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Abstract

In this paper, we propose a novel hybrid representa-
tion and end-to-end trainable network architecture to model
fully editable and customizable neural avatars. At the core
of our work lies a representation that combines the mod-
eling power of neural fields with the ease of use and in-
herent 3D consistency of skinned meshes. To this end, we
construct a trainable feature codebook to store local geom-
etry and texture features on the vertices of a deformable
body model, thus exploiting its consistent topology under
articulation. This representation is then employed in a
generative auto-decoder architecture that admits fitting to
unseen scans and sampling of realistic avatars with var-
ied appearances and geometries. Furthermore, our repre-
sentation allows local editing by swapping local features
between 3D assets. To verify our method for avatar cre-
ation and editing, we contribute a new high-quality dataset,
dubbed CustomHumans, for training and evaluation. Our
experiments quantitatively and qualitatively show that our
method generates diverse detailed avatars and achieves bet-
ter model fitting performance compared to state-of-the-art
methods. Our code and dataset are available at https:
//ait.ethz.ch/custom-humans.

1. Introduction

3D Avatars are an important aspect of many emerging
applications such as 3D games or the Metaverse. Allowing
for easy personalization of such avatars, holds the promise
of increased user engagement. Traditionally, editing 3D as-
sets requires knowledge of computer graphics tools and re-
lies on standardized data formats to represent shapes and
appearances. While methods for reconstruction or genera-
tive modeling of learned avatars achieve impressive results,
it is unknown how such neural avatars can be edited and
customized. Thus, the goal of our work is to contribute a
simple, yet powerful data-driven method for avatar creation
and customization (Fig. 1): our method enables (a) the abil-
ity to transfer partial geometric and appearance details be-
tween 3D assets, and (b) the ability to author details via
2D-3D transfer. The resulting avatars (c) retain consistent
local details when posed.
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Figure 1. Creating locally editable avatars: Given an input
avatar, (a) the avatar can be edited by transferring clothing geome-
try and color details from existing, yet unseen 3D assets. (b) Users
can customize clothing details such as logos and letters via draw-
ing on 2D images. (c) The avatars retain local detail consistently
under pose changes.

Existing methods do not allow for such capabilities.
While 3D generative models of articulated human bod-
ies [5, 21, 25, 42, 75] leverage differentiable neural render-
ing to learn from images, they cannot control local de-
tails due to highly entangled color and geometry in the
2D supervision signal. Generative models trained on 3D
data [9, 13, 36, 44, 45] can produce geometric details for
surfaces and clothing. However, the diversity of generated
samples is low due to the lack of high-quality 3D human
scans and not all methods model appearance.

At the core of the issue lies the question of represen-
tation: graphics tools use meshes, UV, and texture maps
which provide consistent topologies under deformation.
However, human avatar methods that are built on mesh-
based representations and linear blend skinning (LBS) are
limited in their representational power with respect to chal-
lenging geometry (e.g., puffy garments) and flexible topolo-
gies (e.g., jackets), even with adaptations of additional dis-
placement parameters [36] and mesh subdivision [66].



Inspired by the recent neural 3D representations [40, 62,
70, 72], we propose a novel hybrid representation for digi-
tal humans. Our representation combines the advantages of
consistent topologies of LBS models with the representa-
tional power of neural fields. The key idea is to decompose
the tasks of deformation consistency on one hand and lo-
cal surface and appearance description on the other. For the
former, we leverage existing parametric body models (e.g.,
SMPL [33] and SMPL-X [48]). For the latter, we leverage
the fixed topology of the poseable mesh to store local fea-
ture codebooks. A decoder, shared across subjects, is then
conditioned on the local features to predict the final signed
distance and color values. Since only local information [15]
is exposed to the decoder, overfitting and memorization can
be mitigated. We experimentally show that this is crucial
for 3D avatar fitting and reposing.

Complementing this hybrid representation, we propose
a training pipeline in the auto-decoding generative frame-
work [9, 46, 52]. To this end, we jointly optimize multi-
subject feature codebooks and the shared decoder weights
via 3D reconstruction and 2D adversarial losses. The
3D losses help in disentangling appearance and geomet-
ric information from the input scans, while the latter im-
proves the perceptual quality of randomly generated sam-
ples. To showcase the hybrid representation and the gen-
erative model we implement a prototypical avatar editing
workflow shown in Fig. 1.

Furthermore, to enable research on high-quality 3D
avatars we contribute training data for generative 3D hu-
man models. We record a large-scale dataset (more than
600 scans of 80 subjects in 120 garments) using a volumet-
ric capture stage [11]. Our dataset consists of high-quality
3D meshes alongside accurately registered SMPL-X [48]
models and will be made available for research purposes.
Finally, we assess our design decisions in detailed evalua-
tions, both on existing and the proposed datasets.

In summary, our contributions are threefold: (a) a novel
hybrid representation for 3D virtual humans that allows for
local editing across subjects, (b) a generative pipeline of
3D avatars creation that allows for fitting to unseen 3D
scans and random sampling, and (c) a new large-scale high-
quality dataset of 3D human scans containing diverse sub-
jects, body poses and garments.

2. Related Work

Controllable human representations. Topics of virtual
humans have received much attention in the graphics litera-
ture, such as skinning and rigging of articulated meshes [33,
43, 48, 55], physical simulation of clothing [19, 22, 41], and
deferred rendering [24,49,65]. With the advances in neural
rendering [63, 64] and the availability of large-scale human
datasets [18,28,29,32,47,67,73,74], numerous approaches
have been proposed to reconstruct [4, 56, 57] and explicitly

control [10, 30, 50] human avatars in a data-driven manner.
One branch of work focuses on 2D image synthesis

via generative adversarial networks (GANs) [20] and tech-
niques of feature manipulation [28, 54, 60]. Typically,
a 2D neural renderer creates human images correspond-
ing to pose and appearance latent codes learned from the
training data. Related applications such as virtual try-
on [16, 17, 71] and video retargeting [7, 31, 68] have shown
promising results in light of photo-realistic image synthesis
by GANs [18,26]. However, these methods do not explicitly
reason about complex 3D human geometry and can there-
fore not produce 3D-consistent results.

