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Conclusions
• Our DT-ED learns a compact, rotation-equivariant representation of gaze.

• Learning a Few-Shot learner yields better performance than naive fine-tuning or hand-designed personalization functions.

• FAZE can apply to other personalization problems such as gesture recognition and affective state estimation.

• Large performance gap between empirical lower bound and state-of-the-art cross-

person gaze estimation methods.

• We need to consider person-specific factors (below) while requiring as few 

calibration samples as possible.
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• Via a novel disentangling transforming encoder-decoder (DT-ED) architecture.

• Using novel loss terms for a) embedding consistency within a subject, (b) gaze 

estimation, and (c) image reconstruction with transformed gaze/head pose.

• The learned gaze direction and head orientation representations are:

• Rotationally equivariant to eyeball / head rotation

• Disentangled from head / eyeball rotations respectively

• Compact & task-specific

REPRESENTATION LEARNING META LEARNING

• We cast few-shot personalization as a meta-learning problem, 

where each person is a task in the meta-learning sense.

• We use MAML [Finn et al., ICML 2017] to yield a meta-learner 

(Adaptable Gaze Estimation Network - AdaGEN) via direct 

optimization of the within-person generalization error.

• We better leverage the subject-diversity of the large GazeCapture

training set (993 subjects used in training).

Results

MAML is better than naïve few-shot fine-tuning and 

does not suffer from over-fitting

MAML and DT-ED benefit with more training 

subjects (993 in GazeCapture vs 15 in MPIIGaze)

Within-person consistency is important. Maximizing 

between-person differences is not beneficial.

We do better than MAML applied to CNN features 

where the CNNs are trained directly for gaze 

estimation only
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We out-perform state-of-the-art person-specific 

methods consistently and over all k values with 

lower variation in performance.

Overall, we show greater improvement compared to 

all prior art, and out-perform [Yu et al., CVPR 2019] 

even with 1 calibration sample.

Empirical Lower Bound [Zhang et al., TPAMI 2019]
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(evaluated on MPIIFaceGaze [Zhang et al., CVPRW 2017], see paper for results on GazeCapture [Krafka et al. CVPR 2016])


