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Figure 1: We propose a novel generative neural network architecture that is capable of disentangling style from content and thus
makes digital ink editable. Our model can synthesize handwriting from typed text while giving users control over the visual
appearance (A), transfer style across handwriting samples (B, solid line box synthesized stroke, dotted line box reference style),
and even edit handwritten samples at the word level (C).

ABSTRACT
Digital ink promises to combine the flexibility and aesthetics of
handwriting and the ability to process, search and edit digital
text. Character recognition converts handwritten text into a
digital representation, albeit at the cost of losing personalized
appearance due to the technical difficulties of separating the
interwoven components of content and style. In this paper, we
propose a novel generative neural network architecture that is
capable of disentangling style from content and thus making
digital ink editable. Our model can synthesize arbitrary text,
while giving users control over the visual appearance (style).
For example, allowing for style transfer without changing
the content, editing of digital ink at the word level and other
application scenarios such as spell-checking and correction of
handwritten text. We furthermore contribute a new dataset of
handwritten text with fine-grained annotations at the character
level and report results from an initial user evaluation.
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INTRODUCTION
Handwritten text has served for centuries as our primary mean
of communication and cornerstone of our education and cul-
ture, and often is considered a form of art [45]. It has been
shown to be beneficial in tasks such as note-taking [35], read-
ing in conjunction with writing [47] and may have a positive
impact on short- and long-term memory [4]. However, de-
spite progress in character recognition [32], fully digital text
remains easier to process, search and manipulate than hand-
written text which has lead to a dominance of typed text.

In this paper we explore novel ways to combine the benefits
of digital ink with the versatility and efficiency of digital text,
by making it editable via disentanglement of style and content.
Digital ink and stylus-based interfaces have been of continued
interest to HCI research (e.g., [22, 23, 44, 56, 61]). However,
to process digital ink one has typically to resort to optical char-
acter recognition (OCR) techniques (e.g., [17]) thus invariably
losing the personalized aspect of written text. In contrast, our
approach is capable of maintaining the author’s original style,
thus allowing for a seamless transition between handwritten
and digital text. Our approach is capable of synthesizing hand-
written text, taking either a sequence of digital ink or ASCII
characters as input. This is a challenging problem: while each
user has a unique handwriting style [49, 60], the parameters
that determine style are not well defined. Moreover, handwrit-
ing style is not fixed but changes temporally based on context,
writing speed and other factors [49]. Hence so far it has been
elusive to algorithmically recreate style faithfully, while being
able to control content. A comprehensive approach to hand-
writing synthesis must be able to maintain global style while
preserving local variability and context (e.g., many users mix
cursive and disconnected styles dynamically).
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Embracing this challenge we contribute a novel generative
deep neural network architecture for the conditional synthesis
of digital ink. The model is capable of capturing and reproduc-
ing local variability of handwriting and can mimic different
user styles with high-fidelity. Importantly the model provides
full control over the content of the synthetic sequences, en-
abling processing and editing of digital ink at the word level.
The main technical contribution stems from the ability to dis-
entangle latent factors that influence visual appearance and
content from each other. This is achieved via an architecture
that combines autoregressive models with a learned latent-
space representation, modeling temporal and time-invariant
categorical aspects (i.e., character information).

More precisely we propose an architecture comprising of a
recurrent variational autoencoder [12, 28] in combination with
two latent distributions that allow for conditional synthesis
(i.e., provide control over style and content) alongside a novel
training and sampling algorithm. The system has been trained
on segmented samples of handwritten text collected from 294
authors, and takes into account both temporal and stylistic
aspects of handwriting. Further, it is capable of synthesiz-
ing novel sequences from typed-text, transferring styles from
one user to another, editing digital ink at the word level and
thus enables compelling application scenarios including spell-
checking and auto-correction of digital ink.

We characterize the performance of the architecture via a thor-
ough technical evaluation, and assess its efficacy and utility via
a preliminary experimental evaluation of the interactive sce-
narios we implemented. Further, we contribute a new dataset
that enhances the IAM On-Line Handwriting Database (IAM-
OnDB) [31] and includes handwritten text collected from 294
authors with character level annotations. Finally, we plan to
release an open-source implementation of our model.

RELATED WORK
Our work touches upon various subjects including HCI (e.g.,
[22, 39, 44, 56]), handwriting analysis [43] and machine learn-
ing (e.g., [15, 18, 28, 42]).

Understanding Handwriting
Research into the recognition of handwritten text has led to
drastic accuracy improvements [15, 42] and such technology
can now be found in mainstream UIs (e.g., Windows, Android,
iOS). However, converting digital ink into ASCII characters
removes individual style. Understanding what exactly consti-
tutes style has been the subject of much research to inform
font design [8, 14, 38] and the related understanding of human
reading has served as a source of inspiration for the modern
parametric-font systems [25, 29, 48]. Nonetheless no equiva-
lent parametric model of handwritten style exists and analysis
and description of style remains an inexact science [38, 43].
We propose to learn a latent representation of style and to
leverage it in a generative model of user specific text.

