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Figure 1: EMDB is a novel dataset that provides accurate SMPL pose and shape parameters including global camera and body
trajectories for in-the-wild videos. (left and middle) Challenging example poses taken from EMDB. (right, 1-4) Visualization
of global body center trajectory and the corresponding 3D poses projected into the camera view.

Abstract
We present EMDB, the Electromagnetic Database of

Global 3D Human Pose and Shape in the Wild. EMDB is
a novel dataset that contains high-quality 3D SMPL pose
and shape parameters with global body and camera trajec-
tories for in-the-wild videos. We use body-worn, wireless
electromagnetic (EM) sensors and a hand-held iPhone to
record a total of 58 minutes of motion data, distributed over
81 indoor and outdoor sequences and 10 participants. To-
gether with accurate body poses and shapes, we also pro-
vide global camera poses and body root trajectories. To
construct EMDB, we propose a multi-stage optimization
procedure, which first fits SMPL to the 6-DoF EM measure-
ments and then refines the poses via image observations. To
achieve high-quality results, we leverage a neural implicit
avatar model to reconstruct detailed human surface ge-
ometry and appearance, which allows for improved align-
ment and smoothness via a dense pixel-level objective. Our
evaluations, conducted with a multi-view volumetric cap-
ture system, indicate that EMDB has an expected accuracy
of 2.3 cm positional and 10.6 degrees angular error, sur-
passing the accuracy of previous in-the-wild datasets. We
evaluate existing state-of-the-art monocular RGB methods
for camera-relative and global pose estimation on EMDB.
EMDB is publicly available under https://ait.ethz.ch/emdb.

1. Introduction

3D human pose and shape estimation from monocu-
lar RGB images is a long-standing computer vision prob-
lem with many applications in AR/VR, robotics, assisted
living, rehabilitation, or sports analysis. Much progress
has been made in estimating camera-relative poses, typ-
ically assuming a weak-perspective camera model, e.g.,
[7, 25, 29, 30, 51]. However, this setting is too restrictive
for many applications that involve a moving camera. Such
applications must estimate a) human poses in-the-wild, un-
der occlusion and encountering uncommon poses; and b)
global locations of humans and the camera. Compared to
the camera-relative setting, there is relatively little work on
global pose estimation [65, 69]. This is in part due to the
lack of comprehensive datasets that contain accurate 3D hu-
man pose and shape with global trajectories in a fully in-the-
wild setting.

To overcome this bottleneck, in this paper we propose a
novel dataset, called EMDB, short for the ElectroMagnetic
DataBase of Global 3D Human Pose and Shape in the Wild.
EMDB consists of 58 minutes (105k frames) of challeng-
ing 3D human motion recorded in diverse scenes. We pro-
vide high-quality pose and shape annotations, as well as
global body root and camera trajectories. The dataset con-
tains 81 sequences distributed over 10 participants that were
recorded with a hand-held mobile phone.

https://ait.ethz.ch/emdb


Recording such data requires a motion capture system
that is both mobile and accurate – a notoriously difficult
problem. Systems that provide world-anchored 3D body
keypoints often require multiple well-calibrated RGB or IR
cameras within a static environment, which restricts out-
door use [16, 18, 20, 37]. While body-worn sensors such as
head-mounted cameras [46, 63, 72] are promising for mo-
bile use, such egocentric approaches introduce either heavy
self-occlusions [46, 63] or are restricted to indoor settings
with a fixed capture volume [72]. The 3DPW dataset [59]
uses IMU sensors for outdoor recordings, yet the dataset
is relatively small and lacks global trajectories. Moreover,
IMU drift and the lack of direct positional sensor measure-
ments imposes constraints in terms of pose diversity and ac-
curacy. Instead, following [23], we leverage drift-free elec-
tromagnetic (EM) sensors that directly measure their posi-
tion and orientation. Yet, any sensor-based capture system
requires handling of measurement noise, accurate calibra-
tion of the sensors to the body’s coordinate system and tem-
poral and spatial alignment of the data streams.

