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Figure 1: Reconstructing the subject’s full-body pose is important to create immersive experiences in AR/VR. While external
cameras limit the capture space and head-worn cameras can suffer from heavy self-occlusions in top-down views (A), our
method reconstructs the body pose from electromagnetic (EM) field-based sensing (B). We leverage a customized system
consisting of up to 12 wireless sensors measuring their 6D pose relative to a body-worn source. We adopt learned gradient
descent (LGD) [53] to estimate SMPL pose and shape from as little as 6 EM sensors (C) tested on a newly captured dataset.

Abstract

Fully immersive experiences in AR/VR depend on re-
constructing the full body pose of the user without re-
stricting their motion. In this paper we study the use of
body-worn electromagnetic (EM) field-based sensing for
the task of 3D human pose reconstruction. To this end,
we present a method to estimate SMPL parameters from
6-12 EM sensors. We leverage a customized wearable
system consisting of wireless EM sensors measuring time-
synchronized 6D poses at 120 Hz. To provide accurate
poses even with little user instrumentation, we adopt a re-
cently proposed hybrid framework, learned gradient de-
scent (LGD), to iteratively estimate SMPL pose and shape
from our input measurements. This allows us to harness
powerful pose priors to cope with the idiosyncrasies of the
input data and achieve accurate pose estimates. The pro-
posed method uses AMASS to synthesize virtual EM-sensor
data and we show that it generalizes well to a newly cap-
tured real dataset consisting of a total of 37 minutes of
motion from 5 subjects. We achieve reconstruction errors
as low as 31.8 mm and 13.3 degrees, outperforming both
pure learning- and pure optimization-based methods. Code
and data is available under https://ait.ethz.ch/
projects/2021/em-pose.

1. Introduction

AR and VR (collectively called XR) is a promising
new computing platform for entertainment, communication,
medicine, remote presence and more. An important com-
ponent of an immersive XR system is a method to accu-
rately reconstruct the full body pose of the user. While
external camera-based pose estimation has progressed at a
rapid pace (e.g., [14, 19, 21, 59]) such approaches inher-
ently limit the mobility of the user due to the requirement
for external cameras. Body-worn tracking using inertial-
measurement units (IMUs) [17, 33, 45, 49, 64, 65] or cam-
eras [48, 51, 57, 69] allow for free movement, but suffer
from lack of accurate positional measurements in the case of
IMUs, and heavy occlusions for camera-based systems, re-
sulting in incorrect pose estimates that may drift over time.

In this paper we propose a new approach to body-worn
pose estimation that is based on electromagnetic-field (EM)
sensing which can replace or complement vision or IMU-
based counterparts. In our method an EM field is emitted
from a source that is worn on the body and a small number
of sensors measure their position and orientation relative to
the emitted magnetic field (c.f . Fig. 1). In our implemen-
tation, we leverage a fully wireless magnetic tracking sys-
tem consisting of up to 12 sensors. These sensors are small
(roughly half the size of a credit card), low-powered, and

https://ait.ethz.ch/projects/2021/em-pose
https://ait.ethz.ch/projects/2021/em-pose


have been customized to enable accurate tracking of fast,
dynamic motions at update rates up to 120 Hz. Compared
to optical tracking, our sensors are typically within 1 cm
positional and 2-3 degrees angular error.

However, reconstructing the full articulated pose from
these measurements with high accuracy remains difficult
du to several challenges. First, for a convenient system,
only a small number of body-worn sensors should be used,
making the pose estimation problem underconstrained. We
show good accuracy with as little as 6 sensors. Second,
the accuracy of the position and orientation measurements
depend on the distance of the sensor to the source. So, un-
der dynamic human motion, the sensor accuracy varies as a
function of pose. Third, the skin-to-sensor offsets must be
determined. These offsets can vary due to possible slipping
of the sensor against the skin. Hence, the resulting method
should be robust to changes in these offsets.

Embracing these challenges, we propose a new EM-
based pose estimation method that leverages the recently
proposed learned gradient descent (LGD) [53] framework
to iteratively fit a parametric body model, here SMPL [30],
to the EM measurements, where the parameter update rule
is predicted by a neural network. The method is based on
the key insights that the sensor measurements are perturbed
by dynamically varying sources of noise: EM-interference,
pose dependent effects, and offsets to the underlying joints.
The parametric body model in combination with a learned
parameter update rule allows us to integrate strong priors
into the pose estimation pipeline. Furthermore, with LGD
the parameter updates stay on the manifold of valid poses
thus allowing for larger step sizes leading to fast conver-
gence in few steps. SMPL enables us to synthesize virtual
positions and orientations on the skin, which we leverage
to train LGD on AMASS [32] by simulating many pairs
of virtual EM sensors and SMPL references. To close the
gap between synthetic and real data, we extract estimates
of subject-specific skin-to-sensor offsets from a designated
calibration sequence. These offsets are used during train-
ing to adjust and augment the synthetic data. Our evalua-
tions show that the proposed method generalizes well to a
newly recorded dataset without requiring fine-tuning, even
for subjects whose offsets were not seen during training.

To foster future research into this direction, we release
a new dataset containing pairs of magnetic measurements
and SMPL poses. We obtained SMPL reference poses via
multi-view tracking from outside-in RGB-D data together
with manual annotations. The dataset consists of 45 se-
quences of a total length of 37.1 minutes and was recorded
with 3 female and 2 male participants. In our evaluations we
achieve average reconstruction errors of 31.8 mm and 13.3 ◦

with 12 sensors and 35.4 mm and 14.9 ◦ with 6 sensors. In
comparative experiments we show that this outperforms the
state-of-the-art in optimization-based approaches to regis-

ter SMPL to motion-capture markers [32], a specialized op-
timization method for EM data and a hard learning-based
baseline, inspired by IMU-based prior work [17].

We see our system as complementary to pure vision-
based methods. Because it is light-weight, low-powered,
wireless, and accurate, it potentially enables the collection
of in-the-wild datasets - currently the biggest challenge for
RGB-based methods because of a lack of data. It can also be
used to collect reference poses when image data is affected
by occlusions or motion blur, e.g. in egocentric views.

In summary, in this paper we contribute i) a method to
estimate SMPL pose and shape parameters from as little as
6 EM sensors leveraging a customized wearable EM sens-
ing based system ii) a general framework to estimate SMPL
parameters from few on-skin measurements which is agnos-
tic to the underlying sensing technology, and iii) a dataset
consisting of EM sensor data and SMPL pose pairs. Code
and data are available under https://ait.ethz.ch/
projects/2021/em-pose.

