
Duo-VIO: Fast, Light-weight, Stereo Inertial Odometry

Nicolas de Palézieux1, Tobias Nägeli1, Otmar Hilliges1

Abstract— We present a Visual Inertial Odometry system
that enables the autonomous flight of Micro Aerial Vehicles
in GPS denied and unstructured environments. The system
relies on commercially available and affordable hardware both
for sensing and computation. The algorithm runs in real time
on an ARM based embedded micro-computer on-board an
MAV. In experiments, we demonstrate the performance of
the system both indoors and outdoors, in hand held an in-
flight scenarios. The achieved accuracy of the experiments is
competitive with other research which uses custom designed
hardware and desktop-grade processors.

I. INTRODUCTION

Estimating the motion of a robot relative to a 3D scene
from a set of sensor readings such as camera images or
inertial measurements is one of the fundamental problems
in computer vision and robotics. While recently impressive
progress in camera pose estimation has been shown for
hand-held cases (often relying on desktop grade compute
resources), estimating the position dynamics of small agile
robots remains a challenging and unsolved research problem.
In particular, quadrotors and other small flying robots render
many current approaches infeasible because they move fast,
produce significant high-frequency accelerations (impacting
SNR on inertial measurements) and impose tight bounds
on payload and battery-lifetime which limit computational
resources available for on-board processing.

In this paper we present a Visual-Inertial Odometry (VIO)
algorithm that has been purposefully designed for the usage
on small aerial vehicles (MAVs). A major draw of the
presented system is that it is designed to run on affordable
and off the self hardware. The algorithm runs at 100Hz
on a low-power ARM CPU and works with forward-facing
cameras, allowing for fast flight and removing the need for
a second camera for collision avoidance. Furthermore, the
algorithm provides accurate metric scale estimates without
requiring specific initialization. We detail the algorithm here
and release the code as open-source software.

There is a vast body of literature on camera pose es-
timation, we concentrate our discussion on approaches of
particular interest in the context of small, agile robots. One
of the first flying robots leveraging vision was shown in
[1, 2], using two cameras to estimate the 6 degrees of
freedom necessary for flight stabilization. Frauendorfer et
al. [3] used a downward looking camera for optical flow
based flight stabilization and an additional stereo camera
pair for collision avoidance, mapping and short horizon path

1Advanced Interactive Technologies Lab, Department of
Computer Science, ETH Zurich, 8092 Zurich, Switzerland
depnicol|naegelit|otmar.hilliges@inf.ethz.ch

Fig. 1: Left: Outdoor trajectory as estimated with our method
(length: 230m, 2.9% drift). Right: Our hardware consisting of a
low-cost stereo sensor and a single board ARM PC, weighing less
than 100g total.

planning. Others have used the PTAM algorithm [4] directly
to fly with a downward-looking monocular camera [5] or
leveraged modified versions [6, 7] in conjunction with off-
board processing.

Key-frame based stereo approaches together with a loosely
coupled IMU integration have been proposed to overcome
the scale drift problem [8]. Recently a number of approaches
have been proposed that directly use dense surface measure-
ments instead of extracted visual features, e.g. [9]. Similarly,
Forster et al. propose a sparse direct methods approach [10].
All of these methods use key-frames and hence require an
explicit initialization phase to estimate scale from IMU data.

This initialization requirement can be circumvented using
probabilistic approaches such as the Extended Kalman Filter
(EKF), first applied to camera pose estimation in [11, 12].
In aerospace engineering, the indirect or error-state Kalman
Filter has been introduced by Lefferts [13] and reintroduced
by Roumeliotis et al. [14]. Similar approaches to visual
odometry exist such as the Multi State Constrained Kalman
Filter (MSCKF) [15], or hybrid versions [16, 17, 18]. EKF-
based approaches have also been combined with direct
photometric methods [19, 20].