Addressing these challenges, we propose a method,
Electromagnetic Poser (EMP), that allows for the construc-
tion of EMDB. EMP is a multi-stage optimization formu-
lation that fuses up to 12 body-worn EM sensor measure-
ments, monocular RGB-D images and camera poses, and
produces accurate SMPL [34] pose and shape parameters
alongside global trajectory estimates for the body’s root and
the camera. EMP works in the following 3 stages.
Calibration and EM Pose: As an initial calibration step,
we scan participants in minimal clothing using an indoor
multi-view volumetric capture system (MVS, [8]) to obtain
ground-truth shape and skin-to-sensor offsets. We subse-
quently record in-the-wild sequences of the same subject
and fit SMPL to the drift-free EM measurements of the sen-
sors’ positions and orientations. This provides an accurate
SMPL fit, albeit in a EM-local coordinate system.
World Alignment: In the second stage, we align the EM-
local pose estimates with a global world space, defined by
the tracking space of a hand-held iPhone 13 that films the
participants. We model this stage as a joint optimization that
fuses the input EM measurements, 2D keypoints, depth, and
camera poses. In our experiments we have found that the
self-localized 6D poses of the iPhone are accurate to around
2 cm positional and < 1 degree angular error. The fixed
body shape and accurate camera poses thus enable EMP to
provide global SMPL root trajectories.
Pixel-Level Refinement: In the third stage, we refine the
initial global poses via dense pixel-level information to en-
sure high-quality and temporally smooth image alignment.
To this end we leverage recent advancements in neural body
modelling for in-the-wild videos and fit a neural body model
with detailed geometry and appearance to the RGB images.
Following [13], we model the human as a deformable im-

plicit signed distance field and the background as a neu-
ral radiance field. This allows us to formulate a pixel-
level RGB loss that compares color values obtained via
composited neural rendering with the observed pixel value.
We jointly optimize the neural body model and the SMPL
poses, initialized with the output of the second stage. We
experimentally show that this final stage results in tempo-
rally smooth results and accurate pose-to-image alignment.

We evaluate EMP on 21 sequences recorded with our
MVS [8], the same system we use to register ground-truth
SMPL shape parameters. With a pose accuracy of 2.3 cm
positional and 10.6° angular error, our evaluations reveal
that EMP is more accurate than what has been reported
for 3DPW (2.6 cm, 12.1°) [59]. Also, our global SMPL
root trajectories are accurate with an estimated error of 5.1
cm compared to our indoor MVS. Finally, we evaluate the
performance of recent state-of-the-art camera-relative and
global RGB-based pose estimators on EMDB. Our results
show that EMDB is a new challenging dataset that will en-
able future local and global pose estimation research.

In summary, we contribute: 1. EMDB, to the best of our
knowledge the first comprehensive dataset to provide accu-
rate SMPL poses, shapes, and trajectories in an unrestricted,
mobile, in-the-wild scenario. 2. EMP, the first method to
fuse EM measurements with image data and camera poses.
3. Extensive evaluations of the accuracy of EMP as well as
baseline results of state-of-the-art work when evaluating on
EMDB. Data is available under https://ait.ethz.ch/emdb.

2. Related Work
Sensor-based Pose Estimation Modern inertial measure-
ment units (IMUs) are an appealing sensor modality for
human pose estimation because they are small and do not
require line-of-sight. However, they only measure orienta-
tion directly. This lack of reliable positional information
can be mitigated by using a large number of sensors [47]
or by fusing IMU data with other modalities such as exter-
nal cameras [3, 11, 35, 43, 44, 54, 59, 73], head-mounted
cameras [14], LiDAR [9], or acoustic sensors [33, 58]. Re-
search has attempted to reduce the required number of sen-
sors, e.g. [5, 17, 59, 60], which requires costly optimizations
[60], external cameras [59], or data-driven priors to estab-
lish the sensor-to-pose mapping [17, 19, 62, 66, 67] and deal
with the under-constrained pose space. While such methods
yield accurate local poses, IMUs are intrinsically limited in
that their position estimates drift over time.

Addressing this challenge, EM-POSE [23] puts forth
a novel method for body-worn pose estimation that relies
on wireless electromagnetic (EM) field sensing to directly
measure positional values. A learned optimization [49] for-
mulation estimates accurate body pose and shape from EM
inputs. However, [23] is limited to a small indoor capture
space, requires external tracking of the root pose and is not
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aligned with image observations. In this work, we move
beyond these limitations and present an EM-based capture
system that is mobile, deployed to capture in-the-wild data,
and produces high-quality pose-to-image alignment.

RGB-based Pose Estimation The 3D pose of a human is
either represented as a skeleton of 3D joints [36, 38, 50,
75] or via parametric body models like SCAPE [1] and
SMPL [34] for a more fine-grained representation. We
note that almost the entire body of research estimates lo-
cal (i.e., camera-local) poses. In recent years, deep neural
networks have driven significant advancements in estimat-
ing body model parameters directly from images or videos
[12, 21, 22, 24, 25, 29, 30, 40, 51–53, 55, 57, 64, 70, 74]. In
addition, researchers have combined the advantages of both
optimization and regression to fit the SMPL body [26, 49].
Others have leveraged graph convolutional neural networks
to effectively learn local vertex relations by building a graph
structure based on the mesh topology of the parametric body
models, e.g. [7, 31]. These methods propose transformer
encoder architectures to learn the non-local relations be-
tween human body joints and mesh vertices via attention
mechanisms. Recently, a few approaches have set out to es-
timate realistic global trajectories of humans and cameras
from local human poses [28, 65, 68, 69]. We evaluate sev-
eral of the above methods on our proposed dataset on the
tasks of camera-relative and global human pose estimation.