2. Related Work

Inertial Tracking Pose estimation from inertial measure-
ment units (IMUs) is popular because modern IMUs are
small and do not require line-of-sight (LoS). They do how-
ever suffer from drift, which commercial systems like Xsens
[49] mitigate by employing a high number of sensors in
conjunction with biomechanical body models. Other works
use body-worn acoustic sensors to provide inter-sensor dis-
tance measurements, e.g. [28, 63] or fuse IMUs with ex-
ternal camera views, e.g. [6, 11, 33, 44, 45, 58, 64, 71].
This works well but increases instrumentation, limits the
capture space, and re-introduces LoS constraints. To ease
usability researchers have also investigated reducing the re-
quired amount of sensors, e.g. [7, 17, 64, 65]. This how-
ever, leaves the pose heavily underconstrained necessitat-
ing either costly optimizations [65], an external camera [64]
or fine-tuning a neural network on real data [17]. SIP/DIP
[17] are the closest work to ours in spirit as we also lever-
age AMASS [32]. However, our hybrid method is consider-
ably faster at runtime than SIP, and unlike DIP does not re-
quire fine-tuning and can handle multiple subjects all while
achieving errors that are lower than what was reported by
DIP. In summary, IMUs are inherently limited by the fact
that they do not observe position directly and drift over time
- a circumstance that magnetic systems rectify.

Optical and Related Tracking Optical tracking of spher-
ical retro-reflective markers, e.g. [38, 62], yields high ac-
curacy and update rates, but requires LoS and typically
many (40+) markers. Researchers have investigated the use
of physically-based models to solve for pose [75], how to
clean up raw marker data [4, 9, 16, 25, 41], or using large
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marker sets to capture skin deformation [39]. More re-
cently, the availability of statistical 3D human body mod-
els, e.g. [1–3, 31, 46] have allowed methods such as MoSh
[29] or MoSh++ [32] to fit pose and shape to sets of around
40 markers thus enabling the unification of several motion
capture databases into a large-scale dataset named AMASS
[32]. We also reconstruct pose and shape from measure-
ments on the skin. However, we do so from as few as 6-12
sensors and without LoS requirements. This is not only pos-
sible because our specialized hardware measures both posi-
tion and orientation, but also thanks to AMASS which we
leverage as a prior where pose and shape are not observed
by our reduced sensor set. Recently, works have emerged
using radio frequency signals, e.g. [26, 66, 72, 73]. This
modality can traverse heavy occlusions, but again necessi-
tates external capture equipment.

EM Tracking Uses of EM tracking technology dates
back to military applications in the 1960s [42]. Ever since,
it has matured considerably [47] and has achieved 6D non-
LoS tracking with millisecond latency allowing applica-
tions ranging from digital input devices [8, 23, 27, 68] to
medicine [56]. Naturally, it has also been applied to full-
body motion capturing. The work by Roetenberg et al.
[50] has a similar mobile setup to ours where the magnetic
source is placed on the subject’s lower back. However, their
system is fully tethered, only applied to a few sensors and
has a low update rate of 1-2 Hz. EM-based systems are
tuned to working within a given range and a certain accu-
racy. Various commercial systems for motion capture of
full-body or hands have been developed (e.g., [36, 43]),
but their properties are often not ideal for motion captur-
ing with body-worn sensors. We discuss more details and
differences to our customized system in Sec. 3.

Camera-based Fueled by deep neural networks, signifi-
cant advances have been made in estimating 3D human pose
from one or multiple RGB images, e.g. [18, 34, 54, 67].
Modern approaches - which often use parametric body
models - tend to fall into three groups: Direct parameter
regression with neural networks [13, 20, 37, 55, 59, 61, 70,
74], optimization-based techniques [12, 15, 24, 40, 52, 60],
or hybrid combinations [22, 53]. We borrow ideas from the
camera-based literature and adapt LGD proposed by [53]
to estimate SMPL pose and shape from sparse EM mea-
surements. Methods using head-worn cameras [48, 57, 69]
allow for more mobility of a subject compared to external
cameras. However, devices can be bulky and the image data
can be subject to self-occlusions. In contrast, our body-
worn EM-based wireless system has a small form factor and
is not impacted by occlusions.

Figure 2: EM sensing. (left) A 1D coil is generating a mag-
netic B-field. Another coil can solve for its position p w.r.t.
the source by comparing measured and theoretical voltage.
(right) Schematics of our source and sensors.

3. Electromagnetic Sensing Hardware
Our main contribution is a method to reconstruct the full

body pose from as few as 6 EM field sensors. Here and in
Fig. 2 we provide a brief primer on EM sensing and summa-
rize our hardware implementation. In Sec. 6.1 we evaluate
our sensors’ accuracy in a typical usage scenario.

3.1. Sensing Principle

An EM field sensing system consists of an emitter that
generates magnetic fields and one or more sensors that read
voltages induced by the field to estimate 6D pose. The emit-
ter comprises of three orthogonal coils which generate three
alternating current magnetic fields typically operated at kHz
frequencies. The sensor, which also has three orthogonal
coils, measures the voltage induced by each of the generated
magnetic fields within the tracking volume. The theoretical
voltages induced to each of the 3 axes of the sensor by each
of the 3 emitter coils can be represented analytically via a
physical model relating voltage and the pose of the sensor.

Bk(p, t) =
µ0

4π

[
3(Mk · p)p

|p|5
− |p|2Mk

|p|3

]
e−jωkt (1)

Vkℓ(p,R, t) = −jωknaBk(p, t) · (RN ℓ) (2)

Here p and R are the sensor position and rotation, N ℓ is
the orientation of sensor axis coil ℓ, Mk is the magnetic
moment of emitter axis coil k, t is time, and the remaining
parameters are EM field related pre-determined parameters.

We can solve for the 6D pose (p(t),R(t)) in the least
squares sense by minimizing the measured voltage V̂ and
the model voltage V along each emitter and sensor axis, i.e.,
argminp(t),R(t)

∑3
k=1

∑3
ℓ=1 ∥V̂kℓ(t)− Vkℓ(p,R, t)∥22.

