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A. Details on EMDB’s Contents

We describe the activity of each sequence appearing in
EMDB in more detail in Tab. 4 and Tab. 5. From these ta-
bles we note that 55.4% (44.6%) of all frames in EMDB
are performed by female (male) participants. Furthermore,
15.5% of all data was recorded on our multi-view volumet-
ric capture system (MVS, [7]), 12.7% was recorded indoors
(but not on the MVS) and the remaining 71.8% of EMDB
were captured outdoors.

Figure 10: Sensor placement and recording setup. The
Apriltag on the source is only required for the body cali-
bration.

B. Sensor Placement

We place sensors under regular clothing as shown in
Fig. 10. All sensors communicate wirelessly with two re-
ceivers plugged into a recording laptop via USB. The laptop
usually stays within 3-4 meters of the participant to min-
imize packet loss. The sensors measure their position and
orientation relative to the EM field emitting source mounted
on the lower back. For more details please refer to [10]. As
seen in Fig. 10 an Apriltag [12, 15, 22] is attached to the
source, which we only require for the body calibration as
explained in more detail in Sec. D. Sensors and source are
battery-powered, which can all be neatly stowed away un-
der regular clothing. For a depiction of how the sensors are
strapped to the body, please refer to Fig. 13.

C. SMPL Registration to Multi-View Data

In this section we explain how we obtain SMPL [14]
ground-truth registrations from data recorded with our MVS
[7]. We use the same procedure to obtain the ground-truth
SMPL shape β on minimally clothed scans as mentioned in
Sec. 4.2 of the main paper and to register SMPL parameters



Subj. Seq. Loc. Activity # FramesID ID
P0 0 MVS arm rotation, leg raises,

jump
381

P0 1 MVS walk, crouch, bend,
arm swing, arm raises

554

P0 2 MVS punches, pirouette, leg curls 543
P0 3 MVS upper body range of motion 661
P0 4 MVS upper body range of motion 667
P0 5 MVS kicks, punches, leg raises,

arm swings
635

P0 6 I jumping, swirl, boxing 858
P0 7 O lunges, push-ups 1 277
P0 8 O remove jacket 591
P0 9 O long walk, straight line 2 009
P0 10 O range of motion 1 183

P1 11 MVS range of motion 951
P1 12 MVS walk in circle, punch, kick,

crouch, upper body twist
991

P1 13 O very long walk 4 028
P1 14 O climb on platform, sit,

jog around platform
1 284

P1 15 O range of motion 1 348
P1 16 O warm-up, side-stepping,

push-ups
1 365

P2 17 MVS arm and leg motions, jump 574
P2 18 MVS occluded arm motions,

crouch
577

P2 19 I walk off stage 1 299
P2 20 O long walk 2 713
P2 21 O sit, stand and balance 1 272
P2 22 O play with basketball 1 438
P2 23 O hug tree 1 086
P2 24 O long walk, climbing 3 280

P3 25 MVS walk while moving arms 528
P3 26 MVS cross arms, arm motions

with occlusions, squats
557

P3 27 I/O walk off stage 1 448
P3 28 O lunges while walking 1 836
P3 29 O walk up stairs 1 205
P3 30 O walk down stairs 1 128
P3 31 O workout 1 216
P3 32 O soccer warmup 1 1 084
P3 33 O soccer warmup 2 1 433

P4 34 MVS walk, upper body twist, arm
motions

541

P4 35 I walk along hallway 1 226
P4 36 O long walk 2 160
P4 37 O jog in circle 881

Total 46808

Table 4: More detailed description of the sequences appear-
ing in EMDB for subjects P0 to P4 (male participants). For
subjects P5 to P9 please refer to table Tab. 5. Loc. refers
to where the recording took place (MVS: In our multi-view
volumetric capture studio, I: Indoor, O: Outdoor). The data
is recorded at 30 fps (26 minutes).