Human Pose Datasets Commonly used datasets to eval-
uate 3D human pose estimation are H3.6M [18], MPI-INF-
3DHP [37], HumanEva [48], and TotalCapture [20]. Al-
though these datasets offer synchronized video and MoCap
data, they are restricted to indoor settings with static back-
grounds and limited variation in clothing and activities.

To address these limitations, [59] proposed a method that
combines a single hand-held camera and a set of body-worn
IMUs to estimate relatively accurate 3D poses, resulting in
an in-the-wild dataset called 3DPW. Following this work,
HPS [14] estimates 3D human pose with IMUs while local-
izing the person via a head-mounted camera within a pre-
scanned 3D scene. To further address the issue of IMU
drift, HSC4D [9] leverages LiDAR sensors for global lo-
calization. However, both HPS and HSC4D assume static
scene scans and do not register global body pose in a third-
person view. Moreover, they lack an evaluation of how ac-
curate their pose estimates are. Another approach to out-
door performance capture with reduced equipment is to uti-
lize one or multiple RGB-D cameras [2, 15, 16]. In these ap-
proaches, the quality of body pose registrations is limited by
the cameras’ line-of-sight, noisy depth measurements and
the capture space is fixed. None of these works provide an
estimate of their datasets’ accuracy either. EgoBody [72]
provides egocentric views and registered SMPL poses but

is restricted to a fixed indoor space, requires up to 5 exter-
nal RGB-D cameras and lacks evaluation of the data accu-
racy. Synthetic data has been suggested as a means to pro-
vide high-quality annotations [41, 57]. However, due to the
reliance on static human scans and artificial backgrounds
there is a distributional shift compared to real images.

With EMDB we provide the first dataset of 3D human
pose and shape that is recorded in an unrestricted, mobile,
in-the-wild setting and provides global camera and SMPL
root trajectories. To gauge the expected accuracy of EMDB,
we rigorously evaluate our method against ground-truth ob-
tained on a multi-view volumetric capture system [8]. These
evaluations reveal that EMDB is not only two times larger
than 3DPW, but its annotations are also more accurate.

3. Overview
Our goal is to provide a dataset with i) accurate 3D

body poses and ii) shapes alongside global trajectories of
the iii) body’s root and iv) the moving camera. This data is
obtained from electromagnetic (EM) sensor measurements
and RGB-D data streamed from a single hand-held iPhone.
We first describe the capture setup and protocol in Sec. 4.
Sec. 5 discusses our method, EMP, for the estimation of
global SMPL parameters, summarized in Fig. 2. To gauge
the accuracy of EMP, we evaluate it against ground-truth
data recorded with a multi-view volumetric system (MVS,
[8]). These evaluations are provided in Sec. 6. Finally, us-
ing EMP on newly captured in-the-wild sequences, we in-
troduce the Electromagnetic Database of Global 3D Human
Pose and Shape in the Wild, EMDB, in Sec. 7, where we
also evaluate existing state-of-the-art methods on EMDB.

4. Capture Setup
4.1. Sensing Hardware

EM sensors measure their position ps and orientation Rs

w.r.t. a source that emits an electromagnetic field. We use
the same wireless EM sensors as [23], which have an esti-
mated accuracy of 1 cm positional and 2-3 degrees angular
error. We mount the EM source on the lower back of a
participant and arrange the sensors on the lower and upper
extremities and the head and torso. For the detailed sensor
placement we refer to the Supp. Mat. All sensor data is
streamed wirelessly to a laptop for recording.

We record the subjects with a hand-held iPhone 13 Pro
Max. The record3d app [45] is used to retrieve depth and
the iPhone’s 6D pose is estimated by Apple’s ARKit. We
synchronize the data streams via a hand clap which is easy
to detect in the phone’s audio and in the EM accelerations.

4.2. Body Calibration

Before we start recording, we first scan each participant
in minimal clothing to obtain their ground-truth shape. To



Figure 2: Method overview. We first scan a subject in minimal clothing with a multi-view volumetric capture system to
obtain their reference shape parameters β and calibrate subject-specific skin-to-sensor offsets in regular clothing (left). We
subsequently fit SMPL to in-the-wild data with a multi-stage optimization pipeline. Stage 1 fits SMPL to the EM measure-
ments in EM-local space leveraging the calibrated body shape and skin-to-sensor offsets. Stage 2 aligns the local fit with the
world, by jointly optimizing over 2D keypoints, depth, camera poses, EM measurements, and the output of stage 1. Stage 3
then refines the output of stage 2 by fitting a neural implicit body model with detailed geometry and appearance to the RGB
images via a pixel-level supervision signal to boost smoothness and image-to-pose alignment.

this end, we leverage our MVS [8] and use the resulting
surface scans and 53 RGB views to register the SMPL shape
parameters β. Details on the registration pipeline can be
found in the Supp. Mat.