3.2. Wireless Magnetic Sensors

Magnetic tracking has been used for a variety of mo-
tion capture tasks, including hand tracking [10] and sports



Figure 3: Capture setup. (Top) Overview of our cap-
ture setup to collect our real test set T . (Bottom) Example
frames of our reference data.

analytics [5]. Previous magnetic tracking systems either in-
volve large sensors (e.g., Razer Hydra) or are tethered to a
PC (e.g., Polhemus Liberty). Neither solution is ideal for
body tracking as both large sensors and wires encumber
movement. We developed a custom EM tracking system
with small wireless sensors. The goal of our design is to
optimize accuracy for the specified application (body track-
ing) within the application’s constraints (small and wire-
less). We encountered two major challenges. The first was
achieving a small form factor while retaining accurate sens-
ing. To address this, we miniaturized the 3-axis sensing
coils and carefully chose components to minimize EM in-
terference. To achieve real-time rates with limited compute
and memory, we use a piece-wise linear approximation of
the voltage measurement of the EM field (c.f . Eq. (2)). We
calibrate this function to the region of interest for our appli-
cation (0.3m - 1m). The second challenge is to synchronize
12 wireless sensors and to enable communication at 120Hz
with the host in real-time, while minimizing packet loss and
latency. Off-the-shelf usage of the Bluetooth Low Energy
(BLE) protocol is insufficient since it only supports 7 point-
to-point connections and no synchronization. We designed
a custom communication protocol on top of a BLE chipset
that maintains microsecond synchronization among all de-
vices with a network topology consisting of two hubs that
connect to six sensors each.

4. System Overview

In this section we describe our capture setup and how it
is used to obtain reference data. Please refer to Fig. 3 for an
overview and the video for qualitative examples.

4.1. Capture Setup

Participants wear a customized mocap suit to attach sen-
sors, and a customized see-through headset. We mount 12
wireless EM sensors on the body as shown in Fig. 3. Since
the EM field generator is relatively small, it can be attached
to the subject’s lower back. All sensors except the head sen-
sor, which is glued to the VR headset, are attached using a
reusable elastic cloth band and velcro. Two communication
hubs that connect wirelessly to the 12 sensors are mounted
on the headset. These hubs can transmit all sensor measure-
ments wirelessly to a nearby host. Since we simultaneously
capture reference data however, we use a wired connection
to a host that handles additional capture-related tasks.

To acquire reference data our capture setup uses 4 RGB-
D cameras to observe the subject’s motion from an outside-
in viewpoint. The capture space is roughly 4 by 4 meters
large and all sensing devices are time synchronized to mi-
crosecond precision. For each capture session, we calibrate
the headset and RGB-D cameras, as well as the EM system
so that all sensing devices share the same tracking frame,
which we chose to be the Optitrack frame.

4.2. Reference Data Acquisition

In the following we give an overview of our multi-stage
optimization procedure that uses 4 RGB-D cameras and the
12 EM sensors to collect reference SMPL parameters.

Body Scale We first infer body scale (i.e., height and
limb length) from a dedicated calibration sequence which
includes a T-pose and head and limb rotations. To dis-
ambiguate the palm orientation, we manually annotate 2D
hand-keypoints on a few hand-picked frames of the calibra-
tion sequence. Then we track this sequence over time and
solve for body scale, using 2D-body-landmark predictions
from multi-view RGB-D data, and manual hand-keypoint
annotations. Once scale is established, we solve an op-
timization problem across multiple frames to estimate the
sensor-to-body offsets to be used in the subsequent stage.

Tracking Next, we fix the body scale and sensor-to-
body offsets and optimize for the body pose at each frame of
the subject’s sequences. Each EM sensor provides position
and orientation constraints, which we augment with closest
point constraints targeting the multi-view depth data. Fus-
ing the EM tracking and depth allows us to combine the
advantages of each approach: the EM sensors easily handle
challenging occlusions, while the depth data helps constrain
regions such as the shoulder/scapula where EM sensors are
absent. We use an in-house body model, which is then con-
verted to SMPL by [35]. We show a few illustrative exam-
ples of our reference data in Fig. 3 and the video.

Test set T We record a total of 45 test sequences with
5 subjects (3 female, 2 male). The recorded sequences in-
clude range-of-motion type of actions for upper and lower
body, but also more natural scenarios like walking, lunges,



Figure 4: Method Overview. Given a frame from an
AMASS sequence with body parameters Ωgt

t we randomly
pick subject-specific offsets Op to simulate S sensor posi-
tions and orientations mv

s . An RNN produces the initial
estimate Ω

(0)
t , which LGD refines in N iterations to pro-

duce the final estimate Ω
(N)
t . In each iteration of LGD

we compute the reconstruction loss Eq. (6) and its gradient
∇ = ∂Lr/∂Ω

(n)
t . This gradient is fed to neural network N

and a new estimate Ω
(n+1)
t is obtained with Eq. (5). At test

time we simply feed real sensor data ms instead of mv
s .

or jumping jacks (c.f . supplementary material for more de-
tails). We downsample the magnetic data from 120 Hz to
30 Hz to match the RGB-D streams. Our test set T thus
amounts to 37.1 minutes (approx. 67, 000 frames).

5. Method

We first define our problem formally in Sec. 5.1. Then
we describe in Sec. 5.2 how we synthesize virtual markers
on AMASS sequences to train the LGD-based architecture
shown in Sec. 5.3. Please refer to Fig. 4 for an overview.

5.1. Problem Statement

Our goal is to estimate SMPL pose and shape from se-
quences of EM measurements. Let the 6D pose of an
EM sensor s in world space be ms = (ps,Rs). We
concatenate the measurements of S sensors into a vector
xt = [m1, . . . ,mS ] representing a full measurement at
time step t. Several measurements are summarized into a
sequence Xi = [x1, . . . ,xT ]. For each xt we want to infer
SMPL pose θt ∈ RJ·3 and shape β ∈ R10. With our sensor
placement, we do not observe hand and foot articulation,
i.e. J = 19. Although we recorded root translation, we do
not consider it here, i.e., we only predict global root pose.

Figure 5: Virtual sensors. An example of a virtual position
and orientation mv

s and the offset relating it to m̃s.

