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Overview
META LEARNING

Motivation

« Large performance gap between empirical lower bound and state-of-the-art cross-
person gaze estimation methods.

REPRESENTATION LEARNING

« We cast few-shot personalization as a meta-learning problem,
where each person is a task in the meta-learning sense.

 We use MAML [Finn et al., ICML 2017] to yield a meta-learner
(Adaptable Gaze Estimation Network - AdaGEN) via direct
optimization of the within-person generalization error.

_ . , .  Via a novel disentangling transforming encoder-decoder (DT-ED) architecture.
* We need to consider person-specific factors (below) while requiring as few

calibration samples as possible. » Using novel loss terms for a) embedding consistency within a subject, (b) gaze

estimation, and (c) image reconstruction with transformed gaze/head pose.

& Cross-Person Methods € Person-Specific Methods Empirical Lower Bound

Optical Axis * The learned gaze direction and head orientation representations are:

 Rotationally equivariant to eyeball / head rotation
* Disentangled from head / eyeball rotations respectively
Compact & task-specific
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* We better leverage the subject-diversity of the large GazeCapture
training set (993 subjects used in training).
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Our FAZE Framework

Results

(evaluated on MPIlIFaceGaze [Zhang et al., CVPRW 2017], see paper for results on GazeCapture [Krafka et al. CVPR 2016])

Legend 1. Disentangling Transforming Encoder-Decoder (DT-ED)

. 16 Appearance code

MAML and DT-ED benefit with more training Within-person consistency is important. Maximizing

MAML is better than naive few-shot fine-tuning and

"' 3x2 Gaze direction code

does not suffer from over-fitting

subjects (993 in GazeCapture vs 15 in MPlIGaze)

between-person differences is not beneficial.

'" 3x16 Head orientation code
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Adaptable
Weights Gaze Estimation Network >y Overall, we show greater improvement compared to

We do better than MAML applied to CNN features
‘ where the CNNs are trained directly for gaze
estimation only

We out-perform state-of-the-art person-specific
methods consistently and over all k values with
lower variation in performance.

Fixed (AdaGEN)

all prior art, and out-perform [Yu et al., CVPR 2019]
even with 1 calibration sample.

personalization data

] {image, gaze}

—o— DenseNet + MAML
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Source Code

github.com/NVLabs/
few_shot _gaze

Conclusions
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Our DT-ED learns a compact, rotation-equivariant representation of gaze.
« Learning a Few-Shot learner yields better performance than naive fine-tuning or hand-designed personalization functions.
 FAZE can apply to other personalization problems such as gesture recognition and affective state estimation.
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