Subj. Seq. Loc. Activity # FramesID ID
P5 38 MVS arm and leg motions 500
P5 39 MVS walk and jog in circle 600
P5 40 I walk in big circle 2 661
P5 41 I jog in circle, workout 1 762
P5 42 I freestyle dancing 1 291
P5 43 I drink water 1 400
P5 44 I range of motion 1 381

P6 45 MVS range of motion 994
P6 46 MVS jumping jacks, lunges,

squats, torso twists
1 005

P6 47 O slalom with occlusions 677
P6 48 O walk down slope 1 959
P6 49 O walk down and up big stairs 1 559
P6 50 O workout 1 532
P6 51 O dancing, lunges 1 427
P6 52 O walk behind low wall 509

P7 53 MVS range of motion, walk 967
P7 54 MVS crouching, arm crossing,

jump, balance on one leg
1 045

P7 55 O long walk 2 179
P7 56 O walk stairs up and down 1 120
P7 57 O lie, rock on chair 1 558
P7 58 O parcours! 1 332
P7 59 O range of motion 1 839
P7 60 O push-ups, dips,

jumping jacks
1 693

P7 61 O sit on bench, walk 1 914

P8 62 MVS freestyle movement 1 035
P8 63 MVS range of motion with occlu-

sions
1 007

P8 64 O skateboarding 1 704
P8 65 O walk straight line 1 981
P8 66 O range of motion 1 808
P8 67 O sprint back and forth 801
P8 68 O handstand 1 606
P8 69 O cartwheel, jump 656

P9 70 MVS range of motion 1 045
P9 71 MVS jog in circle, head motions 970
P9 72 O jump on bench 707
P9 73 O body scanner motions 1 264
P9 74 O range of motion 1 814
P9 75 O slalom around tree 1 117
P9 76 O sitting 1 768
P9 77 O walk stairs up 728
P9 78 O walk stairs up and down 1 083
P9 79 O walk in rectangle 1 917
P9 80 O walk in big circle 2 240

Total 58155

Table 5: More detailed description of the sequences appear-
ing in EMDB for subjects P5 to P9 (female participants).
For subjects P0 to P4 please refer to table Tab. 5. Loc. refers
to where the recording took place (MVS: In our multi-view
volumetric capture studio, I: Indoor, O: Outdoor). The data
is recorded at 30 fps (32.3 minutes).



Figure 11: Shapes of all 10 participants appearing in
EMDB. For reference, the height of P0 is 177 cm.

for the pose accuracy evaluations in Sec. 6.1 of the main
paper.

Our MVS provides high-quality 3D scans (in the form
of watertight meshes with 40k vertices) and high-resolution
RGB images from 53 camera views. We fit an SMPL [14]
model parameterized by Ω = (θr,θb, t,β) to this data. We
use a gender-specific model with the gender that our par-
ticipants have indicated on a respective questionnaire or a
neutral body model if they chose not to answer that ques-
tion. For a visualization of scans and registrations, please
refer to Fig. 12.

C.1. 3D Keypoint Triangulation

We start the registration process by detecting Openpose
2D keypoints [5, 6, 18, 23] in the multi-view camera im-
ages. When we record sequences with the MVS and the
iPhone together, some of the RGB images will show mul-
tiple people, i.e., including the person holding the iPhone.
This would require running a person-tracker to isolate the
correct Openpose Keypoints. To avoid this complication,
we instead back-project the high-quality scans obtained
from the MVS into the camera views with a white back-
ground and then run Openpose on these images. Note that
the quality of the scans is not affected by the presence of a
second person on the capture stage, as the assistant holding
the iPhone is outside the calibrated capture volume. Given
the 2D keypoint detections in the various views, we triangu-
late 3D keypoints using ordinary least squares to solve the
over-determined linear system. This produces 25 3D key-
points per time step in COCO format, denoted as x3D

i .

C.2. SMPL Fitting

After triangulation, we employ an optimization proce-
dure to fit SMPL to the 3D keypoints and scans follow-
ing [1, 17]. Our implementation follows code published by
[3, 4] and uses PyTorch [16]. We explain the optimization
terms and details of the fitting procedure in the following.
3D Keypoint Term To optimize the pose, a 3D keypoint
term is used, where keypoints x̂3D

j are extracted from the
SMPL joints X(Ω) via a pre-defined mapping, and x3D

j

are the triangulated points described in Sec. C.1. Joints are
weighted via wj ∈ R.