5.2. Virtual Sensors

Learning the relationship between measurements xt and
pose and shape (θt,β) would require a large-scale dataset
with real EM measurements and SMPL references, which is
expensive to acquire. Instead, we use AMASS [32] to syn-
thesize virtual sensor data xv

t , described in the following.
Consider SMPL pose and shape parameters Ω = (θ,β),

omitting time step t for brevity. We denote the function
that extracts virtual sensors as σ, i.e. mv

s = σ(Ω), where
mv

s = (pv
s ,R

v
s). The process is the same for all S sensors

and without loss of generality we discuss a single sensor s.
In function σ we first evaluate the SMPL model on Ω to

obtain the corresponding mesh. For the synthesis process,
we have manually pre-determined IDs of those SMPL ver-
tices that are closest to the real mounting locations of our
sensors. This only needs to be done once. To simulate pv

s

we can then simply use the vertex position vs of the cor-
responding vertex ID for sensor s. Next, to simulate Rv

s ,
we construct a local coordinate frame as follows. First, we
compute the vertex normal ns at location vs and choose a
random but fixed outgoing triangle edge es of unit length.
We then compute us = (ns × es)/||ns × es||2. Thus, we
end up with the following virtual 6D pose for sensor s

p̃s = vs, R̃s =

[
us × ns

||us × ns||2
,us,ns

]
(3)

which we summarize as m̃s = (p̃s, R̃s). We could now
simply equate mv

s with m̃s and train our method on this
virtual data. If we were to do so, we would however have
little chance of generalizing to real data. This is because
the real sensor positions are offset by a certain amount from
the skin. Furthermore, sensors are not always mounted ex-
actly the same way and hence the hand-picked vertices vs

are only a coarse approximation. Similarly, the constructed
coordinate frame R̃s most likely does not correspond to the
sensor’s real orientation Rs. Hence, for each sensor we
model translational and rotational offsets to obtain the final
virtual sensor data:

Rv
s = R̃sR, pv

s = p̃s + R̃st (4)



Figure 6: Median positional and angular disagreement
between Optitrack and our EM-based system. Computed
for 5 test subjects and 7 representative sensors.

For a visual depiction please refer to Fig. 5. We summarize
the offsets of one sensor s as os = [R | t] and the collection
of all S sensor offsets for a subject p as Op = {os}Ss=1.
Note that these offsets are subject dependent, i.e. the full
signature of σ(·) is mv

s = σ(Ω,os). Furthermore, Op af-
fects both pose and shape. Hence, any method attempt-
ing to reconstruct full-body pose and shape should choose
Op carefully. We do so by automatically extracting an es-
timate of Op for each subject from a designated calibration
sequence taken from T (c.f . Sec. 4.1). Please refer to the
supplementary material for more details on the computation
of Op. Lastly, note that these offsets are not necessarily
perfectly constant over time. This is because 1) the accu-
racy of the magnetic sensors is range-dependent 2) sensors
might move on the skin during pose articulation and 3) a
hand-picked SMPL vertex vs is not guaranteed to move in
perfect synchronization with a real point on the skin.

5.3. LGD-based SMPL fitting

Using a custom variant of LGD [53] we iteratively fit
SMPL parameters to our input observations xt. At training
time, xt corresponds to virtual data xv

t whereas at test time
it is the real data. LGD replaces the gradient update rule of
standard gradient descent with a learned update rule which
is invoked a total of N times. Assume an estimate Ω

(n)
t is

given. The LGD update rule at iteration n then states

Ω
(n+1)
t = Ω

(n)
t + α · N (

∂Lr

∂Ω
(n)
t

,Ω
(n)
t ,xt) (5)

Here N is a pre-trained neural network, α ∈ R the step size,
and Lr the so called reconstruction function. Lr measures
how well our inputs can be reconstructed from the current
parameter estimate Ω

(n)
t . It is defined as:

Lr(xt,Ω
(n)
t ,Op) =

S∑
s=1

||mt,s − σ(Ω
(n)
t ,os)||22 (6)

where mt,s are our inputs and σ computes the sensor posi-
tions and orientations given Ω

(n)
t (c.f . Sec. 5.2).

Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]
MoSh++ 12 [32] 56.9 ± 56.1 43.5 ± 33.6 21.8 ± 15.4
pos + ori 12 44.2 ± 30.0 23.6 ± 13.7 15.4 ± 9.8

Table 1: Optimization-based baselines when using all (12)
input sensors. Positional and angular error on real test set.

To reap the benefits of LGD we must train the neural
network N . In contrast to [53], our input data is sequential.
Hence, we first feed the inputs xt to an RNN which pro-
duces the initial estimate Ω(0)

t . This estimate is then handed
over to LGD which iteratively refines it according to Eq. (5)
to produce the final output Ω(N)

t .
Since we want to support pose estimation for multiple

subjects with a single network, we augment the virtual train-
ing data as follows: For each AMASS sequence with pa-
rameters Ωgt

t we randomly decide on a participant p whose
offsets Op should be applied. Once p is fixed, we use their
offsets by feeding them to σ and thus obtain augmented vir-
tual sensor data xv

t . At test time, we simply use the offsets
corresponding to the actual subject. For training we super-
vise the reconstruction cost, body pose and shape at every
step of the iterative refinement. In addition to [53] we also
add a loss on the SMPL 3D joints J t. The loss function for
time step t, iteration n and subject p is thus

Ln,t =λ1L1(θ
(n)
t ,θgt

t ) + λ2L2(β
(n),βgt)+

λ3L3(J
(n)
t ,Jgt

t ) + λ4Lr(xt,Ω
(n)
t ,Op)

L =
1

NT

N∑
n=1

T∑
t=1

Ln,t

Note that to obtain a single shape estimate β(n) per se-
quence we average frame-wise estimates of the shape before
feeding it to the loss function. The sub-losses L1 to L3 are
all the MSE. For more details on training and hyperparam-
eters please refer to the supplementary material.

6. Evaluation
We first evaluate the accuracy of our EM-based sys-

tem on a sensor level. We then compare our method to
optimization- and learning-based baselines, before showing
extensive ablation studies that highlight the contributions of
our method. Finally, we visualize examples.

6.1. Magnetic Tracking Accuracy

To compute the accuracy of our EM-based system on a
per-sensor level and in typical usage scenario we glue an
Optitrack rigid body to every sensor (c.f . Fig. 2). Hence, for
every sensor s and every time step t we obtain four measure-
ments: its 6D pose according to Optitrack, i.e. pO

s (t) and
RO

s (t), and according to the EM system, i.e. pM
s (t) and



Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]
ResNet 6 39.3 ± 25.4 29.6 ± 20.1 16.6 ± 11.2
BiRNN 6 36.3 ± 21.2 27.7 ± 17.1 15.4 ± 10.2
Ours (LGD RNN) 6 35.4 ± 21.3 27.0 ± 16.3 14.9 ± 10.0
ResNet 12 41.5 ± 27.6 30.9 ± 21.7 14.6 ± 9.8
BiRNN 12 37.3 ± 24.1 28.5 ± 18.6 14.1 ± 9.1
Ours (LGD RNN) 12 31.8 ± 21.0 24.8 ± 16.4 13.3 ± 9.2

Table 2: Quantitative evaluations. We compare our pro-
posed hybrid method to pure learning baselines using 6 and
12 sensors. Positional and angular error on real test set.

RM
s (t). All measurements are calibrated to world space.