Subsequently, we mount the sensors and EM-source onto
the participant under regular clothing (see Fig. 2, left).
We then record a 3-second calibration sequence to deter-
mine subject-specific skin-to-sensor offsets. We first reg-
ister SMPL to the calibration sequence and follow [23] to
manually select anchor points on the SMPL mesh for every
sensor s. An anchor point is parameterized via a position
p̃s and orientation R̃s. We then compute per-sensor offsets
os = (Qs,vs) by minimizing an objective that equates the
measured orientation Rs = R̃sQs and the measured posi-
tion ps = p̃s + R̃svs (see Fig. 2, left). For this to work,
the sensor measurements must be spatially and temporally
aligned with the MVS. We thus track the EM source with
an Apriltag [27, 39, 61] and use an Atomos Ultrasync One
timecode generator [56] for temporal alignment. More de-
tails are shown in the Supp. Mat. Note that this procedure
must only be done once per sensor placement.

5. Method (EMP)

5.1. Notations and Preliminaries

The inputs to our method are EM sensor measurements
ps ∈ R3 and Rs ∈ SO(3), skin-to-sensor offsets os =
(Qs,vs), SMPL shape parameters β ∈ R10, RGB images
I ∈ R1920×1440×3, depth point clouds P = {pi | pi ∈ R3},
camera extrinsics C =

[
RC | tC

]
∈ R3×4 and intrinsics

K ∈ R3×3. Note that the EM measurements are in EM-
local space, i.e., relative to the source worn on the lower
back. From these input measurements, we aim to estimate
the SMPL body pose parameters θb ∈ R69, the SMPL root
orientation θr ∈ R3 and translation t ∈ R3 in world co-
ordinates such that they align with sensor measurements,
images, and camera poses. We fix the world space to be the
iPhone’s coordinate frame. We summarize SMPL param-
eters as Ω = (θr,θb, t,β). Note that β ∈ R10 is not an
optimization variable and is obtained a-priori (see Sec. 4.2).
All quantities usually refer to a time step t, but we omit the
time subscript for clarity unless necessary.

5.2. Multi-stage Optimization

As shown in Fig. 2, our method employs a multi-stage
optimization procedure, which we detail in the following.

Stage 1: Local EM Pose For a given sequence, we start
our optimization procedure by first finding SMPL parame-
ters Ω that best explain the EM measurements in EM-local
space. We follow EM-POSE [23] and define a reconstruc-
tion cost function Erec that measures how well the current
SMPL fit matches the sensor measurements:

Erec =

S∑
s=1

λp||ps − pv
s(M(Ω),os)||22+

S∑
s=1

λr||Rs −Rv
s(M(Ω),os)||22 , (1)



where we use the current SMPL mesh M(Ω) and skin-to-
sensor offsets os to compute virtual sensor positions pv

s and
orientations Rv

s . In addition, we penalize impossible joint
angles with a simple regularizer Ebp. The final optimization
objective of the first stage is then ES1 = λrecErec + λbpEbp.
We use a batched optimization to minimize it over all T
frames of the sequence. The output of stage 1 are the SMPL
parameters in local EM space, ΩS1 (see also Fig. 2).

Stage 2: World Alignment Due to accurate sensor data
and our body calibration procedure, the ΩS1 parameters are
already of high quality (see Sec. 6.1). However, the EM
space is not aligned with the world space. We align ΩS1

with the world in a second optimization stage such that it
fits the RGB-D observations and camera pose data. An
overview of this stage is provided in Fig. 2.

This stage is guided by a 2D keypoint reprojection loss.
Importantly, both 2D keypoints and depth are noisy and fit-
ting to them naı̈vely can corrupt the initial estimates ΩS1.
Hence, we must trade-off accurate alignment of human and
camera poses in world coordinates with the accuracy of the
local pose. Although our trust in the EM fit ΩS1 is high,
we can still achieve improvements by fitting to RGB-D data
for frames in which errors arise from sensor calibration or
occasional measurement noise. Furthermore, the temporal
alignment of EM and RGB-D data streams can be improved
by fitting to the images. We model this trade-off as a joint
optimization over all the input modalities.

We first define a 2D keypoint reprojection loss. We ex-
tract N = 25 2D keypoints from Openpose [6] denoted by
xi ∈ R2. The 3D keypoints X(Ω) are obtained via a linear
regressor from the SMPL vertices. We then use the cam-
era parameters to perspectively project the 3D keypoints (in
homogenous coordinates), x̂i = K

[
RC | tC

]
X(Ω)i. The

reprojection cost is then defined as

E2D =

N∑
i=1

I [ci ⩾ τ ] · ρ(x̂i − xi) (2)

where ρ is the Geman-McClure function [10], ci is the con-
fidence of the i-th keypoint as estimated by Openpose and
I the indicator function. We set a high confidence threshold
τ = 0.5 in Eq. (2) to account for keypoint noise. Yet, even
high confidence keypoints can be wrong. To ensure high
quality of the ground-truth annotations provided in EMDB,
we carefully review the keypoint predictions by Openpose
and manually correct them for challenging samples.