EJ =
1

J

J∑
j=1

wj · ||x3D
j − x̂3D

j ||22 (8)

Surface Term To incorporate dense surface information
from our scans, we use the following term:

ES =
1

|V|
∑
v∈V

ρ(d(v,M(Ω)))+

1

|M(Ω)|
∑

m∈M(Ω)

ρ(d(m,V)) (9)

where V is the set of points sampled from the scan, M the
SMPL mesh, d(p,R) measures the squared Euclidean dis-
tance of a point p ∈ R3 to the closest vertex in the point
cloud R and ρ is a generalized robustifier [2]. We sample
|V| = 50 000 points on each scan. To encourage the SMPL
mesh to lie within the scan, we follow [1] and enforce all
points v ∈ V that lie outside of the SMPL mesh M to move
inside by increasing their weight in the surface term ES.
Regularization It may happen that the SMPL spine is bent
unnaturally leading to bulging belly artifacts. To counter-
act this, we leverage the tracked Apriltag pose on the EM
source strapped to the lower back to add a regularizer Espine.
This prior enforces that a set of hand-picked SMPL vertices
that are close to the Apriltag remain close to it. We further
add regularizers Ereg to penalize impossible joint angles.
Optimization Details We use Adam [11] and optimize a
given sequence frame-by-frame where we use the previ-
ous output as the initialization for the current time step.
For every frame, we use two optimization stages. In the
first stage we optimize for all parameters Ω using terms
EJ, ES, Espine, Ereg. In the second stage we use the same
terms, but refine the pose parameters only (θb,θr).
Shape To deal with shape ambiguity that is caused by
loose clothing, AGORA [17] uses Graphonomy [8] to ob-
tain a skin-cloth segmentation. To avoid this rather time-
consuming procedure, we instead disentangle the shape
from the pose optimization. To do so, we first scan partic-
ipants in minimal, tight-fitting clothing while they perform
an easy A-pose. We then run the registration pipeline on



Figure 12: Examples of raw scans (left) and our resulting
SMPL registrations (middle). (Right) Scan and SMPL reg-
istration overlaid.

this sequence to obtain the shape β ∈ R10. Henceforth,
the shape is fixed and no longer treated as an optimization
parameter.

D. Body Calibration Details
In this section we provide more details on how we cal-

ibrate skin-to-sensor offsets for each subject as mentioned
in Sec. 4.2 of the main paper.

D.1. EM and MVS Alignment

To compute skin-to-sensor offsets we must first spatially
and temporally align the EM space with our MVS. For tem-
poral alignment we use the Atomos Ultrasync One Box [20]
to generate a timecode that we feed via LTC to our MVS
and the EM sensors. Both the cameras and the EM sensors
can be triggered via LTC timecode allowing for a precise
temporal alignment.

For the spatial alignment we track the EM source on the
lower back with an Apriltag [12, 15, 22]. For a visualiza-
tion please refer to Fig. 13. We track the EM source because
the origin of the EM’s coordinate system is the source. The
Apriltag is a square with a side length of roughly 5 cm. With
53 RGB cameras with a resolution of 4 088 × 3 000 pixels
we can triangulate the Apriltag’s keypoints with millimeter
accuracy. Only tracking the Apriltag is however not enough
to align the coordinate frame of the MVS with the coordi-
nate frame of the EM. This is because there is a constant
rigid offset between the Apriltag and the center of the EM
source where the origin of the EM coordinate frame is lo-
cated. We thus need to determine this offset.

To do so we track an additional S EM sensors with S
Apriltags and move the sensors around for roughly 15 sec-

onds while recording both EM and image data. This allows
us to formulate an optimization procedure that solves for
the rigid constant offset between the Apriltag on the source
and the unknown origin of the EM coordinate system.

For a calibration sequence of T frames, let
{(pE

s,t,R
E
s,t)}Tt=1 be the position and orientation mea-

surements for each sensor 1 ⩽ s ⩽ S in the EM-local
coordinate system, i.e., relative to the source. Further, we
assume time-synchronized 6-DoF Apriltag measurements
{(qW

s,t,U
W
s,t)}Tt=1 for each sensor s in the world coordinate

system, i.e., the MVS’ coordinate frame. We denote the
measurement of the Apriltag attached to the source with
index s = 0. Here q ∈ R3 and U ∈ SO(3).