Pen-based interaction
Given the naturalness of the medium [47, 11], pen-based inter-
faces have seen enduring interest in both the graphics and HCI
literature [50]. Ever since Ivan Sutherland’s Sketchpad [51]

researchers have explored sensing and input techniques for
small screens [27, 57], tablets [23, 40] and whiteboards [36, 39,
56] and have proposed ways of integrating paper with digital
media [21, 6]. Furthermore many domain specific applica-
tions have been proposed. For instance, manipulation of hand-
drawn diagrams [3] and geometric shapes [2], note-taking
(e.g., NiCEBook [6]), sharing of notes (e.g., NotePals [13]),
browsing and annotation of multimedia content [54], including
digital documents [58] using a stylus. Others have explored
creation, management and annotation of handwritten notes on
large screen displays [39, 56]. Typically such approaches do
not convert ink into characters to preserve individual style. Our
work enables new interactive possibilities by making digital
ink editable and interchangeable with a character representa-
tion, allowing for advanced processing, searching and editing.

Handwriting Beautification
Zitnick [61] proposes a method for beautification of digital
ink by exploiting the smoothing effect of geometric averaging
of multiple instances of the same stroke. While generating
convincing results, this method requires several samples of
the same text for a single user. A supervised machine learning
method to remove slope and slant from handwritten text and to
normalize it’s size [16] has been proposed. Zanibbi et al [59]
introduce a tool to improve legibility of handwritten equations
by applying style-preserving morphs on user-drawn symbols.
Lu et al. [33] propose to learn style features from trained artist,
and to subsequently transfer the strokes of a different writer to
the learnt style and therefore inherently remove the original
style. Text beautification is one of the potential applications
for our work, however the proposed model only requires a
single sequence as input, retains the global style of the author
when beautifying and can generate novel (i.e., from ASCII
characters) sequences in that style.

Handwriting Synthesis
A large body of work is dedicated to the synthesis of hand-
written text (for a comprehensive survey see [15]). Attempts
have been made to formalize plausible biological models of
the processes underlying handwriting [24] or by learning se-
quences of motion primitives [55]. Such approaches primarily
validate bio-inspired models but do not produce convincing
sequences. In [5, 41] sigma-lognormal models are proposed
to synthesize handwriting samples by parameterizing rapid
human movements and hence reflecting writer’s fine motor
control capability. The model can naturally synthesize vari-
ances of a given sample, but it lacks control of the content.

Realistic handwritten characters such as Japanese Kanji or
individual digits can be synthesized from learned statistical
models of stroke similarity [9] or control point positions (re-
quiring characters to be converted to splines) [53]. Follow-up
work has proposed methods that connect such synthetic char-
acters [10, 52] using a ligature model. Haines et al. [20] take
character-segmented images of a single author’s writing and at-
tempts to replicate the style via dynamic programming. These
approaches either ignore style entirely or learn to imitate a
single reference style from a large corpus of data. In contrast,
our method learns first how to separate content and style and

2



Different slanting

Varying spacing

Use of glyphs

Ligature/No ligature

Figure 2: Example of intra-author variation that leads to en-
tanglement of style and content, making conditional synthesis
of realistic digital ink very challenging.

then is capable of transferring style from a single sample to
arbitrary text, providing much more flexibility.

Kingma and Welling [28] propose a variational auto-encoder
architecture for manifold learning and generative modelling.
The authors demonstrate synthesis of single character dig-
its via manipulation of two, abstract latent variables but
the method can not be used for conditional synthesis. The
work most closely related to ours proposes a long short-term
memory recurrent (LSTM) neural network to generate com-
plex sequences with long-range structure such as handwritten
text [18]. The work demonstrates synthesis of handwritten
text in specific styles limited to samples in the training set, and
its model has no notion of disentangling content from style.

METHOD
To make digital ink fully editable, one has to overcome a
number of technical problems such as character recognition
and synthesis of realistic handwriting. None is more important
though than the disentanglement of style and content. Each
author has a unique style of handwriting [49], but at the same
time, they also display a lot of intra-variability, such as mixing
connected and disconnected styles, variance in usage of glyphs,
character spacing and slanting (see Figure 2). Hence, it is hard
to define or predict the appearance of a character, as often its
appearance is strongly influenced by its content.

In this paper, we propose a data-driven model capable of dis-
entangling handwritten text into their content and style com-
ponents, necessary to enable editing and synthesis of novel
handwritten samples in a user-specified style. The key idea
underlying our approach is to treat style and content as two sep-
arate latent random variables (Figure 3-a). While the content
component is defined as the set of alphanumeric characters
and punctuation marks, the style term is an abstraction of the
factors defining appearance. It is learned by the model and
projected into a continues-valued latent space. One can make
use of content and style variables to edit either style, content
or both, or one can generate entirely new samples (Figure 3-b).

We treat digital ink as a sequence of temporarily ordered
strokes where each stroke consists of (u,v) pen-coordinates
on the device screen and corresponding pen-up events. While
the pen-coordinates are integer values bounded by screen res-
olution of the device, pen-up takes value 1 when the pen is
lifted off the screen and 0, otherwise. A handwriting sample
is formally defined as x = {xt}T

t=1 where xt is a stroke and T

𝑧 𝜋

𝑥𝑧 𝜋

𝑥

“I can write”Style 1

Style 2 “I can write”

(a) (b)

𝑧

𝑔𝑖𝑛𝑝

𝜋

𝑔𝑜𝑢𝑡

𝑥

ො𝑥

(c)

Figure 3: High-level representation of our approach. x,z and π

are random variables corresponding to handwritten text, style
and content, respectively. (a) A given handwritten sample
can be decomposed into style and content components. (b)
Similarly, a sample can be synthesized using style and content
components. (c) Our model learns inferring and using latent
variables by reconstructing handwriting samples. ginp and gout

are feed-forward networks projecting the input into an inter-
mediate representation and predicting outputs, respectively.

is total number of strokes. Moreover, we label each stroke
xt with character yt , end-of-character eoct and beginning-of-
word bowt labels. yt specifies which character a stroke xt
belongs to. Both eoct and bowt are binary-valued and set to 1
if xt correspond to the last stroke of a character sequence or
the first stroke of a new word, respectively (Figure 4).