We add two EM-related cost terms to this stage’s opti-
mization to further constrain the 3D pose. The first term is
the EM reconstruction cost Erec from Eq. (1). Note that here
we only optimize the SMPL body pose θb when computing
the cost, denoted as E∗

rec. The second term is an additional

prior on the body pose θS1
b found in the first stage:

Eprior = ||θS1
b − θb∥|22. (3)

This Eprior formulation is similar to the one of HPS [14].
However, we found that the addition of Eprior alone is not
sufficient and E∗

rec plays a crucial role (see Sec. 6.1).
Finally, we incorporate the iPhone’s point clouds P .

Since the point clouds are noisy, they mostly serve as a reg-
ularizer for the translation t with the following term:

Epcl =
1

|Ph|
∑

pi∈Ph

d(pi,M(Ω)). (4)

Here, d(·) finds the closest triangle on the SMPL mesh
M(Ω) and then returns the squared distance to either the
triangle’s plane, edge, or vertex. Ph is a crop of P , where
the human is isolated via masks provided by RVM [32]. The
final second stage objective is thus:

ES2 = λ2DE2D + λrecE
∗
rec + λpriorEprior + λpclEpcl (5)

We optimize this objective frame-by-frame and use the
previous output as the initialization for the next frame. The
output of this stage is ΩS2 (see also Fig. 2). For the very first
frame, we initialize tS2 as the mean of Ph. All sequences
start with a T-pose where the subject is facing the camera,
so that it is easy to find an initial estimate of θS2

r .

Stage 3: Pixel-Level Refinement Stage 2 finds a good
trade-off between accurate poses and global alignment (see
Sec. 6.1). However, the jitter in the 2D keypoints causes
temporally non-smooth estimates. Reducing the jitter by
manually cleaning 2D keypoints is not viable. Instead, we
add a third stage to EMP (see also Fig. 2) in which we fol-
low recent developments in neural body modelling for in-
the-wild videos. For every sequence, we fit a neural implicit
model of clothed human shape and appearance to the RGB
images by minimizing a dense pixel-level objective.

More specifically, we leverage Vid2Avatar (V2A [13])
to model the human in the scene as an implicit signed-
distance field (SDF) representing surface geometry and a
texture field, while the background is treated as a separate
neural radiance field (NeRF++) [71]. The SDF is modelled
in canonical space and deformed via SMPL parameters Ω
to pose the human. Then, given a ray r = (o,v) whose
origin o is the camera center and v its viewing direction, a
color value C(r) can be computed via differentiable neural
rendering and is compared to the actual RGB value Ĉ(r) to
formulate a self-supervised objective:

Ergb =
1

|Rt|
∑
r∈Rt

|C(r)− Ĉ(r)| (6)

where Rt is the set of all rays that we shoot into the scene
at frame t. Importantly, C(r) depends on the SMPL poses



Method MPJPE-PA MPJAE-PA Jitter
[mm] [deg] [10m s−3]

ROMP [51] 57.9 ± 23.6 19.8 ± 6.3 49.0 ± 10.6
HybrIK [29] 50.4 ± 22.3 19.0 ± 5.8 33.3 ± 7.1
Vid2Avatar [13] 50.2 ± 22.8 18.1 ± 6.2 38.7 ± 8.0
LGD [49] 61.1 ± 31.9 20.1 ± 8.0 68.9 ± 10.2
Stage 1 26.0 ± 8.6 10.9 ± 3.1 6.0 ± 2.9
Stage 2 (no E∗

rec) 31.6 ± 14.1 12.7 ± 4.5 26.8 ± 3.7
Stage 2 (no Eprior) 35.4 ± 14.2 11.6 ± 3.9 23.0 ± 3.3
Stage 2 23.7 ± 7.5 10.5 ± 3.0 21.7 ± 3.7
Stage 3 (after ES3) 23.5 ± 7.6 10.6 ± 3.1 12.7 ± 2.5
Stage 3 (EMP) 23.4 ± 7.5 10.6 ± 3.1 3.5 ± 1.0

Table 1: Comparison of EMP to existing RGB-based meth-
ods (top) and self-ablations (middle/bottom) on ground-
truth data obtained with our multi-view capture system.

Figure 3: Evaluation of global trajectories on our MVS.