Assuming an unknown rotational offset Ro
0 ∈ SO(3)

and an unknown translational offset to
0 ∈ R3 that describes

the offset from the Apriltag on the source to the source cen-
ter, we can compute the position of that origin in world co-
ordinates as:

U̇W
0,t = UW

0,t ·Ro
0

q̇W
0,t = U̇W

0,t · to
0 + qW

0,t (10)

We abbreviate Eq. (10) with a general function
σ(q,U, to,Ro) that applies offsets (to,Ro) to positions
and orientations (q,U). This is, we re-write Eq. (10)

q̇W
0,t, U̇

W
0,t = σ(qW

0,t,U
W
0,t, t

o
0,R

o
0) (11)

Having determined the origin of the EM source in world
space, i.e., (q̇W

0,t, U̇
W
0,t) we can now map all EM sensor mea-

surements into the world:

RW
s,t = U̇W

0,t ·RE
s,t

pW
s,t = U̇W

0,t · pE
s,t + q̇W

0,t (12)

As there is another rigid offset between the sensors’ mea-
surements in world space and the Apriltags attached to each
sensor, we thus model another set of rigid rotational and
translational offsets for every sensor (to

s,R
o
s) and compute

p̂W
s,t, R̂

W
s,t = σ(pW

s,t,R
W
s,t, t

o
s,R

o
s) (13)

With this, we formulate the objective:

argmin
Os

T∑
t=1

S∑
s=1

||p̂W
s,t − qW

s,t||22 + ||R̂W
s,t −UW

s,t||22 (14)

where Os = {(to
s,R

o
s)}Ss=0. To sufficiently constrain this

optimization we use S = 5 sensors and move them around
randomly for 15 seconds, i.e., T = 450. The output of
this spatial alignment are the offsets of the source O0. Note
that the Apriltag is rigidly glued to the EM source, i.e., this
procedure must only be done once.



Figure 13: Visualization of coordinate frames and Apriltags
involved for the body calibration procedure (see Sec. D.1).

D.2. Computing Skin-To-Sensor Offsets

With the source offsets O0 obtained in Sec. D.1 we can
now move EM sensor measurements into the MVS’ coordi-
nate frame using Eq. (12). This and our SMPL registration
pipeline described in Sec. C allows us to compute skin-to-
sensor offsets os = (vs,Qs) which are required for EMP’s
stage 1.

To do so, we first define anchor points parameterized as
a position p̃s and orientation R̃s on the SMPL mesh. The
position p̃s is simply the position of a hand-picked vertex
and the orientation R̃s can be constructed using any adja-
cent vertex and the corresponding vertex normal. Note that
manually picking those anchor points on the SMPL mesh
must only be done once.

Next, we take the registered SMPL meshes of a short
3-second calibration sequence and apply unknown offsets
(vs,Qs) to the anchor points to obtain virtual sensor orien-
tations Rv

s,t = R̃s,tQs and virtual sensor positions pv
s,t =

R̃s,tvs + p̃s,t. We then equate the virtual measurements
to the real measurements (which have been rotated to world
space with O0) and optimize for the sensor offsets:

argmin
vs,Qs

T∑
t=1

||pW
s,t − pv

s,t||22 + ||RW
s,t −Rv

s,t||22 (15)

The output of this optimization are subject-specific skin-
to-sensor offsets {os}Ss=1 which we compute for every par-
ticipant and every capture session.

E. Stage 3 Smoothing
As mentioned in the main paper in Sec. 6.1, we perform

a light smoothing pass on the outputs obtained by mini-

Figure 14: Effect of smoothing. The output of stage 2 (sec-
ond to left) is jittery, but in this time instance well aligned
with the image. Smoothing the output of stage 2 breaks this
alignment (second to right). This is not the case for the out-
puts of stage 3 (right). Here, the pose is well aligned with
the image observations while having a similar level of jitter
as the naı̈vely smoothed outputs of stage 2.

mizing ES3. Because this only requires a light adjustment,
it does not break pose-to-image alignment. Note that the
same could not be said if we were to simply omit stage 3
and smooth the outputs of stage 2. To achieve the same re-
duction in jitter by smoothing stage 2, a more aggressive
smoothing pass is required, which will lead to misalign-
ments, especially in fast motions. We show and discuss such
a case in Fig. 14.

In the smoothing pass, we smooth the SMPL parameters
θr,θb, t using a Savitzky-Golay filter with a window length
of 7 and a second order polynomial. For the translation t
we can directly apply the filter. For the SMPL body and
root orientations, we first convert them into quaternions and
apply the filter to each coordinate of the quaternions sepa-
rately. For this to work, it is important to ensure that the
quaternions are continuous because the quaternion q repre-
sents the some rotation as the quaternion −q. Hence, we
first make sure the sign of a quaternion does not flip within
a given sequence before we apply the filter. After the fil-
ter is applied, we normalize the quaternions to ensure valid
rotations and convert them back to the angle-axis format.