A. System Overview

The main goal of this work is the robust, fast and accurate
estimation of the pose of a quadrotor without external sensing
infrastructure, such as GPS or markers on the ground.
Therefore, an important design goal was to perform all
sensing and computing on-board, leveraging readily procur-
able off-the-shelf hardware only. Furthermore, due to the
power constraints on small robots the algorithm needs to
be computationally efficient. To fulfill these constraints we
contribute three main aspects:

a) Stereo-Initialization, Monocular Tracking: We use
a small baseline stereo camera with an integrated Inertial
Measurement Unit (IMU). Stereo measurements are only

Right Camera
Left Camera

Fig. 2: The coordinate frames used in the Kalman Filter frame-
work. The camera and anchor poses are expressed in the origin
frame O, which coincides with the pose of an anchor, here A1.

used to initialize the depth of features, while tracking over
time is performed monocularly. This combines the efficiency
of monocular approaches with reliable scale estimation via
stereo.

b) Iterated Error State Kalman Filter: An IESKF fuses
IMU measurements and feature observations extracted from
the camera images to estimate the position, orientation, and
velocity of the camera. Furthermore we estimate additive
IMU biases and a compact 3D map of feature point locations.

c) Anchor-centric Parameterization: Feature points are
parameterized by their inverse depth on an iteratively updated
small set of past camera poses. This set of pose estimates are
expressed in a reference frame that is moved along with the
current frame, keeping the camera pose and map uncertainty
bounded and hence reducing drift over time.

II. PRELIMINARIES

A. Notation and Coordinate Frames

The following coordinate frames are used throughout this
paper and are illustrated in Fig. 2: W – the inertial world
frame; O – the origin frame; Aj – anchor frames; C – the
camera frame; I – the IMU frame.

We follow the standard notation proposed in literature.
Translation vectors between two frames A and B, expressed
in frame A, are denoted by tAB . Rotation matrices per-
forming rotations from frame A to frame B are denoted by
RBA = R(q̄BA) ∈ SO(3), where q̄BA is the corresponding
quaternion. We adhere to the JPL quaternion definition [21]
and denote a quaternion by q̄ = [qxi + qyj + qzk + qw] =

[q, qw]
T . Quaternion multiplication is denoted by ⊗.

Expected or estimated values of a variable x are denoted
by E [x] = x̂, errors are written as δx. Orientation errors
are described in so(3), the tangent space of SO(3), and are
written as δθ. Measurements of a quantity x affected by white
Gaussian noise are written as z = x+ ν with ν ∼ N (σ).

B. Error State Kalman Filter

A quaternion uses 4 dimensions to describe 3 degrees of
freedom. Because of this, the 4× 4 covariance matrix of an
estimated quaternion is singular. This issue is avoided with
the Error State Kalman Filter (ESKF) formulation [13].

We define the error of an orientation using an error quater-
nion δq̄AÂ, a small rotation between the estimated (Â) and
true (A) orientation. The error quaternion can be assumed

to be small and hence the small angle approximation holds
δq̄AÂ ≈

[
1
2δθ 1

]T
[22]. Using δθ to represent orientations

in the Kalman filter reduces their dimensionality to 3. This
is both computationally advantageous and circumvents the
singularity issues with a 4×4 orientation covariance matrix.

In the ESKF, the error state δx is the quantity being esti-
mated and the covariance matrix P describes its uncertainty.
The total state x̂ is always updated such that the expected
value of the error state E [δx] = 0. For further information
the reader is referred to a very good introduction in [14].

C. Modeling

The state space of the IESKF consist of two parts, the
Camera state and the Map state.

a) Camera State: The camera state describes the cam-
era’s estimated pose (position and orientation) and velocity,
as well as the estimated accelerometer and gyroscope biases,
denoted by ba ∈ R3 and bω ∈ R3, respectively. Further, the
orientation of the origin frame in the inertial world frame,
q̄OW ∈ R4, is included. The purpose of this additional
orientation is explained in Sec III-B.

xc =
[
tOC , q̄CO, vOC , ba, bω, q̄OW

]T ∈ R20

b) Map State: We parameterize the map of feature
points by their inverse depths from the camera pose at which
they are first seen. These past poses are termed anchor poses
and denoted by

(
tOAj ∈ R3, q̄AjO ∈ R4

)
. The unit norm

vector mi encoding the ray in the anchor frame on which a
feature i lies is stored statically for each map feature.