A newly emerging line of work aims to create control-
lable avatars with 3D consistency. Some methods extend
existing body models with neural networks to predict dis-
placement layers [3, 6, 36] or textures [51]. Other meth-
ods learn to model challenging pose-dependent deforma-
tions on avatars either by predicting LBS weights [8, 10,
14, 58, 59, 76] or improving the capabilities of body mod-
els [23, 30, 34, 35, 37, 50, 53] with the power of implicit
neural fields. However, these approaches mainly focus on
modeling a single subject in specific clothing and do not
scale to create diverse avatars. Our method overcomes this
issue by learning a multi-subject generative model which
produces realistic virtual humans with disentangled control-
lability over body poses, clothing geometry, and texture.

Generative 3D human models. Existing generative mod-
els of human avatars can be loosely split into two main
streams: learning 3D-aware neural rendering from 2D im-
ages [5, 21, 25, 42, 75] and learning body shapes from 3D
supervision [9, 13, 36, 44, 45]. Powered by recent advances
in differentiable neural rendering [64] and neural fields [70],
much progress has been made in 3D-aware generative mod-
els [61]. However, learning to generate detailed clothed
avatars from pure 2D supervision [5, 21, 25, 42, 75] is still
challenging due to the complex appearance and articulation
of bodies, self-occlusions, and highly entangled colors and
geometries in images.

More closely related to our setting are methods that learn
to generate detailed body shapes from 3D scans or RGB-D
data. For instance, CAPE [36] and SMPLicit [13] are gener-
ative models for clothed humans. The former exploits VAE-
GAN to predict additive displacements based on the SMPL
vertices while the latter drape an implicitly modeled gar-
ment layer onto SMPL. NPMs [44], and SPAM [45] learn
pose and shape latent spaces from 3D supervision, which
enables latent code inversion using point clouds or depth se-
quences. gDNA [9] learns to synthesize body shapes in the
canonical space and further improves clothing details with
adversarial losses. However, none of the above-mentioned
works is able to generate human bodies with appearance and
neither allows fine-grained editing of the generated avatars.
Our method addresses both issues by learning disentangled
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Figure 2. Proposed framework. Given a posed scan registered with body pose and shape LBS parameters (✓,�), our proposed human
representation stores its local geometry and texture features in a codebook C which is indexed by the vertex indices of M -vertex LBS
body mesh M (Sec. 3.1). Given a query point coordinates xg , two separated MLP decoders  ,� predict signed distances and colors
conditioned on the positional features (xl, ~n) and the local geometry/texture features (fs / fc) respectively. We train a generative auto-
decoder using N posed scans, whose feature codebooks are stored in the dictionary Ds,Dc. We introduce two sampling strategies to
sample codebooks (denoted as Ci/Cr respectively) and jointly train our dictionaries and shared MLP decoders with a 3D reconstruction
loss and a 2D adversarial loss (Sec. 3.2 & Sec. 3.3).

local representations for multiple subjects. In addition, we
experimentally show that our representation significantly
improves the performance of model fitting against state-of-
the-art human generative models.

3. Method

Our proposed method is summarized in Fig. 2. We first
contribute a novel hybrid human representation that stores
local geometric and textural information into two aligned
feature spaces (Sec. 3.1 and Fig. 3). To allow fitting to new
3D scans and drawing random samples from the underly-
ing data distribution, we design a training strategy to learn
a meaningful latent space under the generative adversarial
framework to bring in additional 2D adversarial supervision
(Sec. 3.2 & Sec. 3.3). Finally, we demonstrate the utility of
our method for creating avatars by enabling local feature
editing through existing 3D assets or images (Sec. 3.4).

3.1. Hybrid Representation of Humans

To enable 3D avatars with high-fidelity representational
power and local editing capabilities, a suitable represen-
tation is needed. To this end, we propose a novel hybrid
representation that combines the advantages of neural fields
(flexibility and modeling power) with LBS-articulated mesh
models (ease of deformation and full explicit control).

An overview of how we leverage the proposed represen-
tation is provided in Fig. 2 in the dotted blue box. Given
a human scan, we first create a posed, coarse body mesh
M (shown in red) using the registered body parameters

(✓,�) of an LBS body model. The mesh consists of M
vertices (V 2 RM⇥3) in the posed space and Mf faces
where F 2 {1, ...,M}Mf⇥3 defines the vertex indices on
each face. We then construct a trainable feature codebook
C 2 RM⇥2F , which stores F -dimensional local geometry
and texture features respectively for each vertex.

