0.866 -0.866
my 1.0 -0.5 -0.5
F 0.08 0.08 0.08
λvirt 0.0 0.0 0.0
α 25.0 25.0 25.0
β 50000.0 50000.0 50000.0

Table A.2: Parameters for a three finger gripper
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