By bundling several map features to the same anchor pose,
a very efficient map state is achieved [23, 19]. The total map
state xm is composed of l anchor states:

xm =
[
xA1

, . . . , xAl
]T ∈ R(7+n)l

xAj =
[
tOAj , q̄AjO, ρ1, . . . , ρn

]T
,∈ R(7+n)

The total state of the IESKF has thus the following form:

x = [xc, xm]
T ∈ R20+(7+n)l×20+(7+n)l

Due to the error state formulation, the covariance matrix
needed to estimate the camera pose and l anchors, each with
n features is P ∈ R18+(6+n)l×18+(6+n)l.

III. ALGORITHM

We now discuss the most important aspects of the pro-
posed algorithm.

A. Feature Initialization

Upon filter initialization or once features can no longer be
tracked, new features need to be inserted into the state space.
For this, salient features are extracted from both the left
and right camera image and their inverse depth is initialized
by triangulation in a least squares fashion. Together with a
new anchor pose

(
tOAj q̄AjO

)
, corresponding to the current

camera pose estimate tOAj = tOC and q̄AjO = q̄CO, these
point estimates are added to the state space.

To capture that the new anchor pose estimate is identical
to the current camera pose, the covariance matrix is updated
with the Jacobian of the insertion function.

P+ = JP−JT J =
∂δx+

∂δx−

∣∣∣
δx−=0,

where (·)− and (·)+ denote the time instances before and
after the insertion.

Finally, the inverse depth uncertainties σρinit are inserted
to the covariance matrix for each new feature. σρinit can be
computed, given known camera intrinsics and extrinsics. Due
to the inverse depth parameterization, σρinit does not depend
on the feature’s depth.

B. Anchor-centric Estimation

In traditional approaches camera and feature locations
are estimated relative to a global world reference frame
and hence the uncertainty of the (unobservable) absolute
camera position grows unbounded. This is detrimental to
the filter performance, as large uncertainties result in large
linearization errors in both the Kalman Filter propagation
and update step [24]. Our approach circumvents this issue
by marginalizing the unobservable component of the global
position uncertainty out of the state space – by moving a rel-
ative reference frame with the current camera pose estimate.
This improves the filter performance as less linearization
error is incurred due to bounded uncertainty.

This bears similarity to so-called robo-centric EKF formu-
lations [25, 26, 24, 20]. An important difference is that in
our anchor-centric approach, the reference frame O, which
is chosen to coincide with one of the anchor poses, is only
updated when the corresponding anchor pose is removed
from the state space (see Fig. 2), rather than updating it on
every iteration as is the case in robo-centric approaches. This
is both computationally more efficient and reduces drift, as
shown in experiments (see Sec IV-B).

When the current anchor frame is removed from the state
space, O is moved to coincide with the anchor frame with
the lowest uncertainty, denoted by AO.

AO ∈ A1, ..., Al s.t. ‖P (AO)‖ ≤ ‖P (Aj)‖, j = 1, ..., l,

where ‖P (Aj)‖ denotes the matrix 2-norm of the en-
tries of the covariance matrix P pertaining to anchor Aj .
The relative translation and rotation between the old origin
frame and the new one is given by tOκOκ+1

= t̂OAO and
q̄Oκ+1Oκ = ˆ̄qAOO, respectively, where κ and κ + 1 denote
the time instances before and after the move, respectively.

They are used to transform the camera pose and velocity
as well as the anchor poses into the new origin frame. The
bias states, ba, bω , and inverse depths ρi do not depend on
the origin frame and therefore do not need to be transformed.