Similar to coordinate-based implicit fields, a 3D coordi-
nate xg 2 R3 is used to predict its corresponding signed dis-
tance s(xg), and RGB color c(xg). Instead of using global
coordinates directly as inputs, we condition neural field de-
coders on the local triangle coordinates xl 2 R3 and the
local geometry and texture features fs, fc 2 RF . We illus-
trate this conversion from global coordinates to local trian-
gle coordinates in Fig. 3. The global coordinates xg are
first projected onto the mesh by finding the closest point x⇤

c

(Fig. 3, blue dot):

x⇤
c = argmin

xc

kxg � xck2,

xc = Bu,v(V[m0,m1,m2]),
(1)

where (m0,m1,m2) are vertex indices of faces F and
Bu,v(.) is the barycentric interpolation function with
barycentric coordinates (u, v, 1� u� v). The closest point
x⇤
c within the face is used to transform xg into a local trian-

gle coordinate system. Hence, xl consists of the barycentric
coordinates (u, v), the signed distance d between xg and x⇤

c ,
i.e., xl := (u, v, d). We also compute a direction vector ~n
between xg and x⇤

c as an additional feature to distinguish
points near triangle edges. To query local features (fs, fc),
we use the vertex indices on the triangle (m⇤

0,m
⇤
1,m

⇤
2) to
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Figure 3. Local feature querying. Given an LBS body mesh
posed by the parameters (✓,�), we represent a detailed human
body as a codebook that stores local texture and geometry fea-
tures indexed by the vertices on the mesh. An input query point
xg finds the nearest triangle on the LBS body mesh and returns its
vertex indices for local feature lookup. To prevent decoders from
memorizing any global information, we transform the position of
xg into local triangle coordinates (u, v), distance d, and direction
~n of the closest point (i.e., the blue dot). The final geometry and
texture features fs, fc are fused via barycentric interpolation.

look up three elements in the feature codebook C. We then
fuse the three local features via barycentric interpolation.

Finally, we take all the local features (fs, fc,xl, ~n) as in-
put to two separate decoders � and  to predict SDF and
RGB values respectively:

� : RF ⇥ R3 ⇥ R3 ! R
(fs,xl, ~n) 7! s(xg),

(2)

 : RF ⇥ R3 ⇥ R3 ! R3

(fc,xl, ~n) 7! c(xg).
(3)

Note that only local information is exposed to the decoders,
which allows us to use the same MLPs across different ver-
tices and subjects. We show that preventing networks from
memorizing global information in this way is necessary for
local editing and reposing in our experiments (Fig. 9).

3.2. Generative Codebook Sampling

Our goal is to provide means to create and personalize
avatars with diverse body shapes, appearances, and local
details. To this end, we leverage the above representation to
train a single multi-subject model which enables the transfer
of local features across subjects. We note that since the
mesh topology of the LBS model is identical, this enables
us to learn a shared feature space from multiple posed scans.

To learn the feature representation over a dataset of N
scans, it is sufficient to store the codebooks Ci in two dic-
tionaries Ds,Dc 2 RN⇥(MF ) to represent shape and color

information of the i-th subject respectively. The entries Ci

can then be learned jointly with the decoder weights via di-
rect 3D supervision using the i-th scan (Fig. 2). However,
we experimentally show that this is insufficient to learn a
well-behaved latent space from which we can draw novel
samples (see Fig. 10).

Therefore we introduce a codebook sampling strategy
that allows us to draw random samples and update the en-
tries of the dictionaries Ds,Dc via an additional 2D adver-
sarial loss. More specifically, we follow the auto-decoder
architecture [52] and perform PCA on the reshaped dic-
tionary to compute eigenvectors V 2 RD⇥(MF ) and fit
a normal distribution to the D-dimensional PCA coeffi-
cients of N samples. A new random codebook Cr can then
be generated by sampling D-dimensional PCA parameters
and multiplying them with the eigenvectors V (See Supp-
B.1 for details). Note that our representation disentangles
shapes from appearances with separated geometry and tex-
ture branches, which enables independent sampling of ge-
ometry and texture features.

3.3. Model Training

3D reconstruction loss. To train a codebook Ci with a
single scan, we sample points in a thin shell around the
scan. For each coordinate we compute its signed distance
s to the input scan, closest texture color c, and surface nor-
mal n on the input scan to attain ground truth values. The
codebooks and the decoder weights are then optimized via
the following losses:

Lsdf = ks� s(xg)k1 + �nk1� n ·rxgs(xg)k1, (4)

Lrgb = kc� c(xg)k1, (5)

L3D = �sdfLsdf + �rgbLrgb. (6)

2D adversarial loss. Adversarial learning does not re-
quire exact ground-truth annotations but is trained via a
collection of real and fake (rendered) images. Thus, real
images are obtained by rasterizing the ground-truth scan to
which the coarse body mesh M was fitted. Color and nor-
mal images (denoted as “Real Patch” in Fig. 2) are used for
learning texture and geometry respectively. Using the same
virtual camera parameters and the coarse mesh M, we at-
tain rendered patches (denoted as “Rendered Patch” Fig. 2)
via implicit surface rendering of a sampled codebook Cr.
Please refer to Supp-B.2 for more details.

Using these 2D patches, we train dictionaries, decoders,
and discriminators jointly with a non-saturating logistic loss
Ladv [20], R1 regularization LR1 [38], and path length reg-
ularization Lpath [27]. Note that these losses do not re-
quire exact ground-truth replication. Furthermore, we regu-



larize the feature dictionaries to follow a Gaussian distribu-
tion [46] with Lreg = kDkF . In summary, we optimize the
discriminator:

Ldis = Ladv + �R1LR1, (7)

while updating the remaining components (Dc,Ds,�, ):

L = �Ladv + L3D + �pathLpath + �regLreg, (8)

where �(·) denotes weights to balance the losses.
Since we sample on the fly during training (see Sec. 3.2),

the 2D adversarial loss does affect the shared decoders and
the whole feature dictionaries (See Supp-Fig.14 for details).

3.4. Feature Editing and Avatar Customization

We now describe how we integrate the above-mentioned
human representation and the generative architecture into
the avatar creation workflow shown in Fig. 1.

Avatar initialization. To simplify the avatar creation pro-
cess, our method allows users to start with a default exam-
ple Cd, which can be queried from the trained codebook
dictionaries directly with index i (Ci) or randomly sampled
from the learned D-dimensional PCA parameters distribu-
tion (Cr in Sec. 3.2).