By design, a constant rigid transformation [R | t] relates the
optical and magnetic 6D pose. We can thus characterize the
EM system’s accuracy by computing a rigid transformation
between the magnetic and optical 6D pose and measure its
change over time. This boils down to solving an orthog-
onal Procrustes problem, the details of which are supplied
in the supplementary material. This way we obtain a posi-
tional and angular error, eposs (t) and eangs (t), for every time
step t. We plot the median value computed on the “jumping
jacks” sequence of each subject in Fig. 6. Errors are typi-
cally around or lower than 1 cm positional and 2-3 degrees
angular error. Sensors that are far away from the source (i.e.
wrist, shin) or undergo faster motion (i.e. arms) experience
the highest errors. In contrast, static or slow moving sensors
(i.e. head, shoulders) show errors below 0.25 cm or 1 degree
respectively. An outlier is subject 4 with sometimes high
errors. This can be explained by calibration errors and de-
graded optical tracking when occlusions happen unexpect-
edly under dynamic motions, e.g. due to lose clothing.

6.2. Quantitative Performance

To evaluate our method quantitatively we report three
common metrics: the mean per-joint positional error with
and without Procrustes alignment (PA-MPJPE vs MPJPE)
and the mean per-joint angular error computed on root-
relative orientations (MPJAE).

Our data set T and method are to the best of our knowl-
edge, the first of their kind. Therefore, no existing baseline
method exists that could be applied directly to our data. The
closest related work is MoSh++ [32] which estimates SMPL
pose and shape from dense optical marker positions. We run
our data through MoSh++ and discuss results in the follow-
ing. SIP [65] and DIP [17] are more difficult to apply to our
data as they require acceleration inputs which our sensors
do not directly measure. Furthermore, SIP/DIP cannot esti-
mate shape from the measurements alone. We compare to
DIP approximately by adopting a similar architecture and
evaluating it on T . Furthermore we report the same metrics
as DIP/SIP (PA-MPJPE, MPJAE) computed on the 15 ma-
jor joints of SMPL. The results presented here are evaluated
on all sequences of the first 4 of our 5 participants. We leave

out subject 5 for an additional study shown in Sec. 6.4. Ad-
ditionally, we also compare to an RGB-based pose estima-
tor, VIBE [21], in the supplementary material. Finally, the
EM sensors sometimes drop frames and hence we evaluate
only on frames where all sensor data is available.

Optimization baselines Tab. 1 summarizes the results
of two optimization baselines. To run our data through
MoSh++ we supply the positional data of all 12 sensors
as MoSh++ cannot take orientations into account. Not un-
expectedly, the results indicate that Mosh++ struggles with
this kind of data. MoSh++ was designed to produce high-
quality SMPL registrations from dense optical marker ar-
rays attached directly to the skin. Handling only 12 surface
points that are neither skin-tight nor distributed like typical
optical markers is challenging for the method.

To provide a stronger baseline, we implement our own
optimization method that takes orientations and subject-
specific offsets into account. The objective we minimize
is argminΩt

Lr(xt,Ωt,Op), but to induce a prior we di-
rectly optimize in the latent space provided by VPoser [40]
and add regularizers on pose and shape. The details are pro-
vided in the supplementary material. We observe that this
optimization method (“pos + ori” in Tab. 1) achieves lower
errors and standard deviations than MoSh++.

Learning-based We compare our method with pure
learning-based approaches and train two baselines with 6
and 12 sensors respectively. The 6 sensor configuration
only keeps the sensors at the wrists, lower legs, head, and
back. The results are shown in Tab. 2. Both baselines take
the raw measurements as inputs and map them to SMPL
pose and shape with supervision on pose, shape and 3D
joints. We supply subject-specific offsets Op analogous
to Sec. 5.3. Hyperparameter search was conducted for all
baselines. The first baseline, ResNet, is a frame-wise base-
line that feeds the inputs through 5 residual blocks. This
is inspired by [16] who map dense marker clouds to body
model parameters. The second baseline, BiRNN, is a bidi-
rectional RNN adopted from DIP [17], thus modelling tem-
poral relationships explicitly. From the results table, we
can see that explicitly modelling the temporal nature of the
data is helpful (the BiRNN outperforms the ResNet). We
also observe that our method beats both pure learning- and
optimization-based baselines. For more network and train-
ing details please refer to the supplementary material.

6.3. Ablations

Here we show the effect of major design choices on
our best performing model with 12 sensors, summarized
in Tab. 3. The respective results with 6 sensors are sup-
plied in the supplementary material. We first remove the
RNN which provides the initial estimate to LGD (“Ours



Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]
Ours 12 no [R|t] 167.6 ± 212.7 134.3 ± 113.3 37.5 ± 34.7
Ours 12 no t 35.6 ± 25.8 29.0 ± 19.4 14.4 ± 10.0
Ours 12 ori only 50.8 ± 30.0 31.2 ± 20.4 14.3 ± 9.8
Ours 12 pos only 33.6 ± 28.3 27.5 ± 20.8 16.2 ± 11.3
Ours 12 no RNN 36.9 ± 25.4 26.5 ± 19.9 14.3 ± 10.3
Ours 12 31.8 ± 21.0 24.8 ± 16.4 13.3 ± 9.2

Table 3: Ablation studies on our best performing model.

Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]
BiRNN 6 37.2 ± 26.7 33.8 ± 19.2 15.0 ± 7.8
Ours (LGD RNN) 6 32.0 ± 25.0 29.5 ± 17.7 13.6 ± 7.3
BiRNN 12 45.9 ± 34.3 40.2 ± 22.7 15.1 ± 8.0
Ours (LGD RNN) 12 31.2 ± 25.7 24.5 ± 18.0 12.3 ± 7.2

Table 4: Cross-subject evaluation on subject 5.

no RNN”). This architecture resembles the original, frame-
wise LGD [53]. We can clearly observe the benefit of ex-
plicitly modelling the temporal nature of our data. Further-
more, we show the effect of subject-specific offsets Op dur-
ing training. The entry “no t” refers to a training scheme
where we set the translational part of all offsets os to zero
and “no [R|t]” means we additionally set R to the identity.
As is expected, modeling the rotational offsets has a major
influence. Without these, the disparity between synthetic
and real orientations is simply too large. Finally, we also
experiment with feeding only position or only orientation
measurements to our model (“pos/ori only”). In each case
the error matched to the available modality remains reason-
ably low (e.g. “pos only” has an MPJPE of 33.6) but the
respective other error increases. This justifies the choice of
both modalities in our best performing model.