Ω that are optimized jointly together with the parameters
for the human and background fields. Along with Ergb,
the original formulation of V2A minimizes two other objec-
tives: the Eikonal loss Eeik and a scene decomposition loss
Edec to disentangle the human from the background. For
more details we refer the reader to [13]. We initialize the
SMPL parameters Ω with the outputs of the second stage
ΩS2 and add a pose regularization term Ereg = ||θ − θS2||22
(where θ := [θr,θb]) to encourage solutions to stay close
to the initializations. The final third stage objective for a
single time step is thus (omitting weights λ for brevity):

ES3 = Ergb(ωh,ωb)+Eeik(ωh)+Edec(ωh)+Ereg(θ), (7)

where ωh summarizes the parameters for the human field,
including SMPL pose parameters Ω, and ωb summarizes
the weights of the background field. This objective is mini-
mized over all T frames of the given sequence and produces
outputs ΩS3, which are noticeably less jittery (see Sec. 6.1).

6. Evaluation
6.1. Pose Accuracy

To estimate the accuracy of EMP we recorded a num-
ber of sequences with the same capture setup as we use for

Figure 4: Effect of Stage 3. We visualize the output of stage
2 (second column) and the refined output of stage 3 (third
column) showing improved pose-to-image alignment. The
two right-most columns show the rendering of the entire
scene and the separated human (foreground).

the in-the-wild sequences, but the motions are performed on
our MVS [8] that is synchronized with the EM sensors and
the iPhone. We use the surface scans and 53 high-resolution
RGB views from this stage to procure SMPL ground-truth
registrations (see Supp. Mat. for details), which we can then
compare to the outputs of EMP to estimate its accuracy. We
have recorded a total of 21 sequences (approx. 13k frames)
distributed over all 10 participants for this evaluation. The
respective ablation studies and comparisons to other meth-
ods are listed in Tab. 1.

The closest related in-the-wild dataset to ours is 3DPW
[59]. It is also the only other dataset that provides ground-
truth evaluations of their method. As different sensor tech-
nologies are used, a direct comparison to their method is
not feasible. Still, to allow for a comparison of the esti-
mated accuracy, we compute and report the same metrics as
[59], i.e., the Procrustes-aligned mean per-joint positional
and angular errors (MPJPE-PA, MPJAE-PA). To measure
smoothness, we follow TransPose [67] and report their jit-
ter metric. In addition we show qualitative comparisons to
3DPW with similar motions in the Supp. Mat.
Results: Tab. 1 allows to draw several conclusions. First,
recent monocular methods - whether they use ground-truth
bounding boxes (HybrIK [29]) or not (ROMP [51]) - are
far below EMP’s accuracy. Also V2A [13] suffers without
good initial poses. LGD [49], which uses 2D keypoints in
a hybrid optimization and outperforms SPIN [26] and Sim-
plify [4] on 3DPW, underperforms compared to EMP. This
highlights a clear need for sensor-based methods to procure



high-quality 3D poses.
Second, Tab. 1 ablates the contributions of the multi-

stage design of EMP. We observe that the first stage, which
only fits to the EM measurements, already produces good
results. Further, the joint optimization in our second stage
finds a good trade-off and even improves the initial poses
from the first stage via the addition of E∗

rec and Eprior.
Lastly, the third stage only improves the pose marginally,
but helps with smoothness and image alignment (“after
ES3” in Tab. 1). We perform a light smoothing pass as a
post-processing step on the outputs of ES3. We found that
this further reduces jitter without breaking pose-to-image
alignment. For a visualization of the effect of stage 3, as
well as renderings of the neural implicit human model and
the scene, please refer to Fig. 4. Note that naı̈vely smooth-
ing the outputs of the second stage impacts the alignment
negatively, which we show in the Supp. Mat.

6.2. Global Trajectories

iPhone Pose Accuracy We first compare the iPhone’s
self-localized poses using optical tracking with our MVS.
To do so we rigidly attach an Apriltag [27, 39, 61] to the
iPhone and move the pair around. An Apriltag of roughly
5 cm side length can be tracked with millimeter accuracy.
To compare its pose to the iPhone’s pose, we must com-
pute an alignment, the details of which are reported in the
Supp. Mat. After alignment, the difference between the
iPhone and Apriltag trajectories on a 15 second sequence is
1.8± 0.9 cm and 0.4± 0.2 deg respectively.

Global SMPL Trajectories To evaluate the accuracy of
the global trajectories, we asked half of our participants to
move freely in the capture space while we track the iPhone
with an Apriltag as above. This enables us to align the
iPhone’s and the MVS’ tracking frames. For details, please
refer to the Supp. Mat. After alignment, we compute the
Euclidean distance between EMP’s predicted trajectory and
the ground-truth trajectory obtained on the stage. Over 5
sequences (approx. 3.9k frames) we found that EMP’s tra-
jectories are on average 5.1 ± 3.2 cm close to the ground-
truth, which is low considering a capture space diameter of
2.5 meters (see Fig. 3 for a visualization).