Model fitting. Being able to extract elements of interest
or copying from existing 3D assets is necessary for avatar
creation and editing. To this end, we leverage a similar tech-
nique to GAN inversion [69], where decoder parameters �
and are frozen and we only optimize a new feature code-
book Cfit to fit a 3D scan.

Given a 3D target scan and its corresponding body
model parameters, we calculate the 3D reconstruction loss
in Eq. (6) between the prediction conditioned on Cfit and
the ground-truth scan, i.e.,

Cfit = argmin
C

(�sdfLsdf + �rgbLrgb). (9)

Note that our generative neural fields (MLP decoders) are
conditioned on descriptive local features. We show that it
allows us to accurately fits complex clothing geometry and
unseen textural patterns in Sec. 4.3.

Cross-subjects feature editing. With multiple code-
books each representing different 3D assets, we can easily
transfer local geometry and texture from one avatar to an-
other, for instance, changing the top wear from the fitted
scan Cfit to the initial Cd. Recalling that all codebooks
are indexed by an identical mesh topology, users can easily
retrieve the index numbers of Vbody ⇢ V via standard mesh
visualization tools such as Blender [12]. Finally, swapping
of the corresponding rows in Cfit and Cd given the vertex
indices also swaps the local appearance.

Figure 4. Randomly sampled texture and body geometry from

the model trained on THuman2.0. Top: Given any poses, our
randomly sampled geometries contain realistic details such as
wrinkles in garments and facial expressions. Bottom: Given arbi-
trary poses and body geometries, our model produces reasonable
colors on skin, hair, clothes, and pants in each sample (We turn off
the shader for visualizing pure texture colors).

Personalized texture drawing. One can further cus-
tomize clothing by drawing directly onto 2D images. Due
to the learned disentangled feature spaces, we are able to
update texture features in Cfit while keeping the geometry
features unchanged. When fitting 2D images, users draw on
the rasterized images from arbitrary target scans. We then
finetune only texture features in Cfit via the RGB loss in
Eq. (5) given the corresponding 3D coordinates and colors.

Avatar reposing. Our representation combines a base
mesh M and underlying feature codebooks Cfit that learn
local geometry and texture on the 3D scans. Hence, one can
repose the mesh M using (✓,�) parameters, which also re-
poses the avatar correspondingly. Since the geometry code-
book does not contain global pose (✓,�), local information
can be consistently applied to M under unseen poses.

4. Experiments

Our goal is locally editable 3D avatar creation. Since we
are the first to discuss this problem, we visualize our edit-
ing results in Sec. 4.2. Next, we highlight the capability of
model fitting by comparing our method with SOTA human
generative models in Sec. 4.3. Finally, controlled experi-
ments are presented in Sec. 4.4 and Sec. 4.5 to verify the
effectiveness of our design.
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Figure 5. Cross-subject feature editing results. We partially
transfer local clothing details from the unseen scans (upper and
lower body) to the input avatars. The results of the edited avatars
are shown in the right column.

4.1. Experiment Settings

Dataset. Most generative human works [9,44,45] exploit
commercial data [1, 2] for training, which is not easily ac-
cessible and limits reproducibility. Furthermore, the quality
of publicly available 3D human datasets [66,73] is not satis-
factory. Issues such as non-watertight topologies and noise
are very common (See Supp-A.2 for examples and compar-
ison). To bridge this gap, we collect a new dataset named
CustomHumans for training and evaluation. Here we sum-
marize the datasets used in our experiments.

• CustomHumans (Ours) contains more than 600 high-
quality scans of 80 participants in 120 garments in var-
ied poses from a volumetric capture stage [11], which
is equipped with 106 synchronized cameras (53 RGB
and 53 IR cameras). We use our dataset to train models
of all quantitative experiments. (Sec. 4.3 ⇠ Sec. 4.5)

• THuman2.0 [73] is a dataset containing about 500
scans of humans wearing 150 garments in various
poses. Since this dataset has more textural diversity,
we train our method on it for qualitative random sam-
pling experiments (Sec. 4.2 and Sec. 4.4).

• SIZER [66] is a widely used 3D scan dataset contain-
ing A-pose human meshes of 97 subjects in 22 gar-
ments. These meshes are used as unseen test scans in
our fitting experiment (Sec. 4.3).

Evaluation protocol. Following the evaluation protocol
in OccNet [39], we quantitatively evaluate the model fit-
ting accuracy using three metrics: Chamfer distance (CD),
normal consistency (NC), and f-Score.

Source Image Reposed Avatar Source Image Reposed Avatar

Figure 6. Personalized texture editing. We draw personalized
logos on 2D images and fit avatars’ texture features to the images.
These local textures remain consistent under pose changes.

4.2. Customized Avatars

We visualize the results of our proposed avatar cus-
tomization workflow described in Sec. 3.4.

Avatar initialization. In Fig. 4, we show random textures
and geometries sampled from the model trained on THu-
man2.0. Our method is able to generate reasonable colors
and wrinkles in arbitrary poses. Note that the sampled ge-
ometries are shown as the real meshes but not as rendered
normals as in [9] (See Supp-C.2 for comparisons).

Cross-subjects feature editing. After fitting feature
codebooks to 3D scans, we can change the clothes on our
avatars by swapping the local features stored on the body
vertices. We select the features within the upper body and
lower body areas. We then copy these local features to the
initial avatars’ feature codebooks. As shown in Fig. 5, our
method is able to handle multiple garments on different hu-
man subjects and preserves consistent details under differ-
ent body poses or shapes.

Personalized texture drawing. Our method allows users
to draw complex letters and logos on images for personal-
ized texture editing. We perform the model fitting and fea-
ture editing process but only optimize the texture features in
the codebooks using user-edited images and the RGB loss
(Eq. (5)). Fig. 6 shows that new texture can be seamlessly
applied to the 3D avatars. It is worth noting that resulting
avatars enable detailed pose control via the SMPL-X pa-
rameters without affecting the fitted texture and geometry.

