
Flycon: Real-time Environment-independent Multi-view Human Pose
Estimation with Aerial Vehicles

TOBIAS NÄGELI, AIT Lab, ETH Zurich
SAMUEL OBERHOLZER, AIT Lab, ETH Zurich
SILVAN PLÜSS, AIT Lab, ETH Zurich
JAVIER ALONSO-MORA, Delft University of Technology
OTMAR HILLIGES, AIT Lab, ETH Zurich

Fig. 1. We propose a novel method for environment-independent estimation of human poses in real-time. We demonstrate the proposed system in a number
of compelling outdoor (left) and indoor (middle) experiments. We estimate the positions of a quadrotor swarm as well as the full human pose in real-time. A
model predictive controller computes optimal quadrotor inputs to follow the human and always keep the markers visible (middle). Our method can accurately
estimate articulated motion over long time frames and distances, In the right figure we show the accumulated joint positions, relative to the center of the
person, over a 170m long walking sequence.

We propose a real-time method for the infrastructure-free estimation of
articulated human motion. The approach leverages a swarm of camera-
equipped flying robots and jointly optimizes the swarm’s and skeletal states,
which include the 3D joint positions and a set of bones. Our method allows
to track the motion of human subjects, for example an athlete, over long time
horizons and long distances, in challenging settings and at large scale, where
fixed infrastructure approaches are not applicable. The proposed algorithm
uses active infra-red markers, runs in real-time and accurately estimates
robot and human pose parameters online without the need for accurately
calibrated or stationary mounted cameras. Our method i) estimates a global
coordinate frame for the MAV swarm, ii) jointly optimizes the human pose
and relative camera positions, and iii) estimates the length of the human
bones. The entire swarm is then controlled via a model predictive controller
to maximize visibility of the subject from multiple viewpoints even under
fast motion such as jumping or jogging. We demonstrate our method in a
number of difficult scenarios including capture of long locomotion sequences
at the scale of a triplex gym, in non-planar terrain, while climbing and in
outdoor scenarios.

Authors’ addresses: Tobias Nägeli, AIT Lab, ETH Zurich; Samuel Oberholzer, AIT Lab,
ETH Zurich; Silvan Plüss, AIT Lab, ETH Zurich; Javier Alonso-Mora, Delft University
of Technology; Otmar Hilliges, AIT Lab, ETH Zurich.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/11-ART182 $15.00
https://doi.org/10.1145/3272127.3275022

CCS Concepts: • Computing methodologies → Motion capture; Re-
construction; Robotic planning; Motion path planning;

Additional Key Words and Phrases: human pose estimation, robotics

ACM Reference Format:
Tobias Nägeli, Samuel Oberholzer, Silvan Plüss, Javier Alonso-Mora, and Ot-
mar Hilliges. 2018. Flycon: Real-time Environment-independent Multi-view
Human Pose Estimation with Aerial Vehicles. ACM Trans. Graph. 37, 6, Arti-
cle 182 (November 2018), 14 pages. https://doi.org/10.1145/3272127.3275022

1 INTRODUCTION
Many graphics applications such as character animation for games,
sports, biomechanics, VR, and AR rely on accurate human pose in-
formation, and virtually every modern movie production leverages
Motion Capture (Mocap) systems for special effects. Most com-
monly, such systems are camera based, either relying on body-worn
markers, or more recently even work markerless. Multi-view ap-
proaches can now be highly accurate and sometimes provide dense
surface reconstructions. The maturing of camera based motion cap-
ture technology in turn leads to a desire to use it in increasingly
challenging scenarios such as with fast moving actors, large scale
scenes and even in outdoors settings. However, practically all exist-
ing approaches require a set of environment mounted, accurately
calibrated cameras looking into a capture area of fixed size. This
requirement for stationary cameras makes application in these set-
tings very tedious, costly and sometimes entirely infeasible.

In this paper we propose an environment-independent approach
to multi-view human motion capture that leverages an autonomous
swarm of micro aerial vehicles (MAVs), or drones. The drones carry

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275022
https://doi.org/10.1145/3272127.3275022

182:2 • T. Nägeli et al.

cameras trained on the subject of interest, who wears a sparse set of
active LEDmarkers. The 2D positions of these markers are extracted
from the images and the 3D joint positions of the human skeleton
are estimated in real-time.