We propose a novel autoregressive neural network (NN) archi-
tecture that contains continuous and categorical latent random
variables. Here the continuous latent variable which captures
the appearance properties is modeled by an isotropic Normal
distribution (Figure 5 (green)). Whereas the content informa-
tion is captured via a Gaussian Mixture Model (GMM), where
each character in the dataset is represented by an isotropic
Gaussian (shown in Figure 5 (blue)). We train the model
by reconstructing a given handwritten sample x (Figure 3-
c). Handwriting is inherently a temporal domain and require
exploiting long-range dependencies. Hence, we leverage recur-
rent neural network (RNN) cells and operate in the stroke level
xt . Moreover, we make use of and predict yt , eoct , bowt in
auxiliary tasks such as controlling the word spacing, character
segmentation and recognition. (Figure 5).

The proposed architecture which we call conditional varia-
tional recurrent neural network (C-VRNN ) builds on prior
work on variational autoencoders (VAE) [28] and its recur-
rent variant, variational recurrent neural networks (VRNN)
[12]. While VAEs only work with non-temporal data, VRNN
can reconstruct and synthesize timeseries, albeit without con-
ditioning, providing no control over the generated content.
In contrast, our model synthesizes realistic handwriting with
natural variation and conditioned on a user-specified content,
enabling a number of compelling applications (Figure 1).

Background
Multi-layer recurrent neural networks (RNN) [18] and varia-
tional RNN (VRNN) [12] are most related to our work. We
briefly recap these and highlight differences. In our notation

3



Figure 4: Discretization of digital handwriting. A handwrit-
ing sample (top) is represented by a sequence of temporarily
ordered strokes. Yellow and green nodes illustrate sampled
strokes. The green nodes correspond to pen-up events.

superscripts correspond to layer information such as input,
latent or output while subscripts denote the time-step t. More-
over, we drop parametrization for the sake of brevity, and
therefore readers should assume that all probability distribu-
tions are modeled using neural networks.

Recurrent Neural Networks
RNNs model variable length input sequences x =
(x1,x2, · · · ,xT ) by predicting the next time step xt+1 given
the current xt . The probability of a sequence x is given by

p(x) =
T

∏
t=1

p(xt+1|xt),

p(xt+1|xt) = gout(ht)

ht = τ(xt ,ht−1),

(1)

where τ is a deterministic transition function of an RNN cell,
updating the internal cell state h. Note that xt+1 implicitly
depends on all inputs until step t +1 through the cell state h.

The function gout maps the hidden state to a probability distri-
bution. In vanilla RNNs (e.g., LSTM, GRU) gout is the only
source of variability. To express the natural randomness in the
data, the output function gout typically parametrizes a statisti-
cal distribution (e.g., Bernoulli, Normal, GMM). The output
is then calculated by sampling from this distribution. Both
functions τ and gout are approximated by optimizing neural
network parameters via maximizing the log-likelihood:

Lrnn(x) = logp(x) =
T

∑
t=1

logp(xt+1|xt) (2)

Multi-layered LSTMs with a GMM output distribution have
been used for handwriting modeling [18]. While capable
of conditional synthesis, they can not disentangle style from
content due to the lack of latent random variables.

Variational Recurrent Neural Networks
VRNNs [12] modify the deterministic τ transition function
by introducing a latent random variable z = (z1,z2, · · · ,zT )
increasing the expressive power of the model and to better

capture variability in the data by modeling

p(x,z) = p(x|z)p(z),

p(x,z) =
T

∏
t=1

p(xt |zt)p(zt),

p(xt |zt) = gout(zt ,ht−1),

p(zt) = gp,z(ht−1),

ht = τ(xt ,zt ,ht−1),

(3)

where gp,z is a multi-layer feed forward network parameter-
izing the prior distribution p(zt) and the latent variable z en-
forces the model to project the data variability on the prior
distribution p(z). Note that xt still depends on the previous
steps, albeit implicitly through the internal state ht−1.

At each time step the latent random variable z is modeled as
isotropic Normal distribution zt ∼N (µt ,σt I). The transition
function τ takes samples zt as input, introducing a new source
of variability.