4.3. Model Fitting Comparison

Since model fitting is an important step in our avatar cre-
ation workflow, we compare the capability of feature inver-
sion using unseen 3D scans. The goal of this task is to in-
vert a 3D scan into latent codes while keeping the remaining
model parameters fixed. We compare our method with the
3D human generative model gDNA [9], which has achieved
state-of-the-art performance in fitting the geometry of 3D
human bodies. We also directly compare with SMPL [33]
and SMPL+D [3]. Note that SMPL+D is a stronger vertex-
based extension that uses a subdivided version of SMPL
to directly register surfaces to scans while our method and
gDNA optimize latent codes.
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Figure 7. Qualitative comparison of model fitting on SIZER.
We visualize the fitting results from gDNA [9], SMPL+D [3], and
our method. Our results are perceptually close to the ground truth
even on the challenging test cases of jackets and loose t-shirts.

SMPL+D Ours GT

Figure 8. Qualitative comparison of texture fitting. We com-
pare our method with SMPL+D [3] by fitting to unseen textured
meshes. The performance of SMPL+D is limited by its geometry
and texture resolution.

From Fig. 7 we can see that SMPL+D handles loose
clothing, such as a business suite, better than gDNA. How-
ever, the surfaces of SMPL+D results are over-smoothed
and do not contain high-frequency details while ours can
preserve them. Quantitatively, our method consistently out-
performs these methods on all metrics as shown in Tab. 1.

Fig. 8 depicts the result of texture fitting against the
SMPL+D baseline. While both methods inherit a fixed
mesh topology the quality of SMPL+D is limited by its
model resolution. Our method addresses this issue via local
neural fields that enable cross-subject feature editing of tex-
ture and geometry with enhanced representational power.

4.4. Ablation Study

Effectiveness of local features and shared decoders. To
verify the design choice of using local features, we re-
place the local features xl by the global coordinates xg for
conditioning the decoders. Fig. 9 shows that even though
the shared decoders are able to achieve similar reconstruc-
tion results when training with global information, they do
not maintain consistent performance for model fitting and
avatar reposing. This is because the shared decoders tend to
memorize global coordinates information in a “per-subject”
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Figure 9. Comparison of using global/local features for condi-

tioning decoders. The use of global coordinates causes overfitting
and memorization to the shared decoders, which makes it struggle
to handle unseen scans or novel body poses.

Method Pred-to-Scan /
Scan-to-Pred (mm)# NC" f-Score"

SMPL [33] 13.60 / 18.03 0.849 0.458
gDNA [9] 8.374 / 8.006 0.842 0.718
SMPL+D [3] 5.192 / 2.854 0.911 0.962
Ours 1.364 / 1.423 0.949 0.997

Table 1. Model fitting comparison on SIZER. We report Cham-
fer distance, normal consistency (NC), and f-score between ground
truth and the meshes fitted by different methods.

manner, rather than learning shareable information that can
be used across vertices and subjects. On the other hand,
our representation ensures only local features defined on
the triangle coordinates are exposed to the shared decoders.
In such cases, the decoders can better handle unseen body
poses or out-of-distribution samples for model fitting and
avatar editing.

Importance of 2D adversarial loss and 3D disentan-

glement. As discussed in Sec. 3.3, we introduce feature
disentanglement and generative adversarial learning in our
training framework. As shown in Fig. 10, sampling within
the feature spaces learned without adversarial loss does not
yield reasonable body textures. Similarly, training only a
single decoder for both geometry and texture does not al-
low us to maintain desired body geometries when sampling
random textures. Our full model can produce disentangled
textures, given arbitrary body geometries and poses.



Training Data Percentage 10% 25% 50 % 75% 100%

Chamfer Distance (mm)
S-to-P / P-to-S # 1.933 / 1.798 1.754 / 1.590 1.543 / 1.456 1.463 / 1.385 1.423 / 1.364

Normal Consistency" 0.918 0.931 0.935 0.947 0.949
f-Score (%) " 99.25 99.38 99.65 99.74 99.75

Table 2. Generalization analysis on CustomHumans. We analyze the model fitting performances with regard to different amounts of
training data (100% = 100 training scans). We observe consistent performance gain on all evaluation metrics when using more training
subjects to train the shared decoders.

Full Model Target Geometryw/o 2D
Adv. Loss

w/o 3D 
Disentangle

Figure 10. Ablative comparison of our framework designs. We
visualize the results of transferring random texture to given body
geometry. Our full model produces reasonable body texture and is
able to maintain fixed geometry for texture editing.

4.5. Generalization Ability Analysis

We are interested in how the amount of training data
affects the capacities of the MLP decoders. To analyze
this, we design three evaluation protocols: 3D model fitting,
avatar reposing, and 2D texture fitting. Tab. 2 summarizes
the model fitting performance using different percentages
of training data. We observe a 25% accuracy improvement
when using the full training set. In Fig. 11 (Top) we show
that the reposing artifacts caused by self-contact (e.g., fist
and elbow) can be reduced when training the MLP decoders
with more poses and subjects. In addition, Fig. 11 (Bottom)
depicts a qualitative comparison of 2D texture editing un-
der different training data percentages. We evaluate texture
editing quality by fitting a 2D image with unseen geometric
shapes and colors. It can be seen that the model trained on
more samples is able to handle a wider range of color dis-
tribution. These results confirm the necessity for learning
multi-subject shared decoders in our task.