6.4. Cross-Subject Evaluations

LGD and our training scheme require access to subject-
specific offsets. In this section we evaluate our method on
an “unseen” participant whose offsets have not been used
during training. To this end, we train our models with
subject-specific offsets only from subjects 1-4 and hold out
subject 5. Tab. 4 lists the performance of our two best mod-
els on sequences from subject 5. This again highlights the
benefit of our proposed method over pure learning base-
lines, which is more pronounced for the 12 sensor model.
This is not entirely unsurprising because LGD RNN still re-
quires an estimate of the offsets for the iterative refinement.

6.5. Qualitative Results

We show visual comparisons of reconstructions with 6
and 12 sensors in Fig. 7. Please refer to the video and sup-
plementary material for more visual comparisons.

Figure 7: Visual comparisons with 6 and 12 sensors. We
show poses with self-occlusions (crouching, crossing arms)
or poses that are typically challenging to recover with just 6
sensors (squatting, sitting). Images for reference only.

7. Limitations and Conclusion
Like any EM-based system, ours is susceptible to mag-

netic distortion due to metallic objects or other electronics
that are closer than 1.5 meters to the subject. In our capture
sessions we found that it is possible to control for magnetic
disturbances and it also does not hinder us from capturing
in everyday surroundings as shown in Fig. 7. Still, EM
data can be noisy (e.g., dropped frames, measurements out
of calibrated range, unexpected magnetic distortion, etc.).
While providing pose estimation in a noisy data regime is
out of scope for this paper, we find this an interesting av-
enue for future work. A prototypical architecture that han-
dles noisy inputs is described in the supplementary material.
Finally, recovering detailed shape information from as little
as 6 sensors is difficult as it is largely unobserved. Although
there’s certainly room for improvement, we see good recon-
struction quality across many action types and multiple sub-
jects. To foster future research, we release code and data.
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In this supplementary material we give more details
about the computation of subject-specific offsets (Sec. 1),
describe training details of our proposed method (Sec. 2)
and the optimization and learning baselines (Sec. 3, Sec. 4),
provide details how we compute the accuracy of our EM
sensors (Sec. 5), provide more quantitative comparisons
(Sec. 6), show additional visualizations and failure cases
(Sec. 7), describe the detailed capture protocol of our test
set T (Sec. 8), and finally describe some initial experiments
how to tackle denoising of EM data (Sec. 9). For more vi-
sualizations, please also refer to the video.

1. Computation of Op

To take into account the subject-specific offsets, we re-
serve a “calibration sequence” taken from T for each of our
subjects. We use these sequences to extract per-sensor and
per-subject offsets Op. The following description holds for
each sensor s of subject p. We obtain os by first computing
m̃s on the calibration sequence following Eq. (3). This al-
lows us to solve for R(t) and t(t) in Eq. (4) at every time
step t, where we simply replace Rv

s and pv
s with the actual

real measurements.
Because R(t) and t(t) can vary over time, we extract a

single estimate as follows. For t we simply compute the
mean over all time steps. For R we compute the average
rotation over R(t).

t =
1

T

T∑
t=1

t(t) (1)

UΣV T = SVD(

T∑
t=1

R(t))

R = ϕ(U ,V ) (2)

where ϕ extracts a valid rotation as follows:

ϕ(U ,V ) = U · diag(1, 1, sign(det(UV T )) · V T (3)

Figure 8: Reconstructions with 6 sensors with the BiRNN
(middle row) and our best model, LGD RNN (bottom row).
Differences are described directly in the figure.

2. Training Details
2.1. Normalization

We normalize our data before feeding it to our method.
Since we assume that the root information is given we re-
move the root translation entirely by setting the SMPL root
translation to zero. Then, for every sequence, we normalize
the SMPL root orientation as follows (superscript n indi-
cates it is normalized data):

Rn
root(t) = R−1

root(0)Rroot(t)

Since the remaining SMPL pose parameters are all



Figure 9: MoSh++ results [7] when using 12 sensors as
input (middle row) compared to reference poses (top row)
and our method (LGD RNN) with 6 sensors (bottom row).

parent-relative, this is the only normalization we perform
for SMPL data. We apply the same normalization to the
marker data, i.e.

pn
s (t) = R−1

root(0)(ps(t)− troot(t))

Rn
s (t) = R−1

root(0)Rs(t)

2.2. Offset augmentation

As explained in Sec. 1, the computed offsets R(t) and
t(t) can vary over time. We use the translational part of
the offsets to introduce some noise for data augmentation
purposes during training. To do so, for every sensor and
every participant we fit a multi-variate normal distribution
to t(t), denoted as φ(t). When applying the offsets Op

as explained in Sec. 5.3 of the main paper we first draw
a vector t ∼ φ(t) which we then use as the translational
offset to obtain virtual sensors mv

s .

2.3. Architecture Details and Hyperparameters

The RNN in our proposed method, LGD RNN, consists
of two LSTM layers [2] of size 512. The output of the RNN
is mapped to pose and shape parameters Ω(0)

t with a dense
layer. The network N is essentially a multi-layer perceptron
(MLP). The MLP first maps its inputs, i.e. Ω(n)

t , to the cho-
sen hidden size, which is 512 in our case. The hidden repre-
sentation is then passed to L (here 5) dense layers whereas
each layer maps to the same dimensionality as the size of
its inputs (i.e. 512). Each dense layer is preceded by a batch

Hyperparameter LGD RNN 6 LGD RNN 12
α (LGD step size) 0.1 0.1
Batch size 12 12
Dropout (on inputs) 0.0 0.2
Dropout (inside MLP of N ) 0.0 0.2
λ1 (pose loss weight) 10.0 1.0
λ2 (shape loss weight) 1.0 1.0
λ3 (joint loss weight) 0.1 1.0
λ4 (reconstruction loss weight) 0.01 0.01
Learning rate 0.0005 0.0001
N (number of LGD iterations) 2 4
Number of epochs 50 50
Sequence length (training only) 32 32

Table 5: Hyperparameters for LGD RNN.

Hyperparameter ResNet 6/12 BiRNN 6/12
Batch size 16 16
λ1 (pose loss weight) 1.0 1.0
λ2 (shape loss weight) 1.0 1.0
λ3 (joint loss weight) 10.0 10.0
Learning rate 0.0005 0.0005
Number of epochs 50 50
Sequence length (training only) 128 128

Table 6: Hyperparameters for learning baselines.

normalization layer [4], a PReLU activation function [1],
and a dropout layer [11] in this order. The last dense layer
maps back to the target dimension and thus produces the
next estimate Ω

(n+1)
t .

We use the Adam optimizer [5] to train our models. The
choice of hyperparameters are listed in Tab. 5. We use
PyTorch 1.6 [8] and train all our models on a NVIDIA
GeForce GTX 1080Ti, which takes roughly 16 hours.