As the absolute position of the origin frame O in the world
frame W is not observable, estimating this translation does
not improve the performance of the filter. Therefore it is not
part of the state space, but is stored statically and updated
only when the origin frame is moved.

The orientation of the origin frame in the world frame,
q̄OW , however, is included in the state space, as its roll and
the pitch axes are observable through the gravity measure-
ment from the IMU. Estimating these two components of the
origin orientation allows for the pose estimate and the map
to become aligned with gravity.

Whenever the O is moved, the covariance matrix is
updated using the Jacobian of the transformation function.

C. IESKF State Propagation

The estimated state is propagated whenever measurements
from the IMU become available. These measurements are
affected by process noise and bias. Following [15, 19], the
gyroscope and accelerometer process noise, denoted by ng
and na, respectively, are modeled as white Gaussian noise
processes with respective variances σa and σg . The biases
are modeled as random walks ḃω = nbω , ḃa = nba , where
nbω and nba are zero mean white Gaussian noise processes.

The IMU measurements and camera dynamics are mod-
eled as in [22]. The dynamics of the camera state are
discretized with a zero order hold strategy and are propagated
using the expected values of the linear acceleration and
rotational velocity. The map is assumed to be static. Thus,
it remains unchanged in the propagation.

Note that, after propagating the total state with the IMU
measurements, the expected error state is still zero.

The covariance matrix is propagated using the Jacobians
of the error state dynamics [27], taken with respect to the
error state δx = 0 and the process noise n = 0:

F =
∂ ˙δxc
∂δxc

∣∣∣δx=0
n=0

G =
∂ ˙δxc
∂n

∣∣∣δx=0
n=0

(1)

The covariance matrix is propagated using zero order hold
discretization of the Jacobian F and the process noise [28].

D. IESKF State Update

A state update is performed whenever image data becomes
available. First, all currently estimated features are tracked
from the previous to the current image of the left camera
using the KLT tracker implemented in OpenCV1.

1) Outlier Rejection: Features may be badly tracked due
to e.g. specular reflections or moving objects, necessitating
the detection and rejection of these outliers. We apply two
methods of outlier rejection consecutively.

a) 1-Point RANSAC: This consensus based method
builds on the standard RANSAC algorithm by taking into
account prior information about the model, dramatically
reducing the computational complexity of the algorithm [26].

The residual of a randomly selected feature is computed
by predicting the measurement according to the a priori state
estimate:

ri = zi − h(x̂k|k−1, i), (2)

1www.opencv.org/

where h(x, i) is the map from the total state to image co-
ordinates [29]. An intermediate total state is then computed:

Khyp = PHT
i S
−1
i (3a)

δxapohyp = Khypri (3b)

x̂hyp = x̂k|k−1 � δxapo, (3c)

where Hi is the Jacobian of (2) taken with respect to
δx, linearized around its expected value, E [δx] = 0, and
Si = HiPH

T
i +Ri the measurement innovation. � denotes

the fusion of the a priori total state and the a posteriori
error state. Linear quantities are updated additively, while
rotational entries are updated multiplicatively.

Features which now have a small residual are considered
inliers of this hypothesis. Equations (2) and (3) are applied
repeatedly with different measurements. The iteration is
stopped according to standard RANSAC criteria about the
expected inlier ratio [30].

Once the algorithm has terminated, we have a set of
low innovation inliers. The complementary set is termed
the set of high innovation candidates, which will be further
processed as described in the following.

A state update is performed with the low innovation inliers
analogously to (3), with the difference that now the residuals
of all low innovation inliers are used by stacking them into
a column vector. The covariance matrix is updated with the
standard Kalman Filter equation:

P k|k = (I −KH)P k|k−1 (4)

b) χ2 Test: Following the state update with the low
innovation inliers, the high innovation candidates are further
separated into high innovation inliers and outliers by testing
their measurement likelihood:

χ2
i = rTi S

−1
i ri ≤ χ2

thresh (5)

The high innovation inliers are fused into the state estimate
as described in the following.