Fitting + Reposing

100% Trainig Data

10% Trainig Data

100% Trainig Data10% Trainig DataEdited Target Image

Target Scan

50% Trainig Data

Figure 11. Qualitative comparison of generalization. Top: We
visualize the results of avatar reposing using different percentages
of training data (i.e., 10 meshes vs 100 meshes). Artifacts caused
by self-contact (e.g., fist and elbow) can be reduced when more
training subjects are introduced. Bottom: We visualize the results
using different percentages of training data. Using more data re-
sults in more robust shared decoders (with a wider color range),
which is necessary for the avatar creation task.

5. Conclusion

We propose an end-to-end trainable framework for learn-
ing 3D human avatars with high fidelity and full editability.
By combining neural fields with explicit skinned meshes,
our representation addresses the controllability issue of
many previous implicit representations. Moreover, we
uniquely integrate the proposed human representation into a
generative auto-decoding pipeline that enables local editing
across multiple animation-ready avatars. Through our eval-
uation on the newly contributed CustomHumans dataset, we
demonstrate that our approach achieves higher model fitting
accuracy and generates diverse detailed avatars. We believe
that this work opens up exciting possibilities for accelerat-
ing content creation in the Metaverse.
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A. CustomHumans Dataset

A.1. Dataset description

In this section, we provide more information about
our contributed dataset, CustomHumans. Our dataset is
recorded by a multi-view photogrammetry system [4] as
shown in Fig. 12, equipped with 53 RGB (12 Megapix-
els) and 53 (4 Megapixels) IR cameras. The resulting high-
quality scan is composed of a 40K-face mesh alongside a
4K-resolution texture map. In addition to the high-quality
scans, we provide accurately registered SMPL-X parame-
ters using a customized mesh registration pipeline.

To collect clothed human scans in various poses, we in-
vited 80 participants to our capture studio. We designed
several movement instructions for the participants, such as
“T-pose”, “Hands Up”, “Squat”, “Turing head”, and “Hand
gestures”, to film 5-6 poses in a 10-second long sequence

Figure 12. Volumetric capture stage for data collection. Our
capture stage is equipped with 106 synchronized cameras (53 RGB
and 53 IR cameras) for capturing dynamic 4D sequences.

(300 frames). We selected 4-5 best-quality meshes in each
sequence as our data samples. In total, our dataset contains
more than 600 high-quality scans with 120 different gar-
ments. Exemplars of human scans can be found in Fig. 17,
where we visualize the textured scans, mesh geometries,
and the registered SMPL-X body models.

A.2. Comparison with existing datasets

We summarize the outstanding features of existing 3D
clothed human datasets in Tab. 3. Specifically, we are
mainly interested in four aspects. Subject Diversity: Does
it contain people of diverse genders and races? Garment

Diversity: Does it include various clothing and combina-
tions? Pose Variation: Does it consists of subjects in vari-
ous poses? Quality: Do these scans contain noise near the
surfaces? and are they watertight?

Commercial datasets (e.g., RenderPeople [1]) have
shown superior quality and have been used in many works
of generative modeling. However, they are not easily ac-
cessible which limits reproducibility for research purposes.
CAPE [8] contains posed sequences of 15 subjects and 8
types of outfits. Since only SMPL+D body meshes are

1



Dataset Subject
Diversity

Garment
Diversity

Pose
Variation Noise-free Watertight Registered Publicly

Available

RenderPeople [1] X X X X X
CAPE [8] X X X X X
SIZER [13] X X X
THuman2.0 [15] X X X X X
Ours X X X X X X X

Table 3. Comparison with existing 3D human scans datasets. Commercial datasets such as RenderPeople are not easy to obtain whereas
either the quality (e.g. SIZER and THuman2.0) or diversity (e.g., CAPE) is not sufficient in the other datasets.

Figure 13. Examples of noisy data in SIZER [13] (left) and THuman2.0 [15] (right). The meshes in SIZER and THuman2.0 are
generally not watertight and bumpy, which causes issues when learning detailed human body geometry.

used in this dataset, they are clean and watertight. The
total number of subjects and garments is limited as the
main focus of this dataset is to model pose-dependent de-
formations of a single subject. SIZER [13] provides 2000
scans of 100 different subjects in a total of 22 types of
garments. Each scan is captured in “A-Pose” and regis-
tered by SMPL and SMPL+D body models. Neverthe-
less, as shown in Fig. 13 left, these scans contain non-
watertight mesh manifolds and large noise near surfaces.
THuman2.0 [15] consists of 525 scans of approximately
150 subjects and garments captured by a dense DLSR rig,
which limits the mesh quality due to noise and bumpy sur-
faces (Fig. 13 right). To foster future research on creating
detailed human avatars, we addressed the above-mentioned
issues and collected a new high-quality dataset containing
600 posed scans with higher subject diversity and in vari-
ous clothing.

B. Implementation Details

B.1. Codebook sampling

Fig. 14 depicts the codebook sampling strategies used
for training our model. As mentioned in Sec. 3.2, we store
the codebooks Ci in two dictionaries Ds,Dc 2 RN⇥(MF )

to represent shape and color information of the i-th subject.
This allows us to learn a unified shared feature space and
transfer local feature codebooks across subjects. The entry

Ci is queried to be jointly trained with the decoder weights
via direct 3D supervision.

To further learn a well-behaved latent space from which
we can draw novel samples, we devise an on-the-fly PCA
codebook sampling strategy inspired by [12]. We first com-
pute D-dimensional eigenvectors V 2 RD⇥(MF ) by ap-
plying PCA to the reshaped dictionary. We then derive the
D-dimensional PCA coefficients of all N samples using the
eigenvectors V. The mean and the covariance matrix of
these PCA coefficients can be computed and used for fitting
a D-dimensional normal distribution. We then draw ran-
dom PCA coefficients k from the normal distribution and
compute a new codebook Cr by multiplying k and V.