Our approach we address several challenges: First, and in contrast
to traditional camera localization approaches that make rigid scene
assumptions, the 3D joint locations move in an articulated non-
rigid fashion. Second, the cameras move relative to the human and
their configuration changes dynamically, which is in contrast to
typical human pose estimation approaches where the cameras are
assumed to be stationary and calibrated. Third, we do not rely on any
external signal, such as GPS for positioning, making our approach
applicable both indoors and outdoors. Our method enables motion
capture in previously difficult or entirely infeasible scenarios such
as continuously reconstructing the full body pose of an athlete
throughout an entire workout or capturing actors in remote and
difficult to reach locations, for example while climbing.

More concretely we propose a completely self-contained method
for the joint estimation and control of the states of multiple MAVs
and of 3D human skeletal configuration. The proposed algorithm
runs in real-time and accurately estimates the positions of the robot
swarm and the human pose parameters. Furthermore, we compute
in real-time drone trajectories to keep the cameras trained on the
subject and therefore the markers in view of the cameras.

Our algorithm is inspired by recursive filtering techniques used in
robot localization problems. However, in contrast to classical scene
reconstruction and camera localization algorithms, the tracked 3D
points are not static but move in a complex, articulated fashion.
To make this nonlinear state estimation problem of a discrete-time
stochastic system tractable in real-time, we pose it as an indirect
iterated extended Kalman filter (IEKF) which computes the state
estimates as maximum a posteriori (MAP) estimates. In typical
camera localization formulations, states are estimated relative to a
global world reference frame, which causes the uncertainty with
respect to the origin to grow as onemoves further away [Castellanos
et al. 2004]. To avoid this uncertainty growth, we use a formulation
where 3D points and the world origin are expressed with respect
to a moving reference frame (the lead drone of the swarm). During
state propagation and update, linearization is performed around the
estimated lead camera frame. In consequence, little linearization
error is accumulated over time. This allows us to follow the subject
over long distances without drift or loss in pose estimation accuracy.
To our knowledge, we are the first to frame localization and

optimal control of a robotic swarm and the estimation of human
articulated motion as a joint optimization problem and to provide a
real-time implementation. Our method, at every frame, i) collects
images from all drones, detects and labels 2D joint positions, ii) esti-
mates the state of a leader robot from onboard sensors (e.g., IMU,
down-facing optical flow sensor), iii) estimates the joint positions
of the human skeleton (and the bone lengths) and optimizes the
relative positions and orientations of the multi-robot swarm; iv) fi-
nally, it computes control inputs for the drones via model-predictive
control (MPC) to keep markers observable under subject motion.
We demonstrate our method in a number of compelling usage

scenarios that include fast motion, such as running or jumping jacks,

and that capture long trajectories (hundreds of meters). Further-
more, we demonstrate the benefits of environment independence by
following a subject over different elevations and in difficult terrain
such as a climbing wall (see Fig. 1, middle).

2 RELATED WORK
Our work brings together state-of-the-art robotics research on MAV
(swarm) state estimation and control and algorithms for motion
capture from the computer graphics and vision literature. Here we
briefly review the most pertinent work.

Camera-based motion capture: Camera-based capture of articu-
lated human motion is at the core of many graphics and related ap-
plication domains. Commercial solutions require wearing of marker
suits or gloves and depend on multiple calibrated cameras mounted
in the environment. To overcome these constraints much research
has been devoted to developing marker-less approaches from multi-
ple cameras (cf. [Moeslund et al. 2006]). Often such methods trade-in
high quality results with offline processing [Ballan et al. 2012; Bre-
gler and Malik 1998; Starck and Hilton 2003] but recently real-time
approaches [de Aguiar et al. 2008; Elhayek et al. 2017; Rhodin et al.
2015; Stoll et al. 2011] have been proposed. Such approaches typi-
cally fit a skeletal model to image data or represent the human as a
collection of Gaussians [Rhodin et al. 2015]. Other approaches to
real-time performance include combining discriminative and gen-
erative approaches [Elhayek et al. 2017; Oikonomidis et al. 2012].
However, such multi-view approaches always assume stationary,
well calibrated cameras and are therefore not suitable in mobile and
outdoors scenarios. More recently pose estimation methods have
exploited deep convolutional networks (ConvNets) for body-part
detection in fully unconstrainedmonocular images [Chen and Yuille
2014; Newell et al. 2016; Tompson et al. 2014; Toshev and Szegedy
2014; Wei et al. 2016]. However, these methods only capture 2D
skeletal information. Predicting 3D pose directly from 2D RGB im-
ages has been demonstrated using offline [Bogo et al. 2016; Tekin
et al. 2016; Zhou et al. 2016] methods and in online settings [Mehta
et al. 2017]. Monocular depth cameras provide additional informa-
tion and have been shown to aid robust skeletal tracking [Ganapathi
et al. 2012; Shotton et al. 2013; Taylor et al. 2012] and enable dense
surface reconstruction even under deformation [Dou et al. 2016;
Newcombe et al. 2015; Zollhöfer et al. 2014]. Multiple, specialized
structured light scanners have been used to capture high-fidelity
dense surface reconstructions of humans [Pons-Moll et al. 2015].
Our approach relies on multiple cameras to estimate skeletal