2) Iterated State Update: The Kalman gain K is com-
puted using the linearization H of the measurement model
h(·), evaluated at the current state estimate. The computed
a posteriori error state δxapo is thus only a first order
approximation of the true error state. The accuracy of the
state estimate can be improved by repeatedly performing an
update with a set of measurements. This is particularly the
case for features with a high innovation. Therefore we apply
an iterated state update according to Algorithm 1 [28, 31]
with the high innovation inliers.

The iteration is stopped if a maximum number of itera-
tions has been reached or when δxapo is very small. Note
that, irrespective of the number of iterations performed, the
covariance matrix P is updated only once.

IV. EXPERIMENTAL RESULTS

A. Hardware Setup

Our localization system consists of a small baseline stereo
camera connected to a single-board ARM computer on which

Algorithm 1 IESKF State Update

Require: Previous state estimate: x̂k|k−1,P k|k−1
1: η0 = x̂k|k−1
2: δη0 = 0
3: for j = 0 to max it do
4: rj = z − h(ηj)

5: Hj = ∂rj

∂δx

∣∣∣
x̂=ηj

6: Sj = HjP k|k−1(Hj)T +R

7: Kj = P k|k−1(Hj)T
(
Sj

)−1
8: δηj+1 = Kj

(
rj +Hjδηj

)
9: ηj+1 = x̂k|k−1 � δηj+1

10: if ‖δηj+1‖ small then
11: Stop iteration
12: end if
13: end for
14: x̂k|k = ηj+1

15: P k|k =
(
I −KjHj

)
P k|k−1

the presented algorithm runs. The system is depicted in
Fig. 1. Both devices are commercially available and afford-
able and make for a very small and light-weight system,
weighing less than 100g. Such a small and portable form
factor makes the localization system suitable for a large
variety of applications, particularly the use on board MAVs
designed to fly in the close vicinity of people.

We use a DUO MLX camera by Duo3d2, featuring two
monochrome global shutter cameras with a 30mm baseline
and a 6 degree of freedom IMU. Inertial measurements are
provided at 100 Hz, while the image frame rate is configured
at 50 Hz with a resolution of 320x240 pixels.

The VIO algorithm runs on a Hardkernel Odroid XU43,
equipped with a Samsung Exynos5422 ARM processor.

For flight experiments we mount the VIO system on a
Parrot Bebop4 equipped with a PixFalcon PX4 Autopilot.

B. Experiments

We demonstrate the performance of the presented VIO
system with several experiments.

1) Hand-held Accuracy:

TABLE I: Hand-held Trajectory of Length 230 m

Experiment 1 2 3 4 5 Mean
Rel. drift [%] 2.88 3.57 2.96 3.23 3.43 3.21

As baseline and for comparison with the current state-of-
the-art, we evaluate the system’s accuracy in a hand-held
scenario, where we walk around several buildings, a 230m
long trajectory, and compute the relative position drift of the
trajectory. One such trajectory is shown in Fig. 1. The same
experiment is performed several times to assess repeatability.
The relative drift of each repetition of the experiment is

2www.duo3d.com/product/duo-minilx-lv1
3www.hardkernel.com/main/products/prdt_info.php
4http://www.parrot.com/products/bebop-drone/

0 1 2 3 4

X [m]

0

0.5

1

1.5

Z
[m

]
VIO
Motion Capture(a)

(b)

(c)

(d)

(e)

(f)

(a) Trajectory estimated by the VIO system compared
to motion capture ground truth.

0 2 4 6

Time [s]

0

2

4

6

S
p
ee

d
[m

/
s]

(a)

(b)

(c) (d)

(f)

(f)

(b) Motion capture ground truth speed.

Fig. 3: Fast motion experiment. The VIO system is thrown over
a distance of 4m. The estimated trajectory is compared to ground
truth data from a motion capture system.

shown in Table I. We observe that the system reproducibly
estimates its trajectory accurately.