As shown in Fig. 14, the 3D loss is used for updating
only the selected codebook Ci. On the other hand, the 2D
adversarial loss can be backpropagated to the entire dictio-
nary since the on-the-fly PCA operation is differentiable.
This PCA sampling strategy allows us to learn a more mean-
ingful latent space for all training samples instead of over-
fitting each sample independently.

B.2. Implicit rendering

As described in Sec. 3.3, we render local color and
normal patches for adversarial learning by rasterizing the
ground-truth scans. To do so, we place the hip joint of each
human scan at the origin and place 4 virtual cameras on
{0, 90, 180, 270}� of a 2-meter circle. We rasterize images
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Figure 14. Two codebook sampling strategies for training. Top: Given a random subject index i, we query the corresponding codebook
stored in the dictionary. This queried codebook Ci is trained via 3D supervision, and the gradients only back-propagate to the decoder
and Ci. Bottom: We apply PCA to the high-dimensional dictionary, and draw random coefficients k from the D-dimensional PCA space.
As the sampled codebook Cr is a linear combination of the PCA eigenvectors V, the 2D adversarial loss can be used for updating the
whole dictionary. Note that both strategies are applied during training to jointly optimize both the dictionaries and the decoders.

of the full body in 1024 ⇥ 1024 and then crop each image
to 25 128 ⇥ 128 patches based on the body joint positions
defined on the SMPL-X model.

We then use the same virtual camera parameters to shoot
rays (i.e., pixels on the image patches) from the camera
center onto the implicit surface. Sample points on a cam-
era ray can be formulated as x = ro + t ⇥ rd, where ro
is the ray origin, rd is the ray direction and t is a scalar
for sampling. We determine the intersection by finding the
first SDF sign-changing sample along the ray following [2].
These intersection coordinates will be the query points for
the feature querying and decoding process to predict cor-
responding colors and SDF. We compute the finite differ-
ences of SDF as an approximation of surface normals. The
resulting normal and color maps are served as “fake image
patches” for the discriminators.

B.3. Network architecture

We choose SMPL-X [11] as our LBS body mesh, which
consists of M = 10475 vertices. We use a feature dimen-
sion of F = 32 for both texture and geometry features, re-
sulting in a codebook of 10475⇥64 for each subject. A po-
sitional encoding of 5 frequency bands is applied to the lo-
cal positional features xl. Our shared decoders consist of 4
layers of 128-dimensional linear layer followed by a ReLU
activation. Our discriminator follows similar network ar-
chitecture with StyleGAN2 [7]. We apply two different dis-
criminators for normal maps and color images.

B.4. Training details

We use a dictionary size of N = 150 for THu-
man2.0 [15] and N = 100 for the CustomHumans dataset.
For better facial textures and finger control, we register both
datasets with SMPL-X parameters ✓,� including facial con-
tours and finger joints.

As mentioned in Sec. 3.3, the discriminators are trained
with R1 regularization LR1 [9] with �R1 = 10. For train-
ing the decoders and the feature dictionaries, we set �n =
10�2,�sdf = 103,�rgb = 102,�path = 2,�reg = 10�3.
We select a PCA dimension of D = 16 for geometry fea-
tures and D = 8 for texture features during training.

For each training iteration, we sample 20480 query
points near ground-truth mesh surfaces, and a batch size of
8 is used. Our decoders and feature dictionaries are trained
end-to-end with Adam Optimizer using a learning rate of
0.001 and first- and second-momentum of 0 and 0.99 re-
spectively. The training takes around two days on an RTX
3090 for 8000 epochs for both datasets.

B.5. Inference speed

Optimizing the geometry converges in 100 iterations
(⇠40s), fitting textures to a 2K image takes additional 300
iterations (also ⇠40s). Our method is currently meant for
offline editing; note that our code is unoptimized and can
be further accelerated. The resulting meshes are obtained
from the predicted SDF values using marching cubes with
a resolution of 3003 in ⇠10 seconds.
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Figure 15. Avatar customization pipeline. Two exemplars of avatar creation using our proposed framework. (a) Starting from a random
body geometry and texture (Top) or training sample saved in our feature dictionary (Bottom), we keep human identities (i.e., face textures,
geometries) unchanged while gradually (b) editing new clothing geometry and (c) textures onto our avatar by fitting to unseen 3D scans and
2D images. (d) Note that our method can handle challenging loose clothing such as jackets and coats and keep their colors and geometries
consistent under various poses.

C. More Comparisons and Results

C.1. Avatar editing

We present more details and exemplars of customized
avatars using our editing workflows in Fig. 15. Starting
from a random sample (i.e., Cr in Fig. 15(a) Top) or from
a subject used in training (i.e., Ci in Fig. 15(a) Bottom),
we gradually add new clothing and textures while keeping
the identity (i.e., face colors and geometries) and body pose
fixed for both cases. First, we invert the target scans into
a feature codebook and store it for later use. Note that the
body poses of target scans and initial avatars do not need to
match. After fitting target scans into codebooks, we change
the clothes on the initial avatars by swapping the local fea-
tures located in the body regions. As shown in Fig. 15(b)
our method is able to transfer challenging garments includ-
ing jackets and preserves local details under different body
poses and shapes. Furthermore, our method allows users to
draw personalized logos and letters on garments. We keep
the body geometry (Fig. 15(b)) unchanged while transfer-
ring only color information from photos of different sub-
jects and clothing. Fig. 15(c) shows that texture features can
be applied to avatars with different poses, shapes, and cloth-
ing geometry. Finally, the resulting avatars enable pose con-
trol by changing the SMPL-X parameters without affecting
the fitted texture and geometry (Fig. 15(d)).