3. Optimization baseline
Here we explain the details of our optimization baseline

mentioned in Sec. 6.2 of the main paper. The objective func-
tion we minimize is argminΩt

Lr(xt,Ωt,Op), i.e. essen-
tially the same objective that LGD minimizes. However, to
induce a prior we operate directly in the latent space pro-
vided by VPoser [9]. This means the body parameters Ωt

are now split into (zt,β) where zt corresponds to the la-
tent space of VPoser. Furthermore, we add regularizers on
pose and shape. The objective function we minimize thus
becomes

argmin
zt,β

Lr(xt, zt,β,Op) + ρ1||zt||22 + ρ2||β||22 (4)

where we choose ρ1 = 10−6 and ρ2 = 10−2. We use Py-
Torch to run our optimization and use an LBFGS optimizer
with a step size of 1.0 and strong Wolfe line search.



Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]
Ours 6 no t 44.0 ± 34.0 32.8 ± 22.3 15.8 ± 10.6
Ours 6 ori only 80.9 ± 81.4 53.5 ± 46.3 18.0 ± 13.6
Ours 6 pos only 38.6 ± 32.0 31.4 ± 25.2 17.7 ± 12.4
Ours 6 no RNN 44.4 ± 33.3 32.8 ± 23.9 16.2 ± 11.3
Ours 6 35.4 ± 21.3 27.0 ± 16.3 14.9 ± 10.0

Table 7: Ablation studies on our best performing 6-sensor
model.

4. Learning baselines
Here we describe the details of our learning-based base-

lines, ResNet and BiRNN, as described in Sec. 6.2 of the
main paper. Both baselines perform direct body parameter
regression, i.e. we obtain SMPL pose and shape estimates
Ω̂t directly from a neural network ν(xt). We use the same
data augmentation and preprocessing as for LGD RNN. The
loss function at time step t is the same in both cases:

Lt =λ1L1(θ̂t,θ
gt
t ) + λ2L2(β̂,β

gt) + λ3L3(Ĵ t,J
gt
t )

where L1,L3 are the MSE and L2 is the L1 loss. The archi-
tectural details are explained in the following and hyperpa-
rameters are listed in Tab. 6.

ResNet The ResNet baselines is a frame-wise architec-
ture inspired by [3]. One block consists of a dense layer
that maps to the same output size as the size of the inputs,
followed by a skip connection and a ReLU activation func-
tion. We use 5 such layers of dimension 1024. The output
of the last layer is mapped directly to Ωt.

BiRNN The BiRNN is a simple bidirectional RNN [10]
with LSTM cells [2]. We use 2 bidirectional layers of size
256 each. The hidden forward and backward states of the
last layer are mapped directly to Ωt.

5. Computation of EM-Tracking Accuracy
To compare our EM sensors to optical marker-based

tracking we glued an Optitrack rigid body to each of our
sensors (c.f . Fig. 2 of the main paper). Here we explain
in detail how we compute the disagreement between Op-
titrack and our sensors (c.f . Sec. 6.1 of the main paper).
As a reminder, for every sensor s and every time step t
we obtain four measurements: the Optitrack 6D pose, i.e.
pO
s (t) and RO

s (t), and the EM 6D pose, i.e. pM
s (t) and

RM
s (t). All measurements are calibrated to world space

and hence, under perfect agreement, a constant rigid trans-
formation [R | t] would relate the two. We characterize the
agreement by computing this rigid transformation and mea-
suring how much it changes over time as follows. For the

Figure 10: Failure cases. Inaccurate shape reconstruction
especially around abdomen (left) and challenging lower leg
orientations (middle and right).

positional agreement eposs (t) we simply compute the devia-
tion from the mean translational offset.

t =
1

T

T∑
t=1

pM
s (t)− pO

s (t)

eposs (t) = ||pM
s (t)− pO

s (t)− t||2

For the angular error eangs (t) we proceed similarly and
solve an orthogonal Procrustes problem to find the constant
rotation R that best relates RM

s and RO
s as follows:

UΣV T = SVD

(
T∑

t=1

(RM
s (t))TRO

s (t)

)
R = ϕ(U ,V )

eangs (t) = dist(RM
s (t)R,RO

s (t))

where ϕ is defined in Eq. (3) and dist(·) finds the closest an-
gle of rotation between its inputs. To do so we first convert
the rotation matrices to quaternions and then use:

dist(q1, q2) = cos−1
(
2⟨q1(t), q2(t)⟩2 − 1

)
6. More Quantitative Results
6.1. Comparison to RGB Methods

We compare our method to a state-of-the-art monocular
RGB-based pose estimator, VIBE [6]. To do so, we select
the camera facing the front of the subject as input to VIBE.
The results are shown in Tab. 8. The error is only computed
on frames for which VIBE detected a person. As we can
see, VIBE does not perform favourably on our data. This
is not unexpected because a) our imagery is a real in-the-
wild scenario and b) the inputs to VIBE and our method
are vastly different. Under these circumstances, VIBE still
performs admirably. We see this experiment as further mo-
tivation to employ EM-based systems to gather reference
data to boost RGB-based methods down the line.



Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]
VIBE [6] 100.3 ± 79.3 70.1 ± 58.2 24.8 ± 15.7
Ours (LGD-RNN) 6 36.4 ± 23.7 28.1 ± 16.9 13.6 ± 8.8

Table 8: Comparison to VIBE on 10 representative test
sequences from subjects 1-4.

6.2. Ablation Study with 6 Sensors

In Tab. 7 we provide the same ablation study as in
Sec. 6.3 of the main paper but with the 6 instead of the 12
sensor model. Based on this table we can see that the same
conclusions hold as already drawn in the main paper.

7. More Visualizations
To highlight the differences between our best model,

LGD RNN, and its closest baseline, BiRNN, we compare
their performance visually in Fig. 8. We can see that
the BiRNN sometimes produces interpenetrations and lacks
some accuracy at the end effectors.

Furthermore, we also compare the performance of
MoSh++ [7] in Fig. 9. The chosen frames highlight that
the shape estimates of MoSh++ are sometimes off by quite
a margin. This is because it makes different assumptions
about the sensor-to-skin offsets. Furthermore, the orienta-
tion of end effector segments often exhibit a high error in the
MoSh++ results. This is not unexpected since it only uses
12 positional estimates. In contrast, our best model (c.f .
bottom row in Fig. 9) produces more accurate limb orienta-
tions even with only 6 sensors as it uses both position and
orientation inputs.