Since we do not have access to the true distributions at training
time, the posterior p(z|x) is intractable and hence makes the
marginal likelihood, i.e., the objective, p(x) also intractable.
Instead, an approximate posterior distribution q(z|x) is em-
ployed, imitating the true posterior p(z|x) [28], where q(z|x)
is an isotropic Normal distribution and parametrized by a neu-
ral network gq,z as follows:

q(zt |xt) = gq,z(xt ,ht−1) (4)

The model parameters are optimized by jointly maximizing a
variational lower bound:

logp(x)≥ Eq(zt |xt )

T

∑
t=1

logp(xt |zt)−KL(q(zt |xt)||p(zt)), (5)

where KL(q||p) is the Kullback-Leibler divergence (non-
similarity) between distributions q and p. The first term in
loss (5) ensures that the sample xt is reconstructed given the
latent sample zt ∼ q(zt |xt) while the KL term minimizes the
discrepancy between our approximate posterior and prior dis-
tributions so that we can use the prior zt ∼ p(zt) for synthesis
later. Moreover, the q(z|x) network enables inferring latent
properties of a given sample, providing interesting applica-
tions. For example, a handwriting sample can be projected
into the latent space z and reconstructed with different slant.

A plain auto-encoder architecture learns to faithfully recon-
struct input samples, the latent term z transforms the architec-
ture into a fully generative model. Note that the KL-term never
becomes 0 due to the different amount of input information
to gp,z and gq,z. Hence, the KL-term enforces the model to
capture the common information in the latent space z.

Conditional Variational Recurrent Neural Network
While multi-layer RNNs and VRNNs have appealing proper-
ties, neither is directly capable of full conditional handwriting
synthesis. For example, one can synthesize a given text in
a given style by using RNNs but samples will lack natural
variability. Or one can generate high quality novel samples
with VRNNs. However, VRNNs lack control over what is
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Figure 5: Schematic overview of our handwriting model in training (a) and sampling phases (b), operating at the stroke-level.
Subscripts denote time-step t. Superscripts correspond to layer names such as input, latent and output layers or the distributions
of the random variables such as zq

t ∼ q(zt |xt) and zp
t ∼ p(zt |xt). (τ and h) An RNN cell and its output. (g) A multi-layer

feed-forward neural network. (Arrows) Information flow color-coded with respect to source. (Colored circles) Latent random
variables. Outgoing arrows represent a sample of the random variable. (Green branch) Gaussian latent space capturing style
related information along with latent RNN (τ latent

t ) cell at individual time-steps t. (Blue branch) Categorical and GMM random
variables capturing content information. (Small black nodes) An auxiliary node for concatenation of incoming nodes.

written. Neither model have inference networks to decouple
style and content, which lies at the core of our work.

We overcome this issue by introducing a new set of latent ran-
dom variables, z,π , capturing style and content of handwriting
samples. More precisely our new model describes the data
as being generated by two latent variables z and π (Figure 3)
such that

p(x,z,π) = p(x|z,π)p(z)p(π),

p(x,z,π) =
T

∏
t=1

p(xt |zt)p(zt)p(πt),

p(xt |zt ,πt) = gout(zt ,πt),

p(zt) = gp,z(hlatent
t−1 ),

p(πt) = gp,π(hlatent
t−1 ),

hlatent
t = τ

latent(xt ,zt ,πt ,hlatent
t−1 ),

q(zt |xt) = gq,z(xt ,hlatent
t−1 ),

(6)

where p(πt) is a K-dimensional multinomial distribution spec-
ifying the characters that are synthesized.

Similar to VRNNs, we introduce an approximate inference
distribution q(π|x) for the categorical latent variable:

q(πt |xt) = gq,π(xt ,hlatent
t−1 ) (7)

Since we aim to decouple style and content in handwriting,
we assume that the approximate distribution has a factorized
form q(zt ,πt |xt) = q(zt |xt)q(πt |xt). Both q(π|x) and q(z|x)
are used to infer content and style components of a given
sample x as described earlier.

We optimize the following variational lower bound:

logp(x)≥Llb(·) = Eq(zt ,πt |xt )

T

∑
t=1

logp(xt |zt ,πt)

−KL(q(zt |xt)||p(zt))−KL(q(πt |xt)||p(πt)),

(8)

where the first term ensures that the input stroke is recon-
structed by using its latent samples. We model the output
by using bivariate Gaussian and Bernoulli distributions for
2D-pixel coordinates and binary pen-up events, respectively.

Note that our output function gout does not employ the internal
cell state h. By using only the latent variables z and π for
synthesis, we aim to enforce the model to capture the patterns
only in the latent variables z and π .

High Quality Digital Ink Synthesis
The C-VRNN architecture as discussed so far enables the
crucial component of separating continuous components from
categorical aspects (i.e., characters) which potentially would
be sufficient to conditionally synthesize individual characters.
However, to fully address the entire handwriting task several
extension to control important aspects such as word-spacing
and to improve quality of the predictions are necessary.

Character classification loss
Although we assume that the latent random variables z and
π capture style and content information, respectively, and
make a conditional independence assumption, in practice full
disentanglement is an ambiguous task. Since we essentially
ask the model to learn by itself what style and what content
are we found further guidance at training time to be necessary.

To prevent divergence during training we make use of character
labels at training time and add an additional cross-entropy clas-
sification loss Lclassi f ication on the content component q(πt |xt).
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Figure 6: (top, green) Input samples used to infer style. (mid-
dle, red) Synthetic samples of a model with π only. They
are generated using one-hot-encoded character labels, causing
problems with pen-up events and with character placement.
(bottom, blue) Synthetic samples of our model with GMM
latent space.

GMM latent space
Conditioning generative models is typically done via one-hot
encoded labels. While we could directly use samples from
q(πt |xt), we prefer using a continuous representation. We
hypothesize and experimentally validate (see Figure 6) that
the synthesis model can shape the latent space with respect to
the loss caused by the content aspect.