C.2. Random sampling

Following the same experiment in Sec. 4.2, we visualize
more randomly sampled mesh geometries from gDNA [2]
and our method in Fig. 18 and Fig. 19, respectively. As
mentioned in the main manuscript, gDNA predicts addi-
tional normal maps on the surfaces, thus, their generated
meshes do not contain real high-frequency details as shown
in Fig. 18. Our method, instead, generates more detailed
mesh geometries by introducing a 2D adversarial loss dur-
ing training.

C.3. Model fitting

Similar to the experiment in Sec. 4.3, we follow the
baselines and the selected test subjects introduced in [2] to
compare with more human generative baselines, including
SMPLicit [5], NPMs [10], and gDNA [2]. We visualize the
fitting results of the selected subjects in Fig. 20. In all cases,
our results are qualitatively closer to the ground truth com-
pared to other baselines.

C.4. Reposing

In Fig. 21 Top, we repose the created avatars using the
motion sequence provided in the AIST [14] dataset. Our
representation consistently applies local details to the 3D
avatar in different unseen poses.
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Figure 16. Imperfect fitting for high-frequency textures. Due to the limited body mesh resolution, our method cannot fit challenging
high-frequency textures very well.

D. Discussion

D.1. Scalability

We propose an auto-decoding pipeline that stores learned
latent features of N scans in a dictionary. We show that
the dictionary size is not a major memory bottleneck since
each entry occupies 10475*32*2*4 bytes = 2.68MB GPU
memory. Even with 1000 scans – which exceeds the size of
the existing datasets – the memory usage (2.68GB) easily
fits onto modern GPUs. In terms of computational time, the
PCA operation on a 1000⇥ 320K dictionary takes 30ms on
a single RTX3090. As a reference, one training iteration
takes 0.8s. Furthermore, if one wants to apply our method
to an even larger dataset (100K), the dictionary and PCA
sampling could be replaced by a network that maps a global

feature to local feature codebooks as is done in [6].

D.2. Ethical Concerns

Data collection and experiments in this work strictly fol-
low the CVPR 2023 Ethics Guidelines. Our data collection
procedure has been reviewed and approved by the responsi-
ble Institutional Review Board.

Generative modeling and editing of virtual humans are
often accompanied by manipulation or fake information.
Potential misuse of our creation pipeline to recreate full-
body deep fakes for improper applications cannot be fully
ruled out even though none of the proposed techniques in-
tend for these purposes. In addition, possible concerns
about copyright and privacy might arise since our frame-
work enables the transfer of high-quality local details and
facial appearances. Thus, to balance the positive and neg-
ative impacts, definite regulations must be established such
as creative licenses and personal data protection. By mak-
ing our code and data publicly available, we hope to raise
awareness of future research on detecting fake information
on photo-realistic 3D avatars in the Metaverse.

D.3. Limitations and future works

Pose-dependent deformations. Our method assumes
each human scan is a static observation. Therefore, clothing
changes caused by motion and poses cannot be explicitly

modeled by local features. However, this is a data- not a
model limitation. Once sufficiently large datasets become
available, pose-dependent terms can be incorporated into
our pipeline similar to [3]. Hence, one exciting direction is
adding pose-dependent terms to the decoders and introduc-
ing more synthetic data under various poses to see if the rep-
resentation and models can extract useful pose-dependent
information.

Challenging textural details. As shown in Fig. 16, our
method still suffers from very complex logos. Our imple-
mentation uses SMPL-X which limits the modeling of very
high-frequency details. Note that our method can be used
with any mesh template with topological consistency and
thus inherently scales to higher resolution representations.
Thus, a promising extension of our method would be using
a customized human body model that has more vertices on
the human body.

Self-intersection. Self-intersections are a well-known is-
sue for learning SDFs since they cause wrong surface sam-
ples. To stabilize training, we excluded 3D scans with se-
vere self-contacts in the dataset. As shown in In Fig. 21 Bot-

tom, self-intersections are also an issue in reposing avatars
with contact. Therefore, one potential follow-up is to con-
sider both SDF and occupancy and introduce an additional
pose-dependent correction for tackling body poses with
self-contacts. We also found that in our generalization anal-
ysis, training the decoders with more scans and poses re-
duced artifacts caused by self-intersections. This motivates
us to address this issue in a data-driven manner.

Automatic and interactive editing. Our pipeline still re-
quires users to manually select the vertices of interest for
avatar editing which potentially limits the capability of edit-
ing complicated attributes such as facial expressions and
hairstyles. One possible solution might be automating the
current pipeline using a semantic human parsing algorithm
as guidance. Moreover, another exciting extension is opti-
mizing the fitting and inference speed and combing an in-
teractive user interface for online avatar creation.
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Figure 17. Visualization of data samples in CustomHumans. In our dataset, we provide high-quality human meshes, high-resolution
texture maps, and registered SMPL-X body models. To verify the accuracy of registration, we visualize the overlays of the human scans
and the SMPL-X body meshes.



Figure 18. Random sampled meshes from gDNA [2]. The meshes obtained from gDNA do not contain wrinkles and other high-frequency
details.

Figure 19. Random sampled meshes from our model trained on THuman2.0. Our method can randomly sample meshes that contain
more stochastic wrinkles on the clothes and more detailed facial geometries.
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Figure 20. Qualitative comparison of model fitting on SIZER. We visualize the fitting results of baselines and our method. Our results
are close to the ground truth.



Figure 21. Avatar reposing. Top: Given edited avatars, our method consistently applies local details stored in the feature codebooks onto
the body surfaces in different poses. Bottom: Poses with self-contacts might cause artifacts to both texture and geometry.
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Figure 22. More cross-subject feature editing results. We partially transfer local clothing details from the unseen scans (upper and lower
body) to the input avatars. The results of the edited avatars are shown in the right column.
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