F. Visual Comparison to 3DPW
In the main paper we compare quantitately to 3DPW [21]

(see Sec. 6.1). Here we also show a few visual comparisons
(see Fig. 15). To do so we recorded a similar motion se-
quence where the participant is walking around poles and
is briefly occluded. In Fig. 15 we observe higher fidelity
SMPL fits in our results.

G. Fine-tuning with EMDB
We fine-tune an existing human pose estimation method

with EMDB and investigate how this influences the perfor-
mance on 3DPW (see Tab. 6). For this example, we use
ROMP [19] and their publicly available code. The first row



Figure 15: Visual comparison to 3DPW [21] on a similar
sequence. We observe sometimes large image-to-pose mis-
alignments (top left) as well as unrealistic poses (top right)
in 3DPW. In contrast, we provide better alignment and more
accurate poses for similar (bottom left) or even higher levels
of occlusion (bottom right).

Method MPJPE PA-MPJPE
ROMP (HRNet, w/o 3DPW) 83.9 54.1
ROMP + EMDB fine-tuning 80.8 52.6

Table 6: Effect of fine-tuning ROMP [19] on EMDB, eval-
uated on the test set of 3DPW, using ROMP’s official, pre-
trained model.

in Tab. 6 reports the result on 3DPW of their pre-trained
model that has never seen 3DPW before. We observe that
the joint errors on 3DPW decrease after fine-tuning this
model with EMDB, which further higlights the usefulness
of EMDB.

H. Evaluation of Global Trajectories
H.1. Camera Trajectory

In Sec. 6.2 of the main paper we measure the accuracy of
the iPhone’s self-localized 6D poses. To do so, we attach an
Apriltag rigidly to the iPhone and record both iPhone poses
and Apriltag 6D poses on our MVS. This allows us to com-
pare the iPhone’s poses with the Apriltag tracking. How-
ever, the former are in the iPhone’s own coordinate system,
while the latter are relative to the MVS’ tracking space (be-
cause we triangulate the Apriltag with the known calibra-
tion of the MVS). In addition, there is a constant rigid off-
set between the iPhone’s sensor origin and the Apriltag. We
thus solve an optimization problem to align the two spaces,
which is explained in the following. Note that this problem
is very similar to the optimization we run to align the EM
space with the MVS as described in Sec. D.1.

Figure 16: Visualization of optically tracked (blue) and self-
localized (red) iPhone trajectory.

We are given triangulated Apriltag positions qW
t ∈ R3

and orientations UW
t ∈ SO(3) in the MVS’ coordinate sys-

tem (here the world) and iPhone positions pi
t ∈ R3 and

orientations Ri
t ∈ SO(3) in the iPhone’s coordinate frame.

We first move the iPhone’s 6D pose into the world with
an unknown rigid transformation Ti→W =

[
Ri→W | ti→W

]
to obtain

pW
t = Ti→W · pi

t

RW
t = Ri→WRi

t (16)

Next, we model an unknown translational and rotational
offset (to,Ro) to account for the constant rigid offset be-
tween the Apriltag measurement and the iPhone’s pose in
the world space, i.e., p̂W

t , R̂
W
t = σ(pW

t ,R
W
t , t

o,Ro) where
σ is the function defined in Sec. D.1. We then compare the
estimated Apriltag pose with the actual Apriltag measure-
ment to minimize:

argmin
Ti→W,to,Ro

T∑
t=1

||p̂W
t − qW

t ||22 + ||R̂W
t −UW

t ||22 (17)

The objective value after this optimization is the align-
ment error we report in Sec. 6.2 (iPhone Pose Accuracy) of
the main paper. For a visualization of the aligned trajecto-
ries, please refer to Fig. 16.

H.2. SMPL Root Trajectory

We proceed similarly as described in Sec. H.1 to com-
pute the error of the SMPL root trajectory estimated by
EMP to ground-truth SMPL root trajectories obtained with
the MVS. Note that we cannot simply re-use the transfor-
mation Ti→W found in that section. This is because the



iPhone’s coordinate system changes with every new record-
ing. In addition, evaluation takes with our MVS have fewer
iPhone movements so as to not obstruct the MVS’ cameras.
This means that Eq. (17) tends to be underconstrained and
thus the optimization does not always converge to meaning-
ful solutions.