Note that all computations are performed on-board,
whereas the literature often reports results from off-board
computations.

2) Fast Motions: To evaluate the system’s robustness and
ability to track fast motions, we throw the system back and
forth over a distance of 4m. The estimate is compared to
ground truth form a motion capture system in Fig. 3(a).
Fig. 3(b) shows the speed reached by the device. Fig. 4 shows
three frames of the experiment with the corresponding time
instances labeled in Fig. 3.

The system successfully tracks ego motion even at very
high speeds of close to 6 m/s. Despite the high accelerations
and motion blur present in this scenario, the estimated
trajectory does not deviate significantly from the ground
truth. The ability to track fast motions is expected to enable
faster flight compared to an optical flow sensor, which is
limited to tracking speeds of about 2m/s [32].

3) In-Flight Ground Truth Comparison: We demonstrate
the performance of the system during flight where a MAV is
controlled to repeatedly fly a predefined figure-8 trajectory,
using positional information from a motion capture system
for reference. We compare the estimated trajectory with the
ground truth in Fig. 6. The flown trajectory is 123m long and
the estimate shows a drift in position of 0.46% and 1.17%
yaw drift relative to the ground truth. Drift in y appears
significantly bigger than in x, which is due to the fact that
positional drift is not independent of drift in yaw. Inspection
of Fig. 6 suggests that the under-estimation of the yaw angle
causes an under-estimation of the world y position.

In comparing the ground truth trajectory with the estimated
motion, this experiment demonstrates that the algorithm
correctly estimates the scale of the camera motion while

Fig. 6: In flight trajectory estimated by VIO (blue) compared to
ground truth (red).

Fig. 7: The trajectory estimated by the anchor-centric parame-
terization (red) is compared to the estimate with a world centric
parameterization (green). The trajectories are aligned with each
other and the satellite image at the start.

only using depth information about the features during
initialization.

4) Disturbance Rejection: The system’s capabilities in a
control loop of an MAV is tested by commanding the MAV
to hover at a set-point and repeatedly disturbing it. Fig. 5
shows still frames from this experiment and we observe that
the MAV returns to its set-point after each disturbance.

5) Validation of Anchor-Centric Approach: The anchor-
centric parameterization is relevant particularly for longer
trajectories. We analyze its effect based on an outdoor
trajectory. Fig. 7 shows the estimated trajectory with the
anchor-centric parameterization in red and with a world
centric parametrization in green.

We observe drift in yaw, as seen by the misalignment of
the trajectories as well as drift in position of close to three
times as much as with the anchor-centric parameterization.

V. CONCLUSION

We presented a Visual-Inertial Odometry system that relies
solely on off-the-shelf and light-weight components. All
computations are performed on-board an embedded ARM
processor and no external sensors or beacons are required.

We have demonstrated that the system is able to accurately
track long trajectories and is robust with respect to fast

(a): t=0.7s (b): t=1.0s (c): t=1.4s

Fig. 4: Still images of the throwing experiment. The labels denote the same time instances as in Fig. 3

Fig. 5: Still images of the disturbance rejection experiment. The MAV (green) is disturbed from its setpoint (red) and returns to it.

motions. We have further shown that the system enables the
stabilization of a Micro Aerial Vehicle’s position in flight.

The affordable hardware in combination with the algo-
rithm available as open-source software presents a pose
estimation system that is easily incorporated in a wide variety
of applications.

REFERENCES

[1] E. Altuğ, J. P. Ostrowski, and C. J. Taylor, “Quadrotor control using
dual camera visual feedback,” in ICRA, 2003.

[2] ——, “Control of a quadrotor helicopter using dual camera visual
feedback,” The International Journal of Robotics Research, 2005.

[3] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tan-
skanen, and M. Pollefeys, “Vision-based autonomous mapping and
exploration using a quadrotor mav,” in IROS, 2012.