For this purpose we use a Gaussian mixture model where each
character in K is represented by an isotropic Gaussian

p(ϕt) =
K

∑
k=1

πt,kN (ϕt |µk,σk), (9)

where N (ϕt |µk,σk) is the probability of sampling from the
corresponding mixture component k. π corresponds to the
content variable in Eq. (7) which is here interpreted as weight
of the mixture components. This means that we use q(πt |xt) to
select a particular Gaussian component for a given stroke sam-
ple xt . We then sample ϕt from the k-th Gaussian component
and apply the “re-parametrization trick” [28, 19] so that the
gradients can flow through the random variables, enabling the
learning of GMM parameters via standard backpropagation.

ϕt = µk +σkε, (10)

where ε ∼N (0,1). Our continuous content representation
results in similar letters being located closer in the latent space
while dissimilar letters or infrequent symbols being pushed
away. This effect is visualized in Figure 7.

Importantly the GMM parameters are sampled from a time-
invariant distribution. That is they remain the same for all data
samples and across time steps of a given input x, whereas zt
is dynamic and employs new parameters per time step. For
each Gaussian component in ϕ , we initialize µk, 1 ≤ k ≤ K,
randomly by using a uniform distribution U (−1,1) and σk
with a fixed value of 1. The GMM components are trained
alongside the other network parameters.

In order to increase model convergence speed and to improve
results, we use ground truth character labels during training.
More precisely, the GMM components are selected by using
the real labels y instead of predictions of the inference network
q(πt |xt). Instead q(πt |xt) is trained only by using the classifi-
cation loss Lclassi f ication and not affected by the gradients of
GMM with respect to πt .

Figure 7: Illustration of our GMM latent space ϕgmm. We
select a small subset of our alphabet and draw 500 samples
from corresponding GMM components. We use the t-sne al-
gorithm [34] to visualize 32-dimensional samples in 2D space.
Note that the t-sne algorithm finds an arbitrary placement and
hence the positioning does not reflect the true latent space.
Nevertheless, letters form separate clusters.

Word spacing and character limits
At sampling time the model needs to automatically infer word
spacing and which character to synthesize (these are a priori
unknown). In order to control when to leave a space between
words or when to start synthesizing the next character, we
introduce two additional signals during training, namely eoc
and bow signaling the end of a character and beginning of a
word respectively. These labels are attained from ground truth
character level segmentations (see Dataset section).

The bow signal is fed as input to the output function gout and
the output distribution of our handwriting synthesis takes the
following form:

p(xt |zt ,πt) = gout(zt ,ϕt ,bowt), (11)

forcing the model to learn when to leave empty space at train-
ing and sampling time.

The eoc signal, on the other hand, is provided to the model at
training so that it can predict when to stop synthesizing a given
character. It is included in the loss function in the form of
Bernoulli log-likelihood Leoc. Along with the reconstruction
of the input stroke xt , the eoct label is predicted.

Input RNN cell
Our model consists of two LSTM cells in the latent and at the
input layers. Note that the latent cell is originally contributing
via the transition function τ latent in Eq. (6). Using an additional
cell at the input layer increases model capacity (similar to
multi-layered RNNs) and adds a new transition function τ inp.
Thus the synthesis model can capture and modulate temporal
patterns at the input levels. Intuitively this is motivated by the
strong temporal consistency in handwriting where the previous
letter influences the appearance of the current (cf. Figure 2).
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Algorithm 1 Training
The flow of information through the model at training time,
from inputs to outputs. The model is presented in Figure 5-b
color coded components in comments.

Inputs:
Strokes x = {xt}T

t=1
Labels (y,eoc,bow) = {(yt ,eoct ,bowt)}T

t=1
hinp

0 = hlatent
0 = 0

Outputs:
Reconstructed strokes x̂, predicted ŷ and ˆeoc labels.

1: t← 1
2: while t =≤ T do
3: Update hinp

t ← τ inp(xt ,h
inp
t−1) . grey

4: Sample π
q
t ∼ q(πt |xt) using Eq. (17) (equivalent to the

character prediction ŷt ), . blue
5: Select the corresponding GMM component and draw

a content sample ϕt using Eq. (10), . blue
6: Estimate parameters of the isotropic Gaussian q(zt |xt)

using Eq. (16) and sample zq
t ∼ q(zt |xt), . green

7: Using ϕt , zq
t and bowt , reconstruct the stroke x̂t and

predict êoct , . yellow
8: Estimate isotropic Gaussian and Multinomial distribu-

tion parameters of prior latent variables zp
t and π

p
t by

using Eq. (13-14), respectively,
9: Update hlatent

t ← τ latent(hinp
t ,zq

t ,ϕt ,hlatent
t−1 ),

10: t← t +1
11: end while
12: Evaluate Eq. (19) and update model parameters.