motion and we believe much of the above work is complementary to
ours in that marker-less techniques could serve as input to our joint
camera and human pose estimation pipeline. In contrast to the above
work, our method does not require any infrastructure or calibrated
cameras. Because the cameras are airborne all measurements are
noisy, unreliable and measure only relative quantities, making the
task significantly harder.

Inertial measurement units: Attaching sensors directly onto the
body overcomes the need for line-of-sight and enables use with-
out infrastructure. Inertial measurements units (IMU) are the most

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

Flycon: Real-time Environment-independent Multi-view Human Pose Estimation with Aerial Vehicles • 182:3

prominent type of sensor used for pose estimation. Commercial sys-
tems rely on 17 or more IMUs, which fully constrain the pose space,
to attain accurate skeletal reconstructions via inverse kinematics
[Roetenberg et al. 2007]. It has been shown that good performance
can be achieved with fewer sensors by exploiting data-driven meth-
ods [Liu et al. 2011; Schwarz et al. 2009; Tautges et al. 2011] or
by taking temporal consistency into account, albeit at the cost of
high computational cost and therefore offline processing [von Mar-
card et al. 2017]. While IMUs provide mobility and accuracy, above
approaches inherently require user instrumentation. Furthermore,
they rely on sophisticated models of the human and hence can not
easily be generalized to other subjects. Our implementation cur-
rently also requires body-worn markers but in principle can work
markerless. More importantly, we optimize 3D point coordinates
and onlymodel the human by connecting adjacent joints, thus reduc-
ing computational cost of the optimization and making the method
applicable to all kinds of articulated motion.

MAVs in graphics and vision: With the consumerization of aerial
robots, the graphics community has recently proposed a number of
tools and algorithms for the planning of physically feasible quadro-
tor camera trajectories for aerial videography. Such tools allow for
planning of aerial shots in 3D virtual environments [Gebhardt et al.
2016; Joubert et al. 2015; Roberts and Hanrahan 2016] and employ
offline optimization methods to ensure that both aesthetic objec-
tives and robot modeling constraints are considered. The methods
of [Joubert et al. 2015] and [Gebhardt et al. 2016] generate quadrotor
trajectories given user-defined space-time keyframes, whereas the
method proposed in [Roberts and Hanrahan 2016] takes physically
infeasible trajectories and computes the closest possible feasible tra-
jectory by re-timing the velocities subject to a non-linear quadrotor
model. [Gebhardt et al. 2018] studies factors influencing perception
of aerial video and propose a.n optimization scheme based on these
results. All of the above methods are offline and cannot generate
control inputs for use in dynamic environments. Using a Model Pre-
dictive Control (MPC) formulation, [Naegeli et al. 2017] optimizes
cinematographic constraints, such as visibility and position on the
screen, subject to robot constraints for a single quadrotor. [Nägeli
et al. 2017] extends this work to multiple drones and allows actor-
driven tracking on a geometric path. The robotics literature has
proposed methods to recover the 3D trajectory of a moving person
from a MAV mounted camera while mapping the environment [Li
et al. 2016; Lim and Sinha 2015]. In contrast, the objective of this
paper is to reconstruct the full 3D body pose of a moving subject
while planning the MAV trajectories to keep markers in view. For
this task, multiple quadrotors are necessary and their position has
to be estimated alongside the skeletal joint positions.
In [Huang et al. 2018] the authors use real time monocular pose

reconstruction to do a pose reconstruction and use it for a through-
the-lens filming system. The user can define the viewpoints for
filming in a virtual scene.
In this sense our work is most closely related to [Xu et al. 2017]

who leverage depth-cameras mounted on three drones together with
a deformable surface energy for dense surface reconstruction of a
dynamic user. However, the proposed method relies on depth data,
a pre-scanned template mesh (which is deformed and used for data

Fig. 2. Schematic of the states used to model the human skeleton xh . The
estimated skeleton constists of 13 real joint markers (yellow), two virtual
markers (red) and 14 bones (green). The virtual markers are computed using
the physical markers and are introduced for better bone length estimates.

fitting) and target tracking is performed in real-time via [Li et al.
2016], whereas pose reconstruction is reported to run at 3 frames
perminute on a high-end PC. Our method runs entirely in real-time,
while it tracks articulated motion and controls the position of the
MAVs. The method estimates the articulated motion of the user
from monocular imagery only (we currently rely on markers fixed
to the person) and thus can work indoors and outdoors, where depth
cameras struggle in direct sunlight.