To gauge the accuracy of the global trajectories in-the-
wild, where we cannot track the iPhone, we asked some
participants to return to the starting point at the end of the
sequence. This allows us to compute a measure of drift
for the in-the-wild sequences. For an indoor sequence of
81 meters, this error is 23.4 cm (or 0.3% of the total path
length) and for an outdoor sequence of 112 meters length it
is 73.0 cm (0.7%) respectively (see also Fig. 9 for a visual-
ization).

Dataset # number of: Size PA Accuracy Global
subj. seqs. [min.] MPJPE MPJAE Traj.

3DPW [59] 7 60 29.3 2.6 cm 12.1 ° ✗
EMDB (Ours) 10 81 58.3 2.3 cm 10.6 ° ✓

Table 2: Comparison to in-the-wild datasets that provide
evaluations of their accuracy. PA: Procrustes-aligned.

Figure 5: Scatter plot of first two principal components
computed on 3DPW and EMDB in VPoser’s [42] latent
space and associated 3D poses for selected data points.

Figure 6: Distribution of sequence lengths in seconds in
EMDB and 3DPW (thicker line from 1st to 3rd quartile).

7. EMDB
7.1. Dataset Overview

EMDB contains 10 participants (5 female, 5 male), who
were recorded in a total of 81 sequences at 30 fps, result-
ing in 104, 963 frames or 58.3 minutes of motion data. We
plot the distribution of sequence lengths in Fig. 6. The eth-
nic distribution of participants in EMDB is: Middle Eastern
(1), Asian (3), Caucasian (6). For a summary of statistics
and comparison to other in-the-wild datasets that provide
evaluations, please refer to Tab. 2. Of the 105k frames con-
tained in EMDB, approx. 85% are recorded in-the-wild (in-
doors or outdoors) and the rest were recorded on our MVS.
Please refer to the Supp. Mat. for detailed descriptions of
every sequence as well as the distribution of body shapes.



Method MPJPE ↓ MPJPE-PA ↓ MVE ↓ MVE-PA ↓ MPJAE ↓ MPJAE-PA ↓ Jitter ↓
[mm] [mm] [mm] [mm] [deg] [deg] [10m s−3]

PyMAF [70] 131.1 ± 54.9 82.9 ± 38.2 160.0 ± 64.5 98.1 ± 44.4 28.5 ± 12.5 25.7 ± 10.1 81.8 ± 25.6
LGD [49] 115.8 ± 64.5 81.1 ± 51.1 140.6 ± 75.8 95.7 ± 56.8 25.2 ± 13.3 25.6 ± 15.3 73.0 ± 38.5
ROMP [51] 112.7 ± 48.0 75.2 ± 33.0 134.9 ± 56.1 90.6 ± 38.4 26.6 ± 10.4 24.0 ± 8.7 71.3 ± 25.3
PARE [25] 113.9 ± 49.5 72.2 ± 33.9 133.2 ± 57.4 85.4 ± 39.1 24.7 ± 9.8 22.4 ± 8.8 75.1 ± 22.5
GLAMR [69] 107.8 ± 50.1 71.0 ± 36.6 128.2 ± 58.5 85.5 ± 40.9 25.5 ± 12.6 23.5 ± 11.4 67.4 ± 32.3
FastMETRO-L [7] 115.0 ± 95.1 72.7 ± 47.4 133.6 ± 109.7 86.0 ± 55.4 25.1 ± 16.0 22.9 ± 12.7 81.3 ± 38.7
CLIFF [30] 103.1 ± 43.7 68.8 ± 33.8 122.9 ± 49.5 81.3 ± 37.9 23.1 ± 9.9 21.6 ± 8.6 55.5 ± 17.9
FastMETRO-L* [7] 108.1 ± 52.9 66.8 ± 36.6 119.2 ± 59.7 81.2 ± 43.9 n/a n/a 185.9 ± 51.0
HybrIK [29] 103.0 ± 44.3 65.6 ± 33.3 122.2 ± 50.5 80.4 ± 39.1 24.5 ± 11.3 23.1 ± 11.1 49.2 ± 18.5

Table 3: Evaluations of state-of-the-art methods on EMDB 1. Ordered descendingly by MPJPE-PA. Best results in bold,
second best underlined. FastMETRO-L*: version without SMPL regression head, i.e., the MPJPE is only evaluated on 14
joints as dictated by its model architecture.

Further, to shed more light onto pose diversity of EMDB
compared to our closest related work, 3DPW [59], we
project all poses of both datasets into VPoser’s [42] la-
tent space, run PCA and plot the first two principal com-
ponents in Fig. 5. We make several observations: i) EMDB
covers a larger area than 3DPW. ii) The additional area is
made up of complex and diverse poses. iii) The highlighted
poses of 3DPW around the lower boundary lack diversity.
iv) Outliers on 3DPW can be broken poses, while the clos-
est EMDB pose is still valid (see right-most pose pair).