We now use a temporal representation hinp
t of the input strokes

xt . With the cumulative modifications, our C-VRNN architec-
ture becomes

p(xt |zt ,πt) = gout(zt ,ϕt ,bowt), (12)

zp
t ∼ p(zt) = gp,z(hlatent

t−1 ), (13)

π
p
t ∼ p(πt) = gp,π(hlatent

t−1 ), (14)

hinp
t = τ

inp(xt ,h
inp
t−1), (15)

zq
t ∼ q(zt |xt) = gq,z(hinp

t ,hlatent
t−1 ), (16)

π
q
t ∼ q(πt |xt) = gq,π(hinp

t ,hlatent
t−1 ), (17)

hlatent
t = τ

latent(hinp
t ,zt ,ϕt ,hlatent

t−1 ). (18)

Finally we train our handwriting model by using algorithm (1)
and optimizing the following loss:

L (·) = Llb +Lclassi f ication +Leoc. (19)

In our style transfer applications, by following the steps 1−11
of algorithm (1), we first feed the model with a reference
sample and get the internal state of the latent LSTM cell hlatent

carrying style information. The sampling algorithm (2) to
generate new samples is then initialized with this hlatent .

We implement our model in Tensorflow [1]. The model and
training details are provided in the Appendix. Code and dataset

Algorithm 2 Sampling
The procedure to synthesize novel handwriting sequences by
conditioning on content and style. The model is presented in
Figure 5-c and color coded components in comments.

Inputs:
Sequence of characters y = {yn}N

n=1 to be synthesized.
hlatent

0 is zero-initialized or inferred from another sample.
Probability threshold ε for switching to the next character.

Outputs:
Generated strokes x̂ of the given text y.

1: t← 1, n← 1.
2: while n≤ N do
3: Estimate parameters of style prior p(zt) using Eq. (13)

and sample zp
t . . green

4: π
p
t ← yn, select the corresponding GMM component

and draw a content sample. ϕt using Eq. (10), . blue
5: bowt ← 1 if it is the first stroke of a new word, 0,

otherwise.
6: Using ϕt , zp

t and bowt , synthesize a new stroke x̂t and
predict êoct , . yellow

7: n← n+1 if êoct > ε , . next character
8: t← t +1
9: end while

for learning and reproducing our results can be found at https:
//ait.ethz.ch/projects/2018/deepwriting/.

Character recognition
Disentanglement of content requires character recognition of
handwritten input. Our model uses the latent variable π to
infer character labels which is fed by the input LSTM cell. In
our experiments we observe that bidirectional recurrent neural
networks (BiRNN) [46] perform significantly better than stan-
dard LSTM models in content recognition task (60% against
96% validation accuracy). BiRNNs have access to future steps
by processing the input sequence from both directions. How-
ever, they also require that the entire input sequence must be
available at once. This inherent constraint makes it difficult to
fully integrate them into our training and sampling architecture
where the input data is available one step at a time.

Due to their desirable performance we train a separate BiRNN
model to classify input samples. At sampling time we use its
predictions to guide disentanglement. Note that technically
q(π|x) also infers character labels but the BiRNN’s accuracy
improves the quality of synthesis. We leave full integration of
high accuracy character recognition for future work.

APPLICATION SCENARIOS
By disentangling content from style, our approach makes dig-
ital ink truly editable. This allows the generation of novel
writing in user-defined styles and, similarly to typed text, of
seamless editing of handwritten text. Further, it enables a wide
range of exciting application scenarios, of which we discuss
proof-of-concept implementations.
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Conditional Handwriting Generation
To illustrate the capability to synthesize novel text in a user-
specific style we have implemented an interface that allows
user to type text, browse a database of handwritten samples
from different authors and to generate novel handwriting. The
novel sequence takes the content from the typed text and
matches the style to a single input sample (cf. video). This
could be directly embedded in existing note-taking applica-
tions to generate personalized handwritten notes from typed
text or email clients could turn typed text into handwritten,
personalized letters. For demonstration we have synthesized
extracts of this paper’s abstract in three different styles (see Fig-
ure 8).

Figure 8: Handwritten text synthesized from the paper abstract.
Each sentence is “written” in the style of a different author.
For full abstract, see Appendix.

Content Preserving Style Transfer
Our model can furthermore transfer existing handwritten sam-
ples to novel styles, thus preserving their content while chang-
ing their appearance. We implemented an interactive tablet
application that allows users to recast their own handwriting
into a selected style (see Figure 9 for results and video figure
for interface walk through). After scribbling on the canvas
and selecting an author’s handwriting sample, users see their
strokes morphed to that style in real-time. Such solution could
be beneficial for a variety of domains. For example, artist and
comic authors could include specific handwritten lettering in
their work, or preserving style during localization to a foreign
language.

Beautification
When using the users own input style as target style, our model
re-generates smoother versions of the original strokes, while
maintaining natural variability and diversity. Thus obtaining
an averaging effect that suppresses local noise and preserves
global style features. The resulting strokes are then beautified
(see Figure 12 and video), in line with previous work that
solely relied on token averaging for beautification (e.g., [61])
or denoising (e.g., [7]).

Figure 9: Style transfer. The input sequence (top) is transferred
to a selected reference style (black ink, dotted outlines). The
results (blue ink, solid outline) preserve the input content, and
its appearance matches the reference style.

Word-level Editing

A

B

Figure 10: Our model allows editing of handwritten text at the
word level. A) Handwriting is recognized, with each individual
word fully editable. B) Edited words are synthesized and
embedded in the original text, preserving the style.