Multi-robot systems: Multi-robot teams are widely studied in ro-
botics, including groups of aerial [Alonso-Mora et al. 2018; Basiri
et al. 2013; Lupashin et al. 2011; Michael et al. 2010] robots. To
stabilize a formation, each agent requires exact positional knowl-
edge [Pugh and Martinoli 2006]. Existing approaches to formation
flight therefore rely either on low precision sensors, which result in
large inter-robot distances, or on external infrastructure. Methods
for infrastructure-free formation control have been proposed by
[Nägeli et al. 2014], albeit requiring the cameras to be trained on
the other members of the swarm, rendering it unsuitable for subject
tracking. We do not rely on any infrastructure or external track-
ing and estimate the drone position and human pose in a single,
combined optimization framework.

3 OVERVIEW
To solve this challenging problem of online human pose estimation
using MAV’s in unstructured environments, we make the following
key assumptions:

(1) Fast Sampling: The camera frame rates and our algorithm
are fast (30Hz) with respect to human motion. Hence, we
assume that the pixel displacement from image to image is
small for all marker positions.

(2) Constant bone-length:Adjacent joints are linked via bones
of constant, yet unknown, length. Since the markers are not
rigidly attached to the bones, we allow small changes and
estimate bone-lengths online, without any prior calibration.

(3) Observability: Marker’s seen from at least two cameras are
called observable. The location of individual unobservable
markers can be predicted via the bone-length constraint.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

182:4 • T. Nägeli et al.

Fig. 3. Method Overview. Left to right: A subject wears a sparse set of active LEDs from which we extract 2D joint detections zj . A recursive error-state filter
formulation jointly estimates the position and orientation of multiple flying cameras (xdrone), and the positions of the 3D joints and the length of bones
(xpose). Finally we compute feasible trajectories and corresponding control inputs uk for the MAVs to keep the human in view.

(4) Predictive control: We assume that trajectories can be gen-
erated to accurately track the human and to keep it in the
camera’s frame (see Sec. 6.2). This allows for initialization of
the pose a priori estimate from the drone trajectory.

We formulate this optimization problem in a recursive filtering
framework that allows us to naturally link states and measurements
over time and provides a straightforward integration of sensor data
as priors for each iteration of the optimization.
Additionally, we accurately estimate the states of all MAVs by

fusing the optimized camera poses with odometry measurements
attained from onboard sensors, which include downward looking op-
tical flow sensors and IMUs. The drone positions are then controlled
to maximize visibility of the subject. Our algorithm, illustrated in
Fig. 3 iteratively performs the following steps:

(A) Collect images from all drones, detect and label joints.
(B) Predicts and estimates the state of a leader robot from onboard

sensors (e.g., IMU, down-facing optical flow sensor)
(C) Perform a joint reconstruction of the articulated human pose

and the camera states to obtain the position of the joints and
the position of each drone-mounted camera. Update the pose
state xpose. Fuse the camera pose estimate with proprioceptive
sensor data (IMU, optical flow) to estimate the full drone state.

(D) Estimate the length of the bones online.
(E) Compute drone inputs, via a receding horizon controller.

4 MODELING AND NOTATION
We now provide the used notation and a brief overview of the model
of the human and the multi-robot swarm used in our non-linear
estimation and control formulation.

4.1 Terminology
In this paper we define the term Pose as the joint-angle configuration
of the human, together with the position and orientation of all
cameras. If we talk about a specific pose, we specify this by writing
Camera Pose orHuman Pose. We call all quadrotors together a swarm.
The swarm together with the human is denoted as a formation.

4.2 Notation
Here we introduce the most important notation. For a full treatment
we refer to Appendix A. Throughout this paper, states x are denoted
in bold. For a given state x, we denote the estimated state as x̂, a
measurement by its measurement function h(x) and an estimated
measurement by h(x̂). Residuals are denoted by ρ. We denote points
in 3D as p with a name as subscript, e.g. pq for pquadrotor. A relative
vector between two points pa and pb is denoted as rab . A super-
script rcab indicates the vector rab is expressed in frame C . Without
superscript the vector is expressed in the (global) inertial frame I .