We also show failure cases of our method in Fig. 10.
Shape estimation from just a few on-skin measurements is
challenging. We sometimes see bulging bellies (c.f . Fig. 10)
and inaccurate shape in the hip region (c.f . bottom right cor-
ner in Fig. 9). Getting the lower leg orientation correct in
extreme articulations is difficult, too, even with explicit ori-
entation measurements (c.f . Fig. 10). In addition, such er-
rors are visually very striking as they can cause foot sliding.

8. Test Set Details
We describe the detailed content and capture protocol of

our test set T in Tab. 9. All participants were guided by an
assistant, participated voluntarily and gave written consent
to record and publish their data.

9. Denoising Experiments
The data measured by our EM-based capture system can

be noisy. Typical sources of noise include dropped frames
(due to sensor malfunctions or wireless connections), in-
creased jitter when operating outside the calibrated range,
or unexpected magnetic distortion. Our proposed method,

Figure 11: Denoising architecture overview. Our archi-
tecture to estimate SMPL pose and shape with noisy input
measurements works in two stages. The first stage, called
joint mapper, maps EM data to 3D SMPL joints J t and
root-relative joint orientations Rt. This is a simple two-
layer BiRNN which we directly supervise with the ground-
truth joint positions and orientations. We randomly remove
one or several sensor measurements from the input for half
the duration of the given sequence. The second stage is per-
forming IK and uses the LGD framework to do so. The ori-
entations Rt help to disambiguate the orientation of bone
segments (especially so for end effectors). At training time
we use synthetic EM measurements mv

s to train the joint
mapper. Ground-truth joint positions Jgt

t and orientations
Rgt

t extracted from AMASS are used to train the IK stage.
At test time we simply feed the real EM data to the joint
mapper and the output of the joint mapper to the IK stage.

Figure 12: Denoising comparison. For this frame, the right
lower leg sensor is missing in the input. LGD RNN strug-
gles to reconstruct the pose (middle) whereas the two-stage
approach does a better job (right). Notice how the missing
sensor is affecting the entire pose output for LGD RNN.

LGD RNN, iteratively fits SMPL to the observed EM data.
Hence, it is clear that LGD RNN cannot handle certain types
of noise, such as dropped sensors. We find pose estima-



Action Type Description # Frames Minutes
Arms ROM Arm raises, arm swings, cross arms, clap hands front and back

with straight arms.
14, 720 8.2

Arms Fast Fast arm swings, pretend to play Beat Saber VR, punches, rotate
wrists around each other fast.

7, 169 4.0

Calibration Move head left to right and rotate wrists in T-Pose, move head
left to right and rotat rotate wrists when arms stretched in front,
one leg raise each.

3, 709 2.1

Head and Shoulders Nod head back and forth, move head left to right, roll head left
to right, rotate shoulders forwards and backwards, rotate torso,
bend over and move arms around.

9, 498 5.3

Jumping Jacks 3-5 jumping jacks. 1, 952 1.1
Lower Body Leg raises left and right, raise leg then rotate outwards, squats,

crouching
7, 305 4.1

Lunges Crouching, several lunges with left and right foot in front. 4, 714 2.6
Sitting on chair Grab a chair, sit on chair, move one leg over the other, pretend

to sit at a table and interact with PC, keyboard, touch screens.
9, 362 5.2

Walking Walk normally from left to right in capture area, side-stepping
from left to right with and without crossing over the legs.

8, 391 4.7

Total 66,820 37.1

Table 9: Test set T . Description and length of the sequences in our test set T . Each of the 5 participants performed the
actions described here in a single session. Each sequence starts and ends with a T-Pose.

Frames Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]

all LGD RNN 12 33.3 ± 24.3 26.2 ± 18.8 13.4 ± 9.2
2-stage 12 38.8 ± 22.0 28.2 ± 17.3 13.8 ± 9.1

avail. LGD RNN 12 31.8 ± 21.0 24.8 ± 16.4 13.3 ± 9.2
2-stage 12 39.1 ± 21.3 28.1 ± 16.7 13.7 ± 9.1

miss. LGD RNN 12 45.6 ± 40.6 37.7 ± 30.0 15.0 ± 9.3
2-stage 12 36.2 ± 27.0 29.1 ± 21.9 14.6 ± 9.1

Table 10: Denoising experiments on all frames (all), only
on frames without missing sensors (avail.) and only on
frames with at least one missing sensor (miss.).

tion in such a noisy data regime an interesting direction for
future work and experimented with an initial architecture
that can cope with dropped frames and magnetic distortion
which we briefly describe in the following.

Although LGD RNN can handle some noise (by means
of incorporating pose priors), it is not meant to be a denois-
ing architecture per se as it fits SMPL pose and shape to
the inputs directly. Hence, our idea is to separate the tasks
of denoising and fitting into separate modules and came up
with a two-stage architecture. The first stage, also called
joint mapper, regresses SMPL 3D joint positions and root-
relative joint orientations from the input observations. In
this stage we randomly remove sensors from the input to
simulate dropped frames. Thus, the joint mapper maps to
a proxy representation that is close to SMPL while also de-
noising the inputs. The second stage then lifts the output
of the joint mapper to the final estimate of SMPL pose and

shape. This is again an LGD-based iterative fitting proce-
dure. Experimentally we have found that using LGD for
this stage outperforms an optimization-based IK step. Both
stages are trained independently. For an overview, please
refer to Fig. 11.

In our experiments we have found that this two-stage ar-
chitecture yields good results. The final SMPL poses are
smooth and with 12 input sensors 1-2 missing sensors are
compensated plausibly. This is also reflected in quantitative
comparisons shown in Tab. 10. In this table we compare
the two-stage approach to LGD RNN when using 12 sen-
sors. We report its performance on 3 sets of frames: frames
that have no missing sensors (avail.), frames with at least
one missing sensor (miss.) and the union of these two sets,
which corresponds to all frames in our test set (all). We ob-
serve that the two-stage approach does not beat LGD RNN
on the good frames where no sensor data is missing, but re-
mains competitive. It also trails behind LGD RNN on all
the frames, which makes sense since we have many more
“good” frames than frames with missing sensors. However,
on frames where at least one sensor is missing (miss. in
Tab. 10), the two-stage architecture shows its potential and
clearly outperforms LGD RNN. For a visual example of a
denoised frame please refer to Fig. 12.

The two-stage model is not only interesting to fill in
missing sensor data. If we assume we have a mechanism to
detect magnetic distortion, we can simply suppress the sen-
sor measurement for those time instances where magnetic



distortion is detected. We can then use the same two-stage
architecture to remedy the impact of EM interference. We
find this an interesting direction for exploration and release
code and data to foster future research.
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