At the core of our technique lies the ability to edit digital
ink at the same level of fidelity as typed text, allowing users
to change, delete or replace individual words. Figure 10
illustrates a simple prototype allowing users to edit hand-
written content, while preserving the original style when re-
synthesizing it. Our model recognizes individual words and
characters and renders them as (editable) overlays. The user
may select individual words, change the content, and regen-
erate the digital ink reflecting the edits while maintaining a
coherent visual appearance. We see many applications, for
example note taking apps, which require frequent edits but cur-
rently do not allow for this without loosing visual appearance.

Handwriting Spell-checking and Correction
A further application of the ability to edit digital ink at the
word level is the possibility to spell-check and correct hand-
written text. As a proof of concept, we implemented a func-
tional handwriting spell-checker that can analyze digital ink,
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Figure 11: Our spell-checking interface. A) Spelling and
grammar mistakes are detected and highlighted directly on
the handwriting. Alternative spelling is offered (red box). B)
Corrected words are synthesized and embedded in the original
text (blue ink), preserving the writer style.

detect spelling mistakes, and correct the written samples by
synthesizing the corrected sentence in the original style (see
Figure 11 and video figure). For the implementation we rely
on existing spell-checking APIs, feeding recognized characters
into it and re-rendering the retrieved corrections.

PRELIMINARY USER EVALUATION
So far we have introduced our neural network architecture
and have evaluated its capability to synthesize digital ink. We
now shift our focus on initially evaluating users’ perception
and the usability of our method. To this end, we conducted a
preliminary user study gathering quantitative and qualitative
data on two separate tasks. Throughout the experiment, 10
subjects (M = 27.9; SD = 3.34; 3 female) from our institution
evaluated our model using an iPad Pro and Apple Pencil.

Handwriting Beautification
The first part of our experiment evaluates text beautification.
Users were asked to compare their original handwriting with
its beautified counterpart. Specifically, we asked our subjects
to repeatedly write extracts from the LOB corpus [26], for
a total of 12 trials each. In each trial the participant copied
down the sample and we beautified the strokes with the results
being shown side-by-side (see Figure 12, top). Users were then
asked to rate the aesthetics of their own script (Q: I find my own
handwriting aesthetically pleasing) and the beautified version
(Q: I find the beautified handwriting aesthetically pleasing),
using a 5-point Likert scale. Importantly these were treated as
independent questions (i.e., users were allowed to like both).

Handwriting Spell-Checking
In the second task we evaluate the spell-checking utility (see
Figure 11). We randomly sampled from the LOB corpus and
perturbed individual words such that they contained spelling
mistakes. Participants then used our tool to correct the writ-
ten text (while maintaining it’s style), and subsequently were
asked to fill in a standard System Usability Scale (SUS) ques-
tionnaire and take part in an exit interview.

Results
Our results, summarized in Figure 12 (bottom), indicate that
users’ reception of our technique is overall positive. The beau-

Figure 12: Task 1. Top: Experimental Interface. Participants
input on the left; beautified version shown on the right. Bot-
tom: Confidence interval plot on a 5-point Likert scale.

tified strokes were on average rated higher (M = 3.65, 95% CI
[3.33-3.97]) with non overlapping confidence intervals. The
SUS results further supports this trend, with our system scor-
ing positively (SUS = 85). Following the analysis technique
suggested in [30], our system can be classified as Rank A,
indicating that users are likely to recommend it to others.

The above results are also echoed by participants’ comments
during the exit interviews (e.g., I have never seen anything
like this, and Finally others can read my notes.). Furthermore,
some suggested additional applications that would naturally
fit our model capabilities (e.g., This would be very useful to
correct bad or illegible handwriting, I can see this used a lot
in education, especially when teaching how to write to kids
and This would be perfect for note taking, as one could go
back in their notes and remove mistakes, abbreviations and so
on). Interestingly, the ability to preserve style while editing
content were mentioned frequently as the most valued feature
of our approach (e.g., Having a spell-checker for my own
handwriting feels like writing personalized text messages!).

THE HANDWRITING DATASET
Machine learning models such as ours rely on the availabil-
ity of annotated training data. Prior work mostly relied on
the IAM On-Line Handwriting Database (IAM-OnDB) [31].
However, this was captured with a low-resolution and low-
accuracy digital whiteboard and only contains annotations at
the sequence level. To disentangle content and style, more fine-
grained annotations are needed. Hence, we contribute a novel
dataset of handwritten text with character level annotations.

The proposed dataset accumulates the IAM-OnDB dataset
with newly collected samples. At time of writing, the unified
dataset contains data from 294 unique authors, for a total of
85181 word instances (writer median 292 words) and 406956
handwritten characters (writer median 1349 characters), with
further statistics reported in Table 1. The data is stored using
the JSON data-interchange format, which makes it easy to
distribute and use in a variety of programming environments.

The large number of subjects contained in our dataset allows
to capture substantially large variation in styles, crucial to per-
form any handwriting-related learning task, since handwriting
typically exhibits large variation both inter and intra subjects.
Furthermore, the dataset contains samples from different digi-
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A

B

C

Figure 13: (Top) Our dataset offers different level of anno-
tation, including sentence-wide annotation (A), as well as
fine-grained segmentation at word (B) and character (C) level.
(Bottom) Samples from our dataset, with colour-coded char-
acter segmentation. Different styles are available, including
challenging styles to segment (e.g., joined-up cursive, right).