4.3 Human Pose
The pose of the human is defined by a set ofm joints, modelled as
3D points, and their connecting bones. Fig. 2 shows the assumed
mapping between bones and joints. The state of all joints is denoted
by xj which contains the position of them individual joints that
define the human pose: xj = [pj1 , . . . , pjm] ∈ R

3m . All joints are
connected by bones of a certain length. We denote with xb the
bone-lengths state vector: xb = [b1, . . . ,bm−1] ∈ R(m−1). The bone-
lengths are assumed to be constant, but unknown, and therefore
treated as bias states for which the exact values are estimated online.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

Flycon: Real-time Environment-independent Multi-view Human Pose Estimation with Aerial Vehicles • 182:5

4.4 Drones and Cameras
We follow the drone model proposed in [Naegeli et al. 2017]. We
consider n drones, each of them equipped with a camera. The state
of each quadrotor is given by its position pq ∈ R3, its velocity Ûpq ∈
R3and its orientation, i.e. roll Φq , pitch Θq and yawψq . For drone
i , its camera is attached to the drone with a gimbal of controllable
pitch θд and yaw ψд . For brevity, we assume the camera position
and the quadrotor position to be identical. For a detailed description
of the full non-linear drone model refer to Appendix B. The full
state vector of a drone is defined as:

xd = [Quadrotor | Camera] = [pq , Ûpq ,Φq ,Θq ,ψq ,θд ,ψд] ∈ R
11.

The Parrot Bebop’s SDK demands angles as input and hence we
represent rotations as such for the control of the robot and its gimbal.
We denote the set of inputs by u, containing the velocity of the
drone in the body-z axis, the desired roll and pitch angles of the
drone, the angular speed around the body-z axis and the pitch and
yaw rates of the camera gimbal. For our optimization we always
represent rotations as quaternions to avoid gimbal locking. For
instance, the 3D camera orientation is denoted by the quaternion
q̄c = q̄(θд ,ψд) ∈ SO(3) and the orientation of the drone by q̄q =
q̄(Φq ,Θq ,ψq) ∈ SO(3).

4.5 State-space Structure and Filtering Strategy
Since all robots and the human move dynamically, solving the prob-
lem considered here requires the estimation of the full system state,
which consists of the drone states and the human state. This leads to
a very large state-space of 11n+3m+ (m−1). In our implementation
this dimensionality is 73. Since the computational cost of a single
filter iteration grows cubically with the number of states, a naive im-
plementation would not run in real-time. We leverage two key ideas
to reduce the computational cost and render this problem tractable
in real-time. (1) We separate the constant, but unknown bias sates
from the state-space. This technique is known as separate-bias or
two-stage estimation [Friedland 1969; Hsieh 2000]. See Sec. 5.4 for
details of the online bone length estimation xb . (2) We separate the
drone states that are not necessary for the human pose estimation,
but that have fast dynamics, from the overall state-space. Following
[Gibbs 2011] we refer to these separable states as control states. See
Sec. 5 for details on human and drone state estimation.
Based on concepts (1) and (2), we can structure the state space

into three groups:
• Pose: States used for the human pose estimation.
• Control: Additional states used for quadrotor control.
• Bias: Bone lengths that are constant but unknown.

We now restructure the state space accordingly:

x = [Cameras, Joints︸ ︷︷ ︸
Pose State

| Quadrotors︸ ︷︷ ︸
Control State

| Bonelength︸ ︷︷ ︸
Bias State

]

= [xc1 , . . . , xcn , xj︸ ︷︷ ︸
Pose State: xpose

| xq1 , . . . , xqn︸ ︷︷ ︸
Control State

| xb︸︷︷︸
Bias State

],

To solve this problem, we apply an error state Kalman filtering
(ESKF) strategy to pose state estimation. This allows us to circum-
vent dynamic modeling errors [Roumeliotis et al. 1999], singularities

in the estimation of the covariance matrices of the camera poses [Lef-
ferts et al. 1982] and filter inconsistencies caused by unobservable
states [Castellanos et al. 2004].