To address this, we add another term to Eq. (17) in
which we move the SMPL root joint position predicted by
EMP, ri

t, into the world frame and then compare it with
the SMPL root joint given by our ground-truth registration,
rW
t . This is, we compute r̂W

t = Ti→W · ri
t and add the

term ||̂rW
t − rW

t ||22 to Eq. (17). This effectively removes a
global rigid misalignment between estimated and ground-
truth SMPL root trajectories. The remaining Euclidean dis-
tance between r̂W

t and rW
t , is the alignment error we report

in the main paper in Sec. 6.2 (Global SMPL Trajectories).

I. EMP Implementation Details

We include implementation details of EMP’s three stages
here, as well as rough runtime estimates. We use PyTorch
[16] for all computations.

In stage 1, we first only optimize for the SMPL root
parameters θr, t to get a rough alignment of the SMPL
body to the sensor cloud. In a second pass we then opti-
mize for all SMPL parameters, i.e., including θb. For both
passes, we use an L-BFGS [13] optimizer with a learn-
ing rate of 1.0 and strong Wolfe line search. We iterate
the line search 20 times and take 5 steps with the L-BFGS
optimizer. The remaining hyperparameters are chosen as
λp = 1.0, λr = 1.0, λbp = 1.0e−5, λrec = 1.0. This stage
typically finishes in 1-2 minutes as we can use large batch
sizes (the entire sequence fits into a single batch on a 24 GB
GPU).

Stage 2 is a sequential optimization, where we optimize
for each frame given the previous as initialization. In this
stage we use the Adam optimizer [11] with a learning rate
of 0.01. We optimize for 100 iterations in each frame. The
hyperparameters are set to λ2D = 0.01, λrec = 1.0, λprior =
1.0, λpcl = 10.0. Each frame’s optimization takes approx.
5 seconds, so optimization of a typical sequence of 45 sec-
onds length finishes in roughly 2 hours.

In stage 3 we fit a neural implicit human model. We
also use the Adam optimizer [11] with a learning rate of
5.0e−4. The learning rate decays to half after 200 and 500
epochs respectively. The hyperparameters are chosen as
λrgb = 1.0, λeik = 0.1, λreg = 10.0. The hyperparame-
ters for the scene decomposition loss follow the same set-
ting as in V2A [9]. Stage 3 is computationally the heaviest.
We train the model for 48 hours on a single 24 GB GPU.
We split very long sequences into several subparts and train
each part in parallel on several GPUs in order to increase
convergence speed.

J. Socetial Impact
Extracting human body shape and pose from imagery or

other sensory data is an important building block in the en-
deavor to understand human behavior with computational
methods. Having an accurate system available promises
valuable applications such as immersive remote telepres-
ence (thus saving CO2-intensive travel), automated reha-
bilitation (e.g., for the recovery of post-stroke patients), or
computer-guided fitness and health coaches, to name just a
few. All these applications directly benefit society, be it to
provide more cost-effective treatments in medicine, smart
tools to improve personal health, or ways to reduce our en-
vironmental footprint.

While this work does not directly improve human pose
estimation methods, it fills an important gap: the availabil-
ity of paired input sensor data and 3D human pose. This in
turn will allow other researchers in the field to improve pose
estimators by either using our dataset as training data or as
a new evaluation benchmark. The evolution of Deep Learn-
ing in recent years has shown that the availability of data is
a prime contributor to advancements in the field. Hence, we
expect our dataset to lead to knowledge advancement in the
field, which in turn will enable more sophisticated technical
applications.

Human pose estimation methods, specifically so from
images, might be abused for malicious surveillance or per-
son identification via gait analysis or face recognition. Al-
though EMDB does not publish any identifiable informa-
tion or directly propose improved pose estimators, future
advancements in pose estimation directly imply that ad-
verse uses of such technology automatically benefit, too.
This presents an ethical and societal concern, which must
be considered in future developments of such technology.
Yet, given the promising technical applications of accurate
human body pose estimators, we feel that the benefits of this
research clearly outweighs the risks.
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