IAM-OnDB Ours Unified
Avg. Age (SD) 24.84 (± 6.2) 23.55 (± 5.7) 24.85 (± 6.19)
Females % 34.00 32.63 33.55
Right-handed % 91.50 96.84 93.22
# sentences 11242 63182 17560
# unique words 11059 6418 12718
# word instances 59141 26040 85181
# characters 262981 143975 406956

Table 1: Data statistics. In bold, the final unified dataset.

tization mechanisms and should hence be useful in learning
models that are robust to the exact type of input.

We developed a web tool to collect samples from 94 authors
(see Figure 14). Inline with IAM-OnDB we asked each subject
to write extracts of the Lancaster-Oslo-Bergen (LOB) text
corpus [26] using an iPad Pro. Besides stylus information, we
recorded age, gender, handedness and native language of each
author. The data is again segmented at the character level and
misspelled or unreadable samples have been removed.

Samples from 200 authors in the dataset stem from the IAM-
OnDB dataset and were acquired using a smart whiteboard.
The data provide stylus information (i.e., x-y coordinates,
pen events and timestamps) as well as transcription of the
written text, on a per-line basis (Figure 13, A). We purged 21
authors from the original data due to low-quality samples or
missing annotations. Furthermore, to improve the granularity
of annotations we process the remaining samples, segmenting
them down to the character level, obtaining ASCII labels for
each character (Figure 13, B and C). For segmentation we used
a commercial tool [37] and manually cleaned-up the results.

CONCLUSION AND FUTURE WORK
We have proposed a novel approach for making digital ink
editable, which we call conditional variational recurrent neural
networks (C-VRNN ). At the core of our method lies a deep
NN architecture that disentangles content from style. The key
idea underlying our approach is to treat style and content as

Figure 14: Data collection interface. Users are presented with
text to write (A) in the scrollable collection canvas (B). A
progress bar (C) informs the user on the status. A writer can
save, reject or correct samples using the toolbox buttons (D).

two separate latent random variables with distributions learned
during training. At sampling time one can then draw from
the content and style component to edit either style, content
or both, or one can generate entirely new samples. These
learned statistical distributions make traditional approaches
to NN training intractable, due to the lack of access to the
true distributions. Moreover, to produce realistic samples of
digital ink the model needs to perform auxiliary tasks, such as
controlling the spacing in between words, character segmen-
tation and recognition. Furthermore, we have build a variety
of proof-of-concept applications, including conditional syn-
thesis and editing of digital ink at the word level. Initial user
feedback, while preliminary, indicates that users are largely
positive about the capability to edit digital ink - in one’s own
handwriting or in the style of another author.

To enable the community to build on our work we release our
implementation as open-source. Finally, we have contributed a
compound dataset, consolidating existing and newly collected
handwritten text into a single corpus, annotated to the character
level. Data and code are publicly available 1.

While our model can create both disconnected and connected
(cursive) styles, its performance is currently better for the
former, simpler case. This also applies to most state-of-the-
art character recognition techniques, and we leave extending
our method to fully support cursive script for future work.
Further, we are planning to integrate our currently auxiliary
character recognition network into the proposed architecture.
One interesting direction in this respect would be the inclusion
of a full language model. Finally, and in part inspired by initial
feedback, we believe that the underlying technology bears
a lot of potential for research in other application domains
dealing with time-series, such as motion data (e.g., animation,
graphics) or sketches and drawings (e.g., arts and education).
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Figure 15: Handwritten text synthesized from the abstract of
this paper. Each sentence is “written” in the style of a different
author.

APPENDIX
Alphabet
We use the following numbers, letters and punctuation
symbols in our alphabet:
0123456789abcde f ghi jklmnopqrstuvwxyzABCDEFGHIJK
LMNOPQRSTUVWXY Z′.,−()/

Data Preprocessing
1. In order to speed up training we split handwriting samples

that have more than 300 strokes into shorter sequences
by using eoc labels so that the stroke sequences of letters
remain undivided. We create 705 validation and 34577
training samples with average sequence length 261.012
(± 85.1).

2. Pixel coordinates (u0, v0) of the first stroke is subtracted
from the sequence such that each sample starts at the
origin (0,0).

3. By subtracting xt from xt+1, we calculate the changes in
2D-coordinate space and use relative values in training.
Note that the pen−up events remained intact.

4. Finally, we apply zero-mean unit-variance normalization
on 2D-coordinates by calculating mean and std statistics
on the whole training data.

Network Configuration
Both τ inp and τ latent are LSTM cells with 512 units. Similarly,
feed-forward networks g∗ consists of 1-layer with 512 units
and ReLu activation function. We use 32-dimensional isotropic
Gaussian distributions for latent variables zp, zq and for each
GMM component.

Our BiRNN classifier consists of 3-layer bidirectional LSTM
cells with 512 units. A 1-layer fully connected network with
256 units and ReLu activation function takes BiRNN represen-
tations and outputs class probabilities.

Training
We use ADAM optimizer with default parameters. Learning
rate is initialized with 0.001 and decayed exponentially with a
rate of 0.96 after every 1000 mini-batches. We train our model
for 200 epochs by using a mini-batch size of 64.

Additional Results
As an additional result, we have synthesized the entire abstract
from this paper using a different style per sentence. The result
is shown in Figure 15, and illustrates how our model is able to
generate a large variety of styles.
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