We provide visualizations of our dataset’s quality in
Fig. 7. The recording of this dataset has been approved by
our institution’s ethics committee. All subjects have partic-
ipated voluntarily and gave written consent for the capture
and the release of their data.

7.2. Baselines on EMDB

We evaluate two tasks on EMDB: camera-local 3D hu-
man pose estimation from monocular RGB images and the
emerging task of global trajectory prediction. To this end
we partition EMDB into two parts: EMDB 1, which con-
sists of our most challenging sequences (17 sequences of
a total of 24 117 frames), and EMDB 2 with 25 sequences
(43 120 frames) featuring meaningful global trajectories.

Monocular RGB-based Pose Estimation We evaluate a
total of 8 recent SOTA methods on EMDB 1. Please re-
fer to Tab. 3 for an overview of the results. We follow
the AGORA protocol [41] and compute the MPJPE and
MVE metrics with both a Procrustes alignment (*-PA) and
a hip-alignment pre-processing step. In addition, we fol-
low sensor-based pose estimation work and report the joint
angular error MPJAE and the jitter metric [67].

To provide a fair evaluation and comparison between
baselines, we provide ground-truth bounding boxes for
methods that accept them or tightly crop the image to the
human and re-scale it to the resolution the method requires.

Hence only ROMP [51] takes the input images as is. Also,
we exclude the few frames where the human is entirely oc-
cluded. We use the HRNet version of HybrIK [29] – an
improved variant of their originally published model. For
FastMETRO [7] we use their biggest model (*-L) and evalu-
ate both with and without the SMPL regression head. None
of the methods are fed any knowledge about the camera and
comparisons to the ground-truth are performed in camera-
relative coordinates. We use the SMPL gender(s) that the
respective method was trained with.
Results: Tab. 3 reveals HybrIK [29] as the best performer.
Nonetheless, an MPJPE-PA error of > 65 mm suggests that
there is a lot of room for improvement. As is noted in
AGORA [41], we highlight that the MPJPE-PA is a very
forgiving metric due to the Procrustes alignment that re-
moves rotation, translation, and scale. We have noticed
that a good MPJPE-PA does not always translate to visu-
ally pleasing results, a circumstance that the rather high jit-
ter and MPJPE value for all baselines supports (see also the
supp. video). Similarly we observe very high standard de-
viations, which is a metric that tends to have been neglected
by common benchmarks. Furthermore, we notice high an-
gular errors of > 23◦ on average for all methods. These re-
sults and the fact that we used ground-truth bounding-boxes
for all methods except ROMP, suggest that there is ample
space for future research in this direction using EMDB.

We show selected results for each baseline in Fig. 7 and
further highlight a common failure case in Fig. 8 where the
baseline method fails to capture the lower arm rotations.
Note that such a failure case is not accounted for by the
MPJPE metric, which is why we also report angular errors.

Global Trajectory Estimation As a second task, we
evaluate GLAMR [69] on EMDB 2. We use GLAMR’s
publicly available code to run and evaluate its performance.
This protocol computes global MPJPE, MVE, and acceler-
ation metrics on windows of 10 seconds length, where the



Figure 7: Example images and reference poses appearing
in EMDB, alongside comparisons to the outputs of recent
state-of-the-art RGB-based pose estimation methods.

beginning of each window is aligned to the ground-truth
trajectory. We found that GLAMR achieves a G-MPJPE
of 3 193 mm, a G-MVE of 3 203 mm and acceleration of
12.6 mm s−2. We visualize one sequence in Fig. 9, where
we observe that the GLAMR prediction drifts significantly
from our provided trajectories. We believe EMDB will help
to boost future method’s performance on this task.

Figure 8: Common failure case where the baseline (here
ROMP [51]) fails to capture the lower arm rotations.

Figure 9: (Left) GLAMR [69] results projected into the
camera at the start and end of a loop-closing sequence.
(Right) GLAMR’s global trajectories compared to ours.

8. Conclusion

Conclusion We present EMDB, the first comprehensive
dataset to provide accurate SMPL poses, shapes and tra-
jectories in an unrestricted, mobile, in-the-wild setting. Our
results indicate a clear need for sensor-based performance
capture to procure high-quality 3D human motion and push
the boundaries of monocular RGB-based pose estimators.

Limitations EMDB does not contain multi-person se-
quences, because using multiple EM systems requires non-
trivial changes to avoid cross-talk and interference between
sensors. Furthermore, there are no sensors on the feet as
indoor floors often contain metal beams that would disturb
the readings. Lastly, the quality of our camera trajectories
is upper-bounded by the quality of Apple’s AR toolkit.
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