[4] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in Mixed and Augmented Reality, 2007. ISMAR 2007.
6th IEEE and ACM International Symposium on, 2007.

[5] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based
mav navigation in unknown and unstructured environments,” in ICRA,
2010 IEEE international conference on, 2010.

[6] J. Engel, J. Sturm, and D. Cremers, “Scale-aware navigation of
a low-cost quadrocopter with a monocular camera,” Robotics and
Autonomous Systems (RAS), 2014.

[7] ——, “Camera-based navigation of a low-cost quadrocopter,” in Proc.
of the International Conference on Intelligent Robot Systems, 2012.

[8] S. Leutenegger, P. T. Furgale, V. Rabaud, M. Chli, K. Konolige,
and R. Siegwart, “Keyframe-based visual-inertial slam using nonlinear
optimization.” in Robotics: Science and Systems, 2013.

[9] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for
rgb-d cameras,” in ICRA, International Conference on. IEEE, 2013.

[10] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on. IEEE, 2014.

[11] A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on. IEEE, 2003.

[12] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 2007.

[13] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering
for spacecraft attitude estimation,” Journal of Guidance, Control, and
Dynamics, 1982.

[14] S. Roumeliotis, G. Sukhatme, G. A. Bekey, et al., “Circumventing
dynamic modeling: Evaluation of the error-state kalman filter applied
to mobile robot localization,” in Robotics and Automation. IEEE,
1999.

[15] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” Robotics, IEEE Transactions on, 2009.

[16] K. Tsotsos, A. Chiuso, and S. Soatto, “Robust inference for visual-
inertial sensor fusion,” arXiv preprint arXiv:1412.4862, 2014.

[17] E. S. Jones and S. Soatto, “Visual-inertial navigation, mapping and
localization: A scalable real-time causal approach,” The International
Journal of Robotics Research, 2011.

[18] M. Li and A. I. Mourikis, “Optimization-based estimator design for
vision-aided inertial navigation,” in Robotics: Science and Systems,
2013.

[19] P. Tanskanen, T. Naegeli, M. Pollefeys, and O. Hilliges, “Semi-direct
ekf-based monocular visual-inertial odometry,” IROS, 2015.

[20] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct ekf-based approach,” in Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE, 2015, pp. 298–304.

[21] W. Breckenridge, “Quaternions proposed standard conventions,” Jet
Propulsion Laboratory, Pasadena, CA, Interoffice Memorandum, 1979.

[22] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” IEEE Transactions on Robotics, 2009.

[23] Pietzsch, “Efficient Feature Parameterisation for Visual SLAM Using
Inverse Depth Bundles,” Bmvc, 2008.

[24] R. Martinez-Cantin and J. a. Castellanos, “Bounding uncertainty in
EKF-SLAM: The robocentric local approach,” Robotics and Au-
tomation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, 2006.

[25] J. A. Castellanos, J. Neira, and J. D. Tardos, “Limits to the consistency
of EKF-based SLAM,” 2004.

[26] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel, “1-point
RANSAC for EKF-based structure from motion,” IROS, 2009.

[27] N. Trawny and S. I. Roumeliotis, “Indirect Kalman Filter for 3D
Attitude Estimation,” University of Minnesota, Dept. of Comp. Sci.
& Eng., Tech. Rep, 2005.

[28] B. P. Gibbs, Advanced Kalman filtering, least-squares and modeling.
John Wiley & Sons, 2011.

[29] J. Montiel, J. Civera, and A. Davison, “Unified inverse depth
parametrization for monocular SLAM,” Analysis, 2006.

[30] M. a. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, 1981.

[31] W. F. Denham and S. Pines, “Sequential estimation when measurement
function nonlinearity is comparable to measurement error.” AIAA
journal, 1966.

[32] D. Honegger, P. Greisen, L. Meier, P. Tanskanen, and M. Pollefeys,
“Real-time velocity estimation based on optical flow and disparity
matching,” in IROS, Oct 2012.