Furthermore, the entire constellation of poses is relative to each
other and hence, the solution would be free to drift arbitrarily. For
consistency in the estimation, a global position reference for the
human-multi-robot team is required. To address this issue we first
estimate the global pose of one drone, which sub-sequentially is
used as reference frame to express all other poses and feature loca-
tions. However, even this reference drone has no access to drift-free
positional information and hence a recursive filter would incur in
growing uncertainty in the pose estimate. To alleviate this issue,
we adopt a robo-centric EKF formulation inspired by [Castellanos
et al. 2004; de Palézieux et al. 2016]. In our formulation, the world
reference frame and feature locations are expressed with respect to
a moving reference frame that is updated to the current estimated
leader pose after every filter update. The (unobservable) uncertainty
of the absolute camera position, traditionally associated with the
current estimate, is now associated with the world reference pose.
Linearization is now performed around the low uncertainty current
estimate of the camera pose, avoiding accumulation of error.

The above robo-centric estimation lends itself to a formalization
as error-state filter [Castellanos et al. 2004; Roumeliotis et al. 1999].
Since we assume small motion between frames, we can decouple
the absolute, yet unknown, pose state xpose into an estimated prior
state and an additional small error state δxpose:
• Prior State: The prior state xprior is the a priori estimate
of the pose xpose using all available onboard sensors (imu,
optical flow).
• Error State: The error state δxpose describes the residual be-
tween the a priori and the a posteriori estimate of the pose
state xpose after fusing prior estimates and camera measure-
ments (i.e., marker locations).

We can now write the a posteriori estimate of the pose state:

xpose := xprior ⊗ δxpose. (1)

where ⊗ denotes the fusion of the a priori total state and the a
posteriori error state. Linear quantities are updated additively, while
rotational entries are updated multiplicatively. Note that xpose is
the desired quantity we seek to optimize. That is, at the end of the
procedure detailed in Alg 1, xpose will contain the estimate of the
camera swarm and the skeletal configuration.

5 JOINT CAMERA AND HUMAN STATE ESTIMATION
Given the above filtering structure, recovering the skeletal config-
uration of the subject alongside the position of the camera drones
now boils down to estimating the Pose state xpose accurately. This
Pose state estimate is then used to compute the control inputs for the
swarm for the next timestep (Sec. Sec. 6.2) to ensure observability
of the human skeleton. We attain this estimate online via recursive
estimation, alternating propagation and update steps.

5.1 Pose State Propagation
To accurately estimate the humans 3D joint positions, we first need
to establish where the cameras are relative to the subject - this itself

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

182:6 • T. Nägeli et al.

Algorithm 1 Joint Skeleton and Camera Pose Estimation

1: loop
2: get camera images and label joint positions: ◃ Sec. 7
3: for every camera do
4: zBlobs ←MarkerDetection(Image)
5: zj ←MarkerLabeling(Blobs)
6: end for
7:
8: estimate human and drone pose: ◃ Sec. 5
9: [xpose] ←JointPoseEstimation(zj , xpose)
10: [xb] ←BonelengthEstimation(xpose)
11:
12: for every drone do
13: full drone state estimation:
14: [xd] ←DroneStateEstimation(zodo , xpose)
15:
16: compute drone inputs: ◃ Sec. 6.2
17: update cost & constraints, solve MPC Eq. (13)
18: apply_inputs(u0) to drone
19: end for
20: end loop

is in the absence of global positioning an unconstrained problem.
To initialize our optimization we use the sensors of the drones to
get an a-priori estimate xprior of the pose state xpose. We denote by
zodoi the estimated position of drone i , given by an onboard optical
flow estimation algorithm [Bristeau et al. 2011]. Note that at this
point, none of the drones has any information about the location of
the remaining n − 1 drones.

To establish the relative transformations, the formation requires
an absolute position reference. Since the position dynamics of n
drones have only 3(n − 1) independent degrees of freedom [Nägeli
et al. 2014], we require only one absolute position estimate. To
approximate this global reference, we pick one drone, which we
refer to as the leader drone and use the associated odometry estimate
zodo1 and the resulting position pq1, as global position estimate of
the entire constellations. Note that this estimate drifts over time
but experimentally we found it to be sufficiently accurate even over
long distances and time horizons (see accompanying video).

Camera pose propagation: Following Sec. 3, we assume (4) that all
drones and the human are approximately translating with the global
frame, defined by the lead camera. For the lead drone we consider
that its position estimate is given by its odometry,

pqk+1
1 ← zodo1 Drone 1 position propagation.

We can then compute the translation ∆ of the lead drone in one
time step, ∆ := zodo1 − pq1 = pqk+1

1 − pq1.
From assumption (4), the position estimate of the remaining

drones can be initialized by adding the position change ∆ of the
lead drone to the latest position estimate. For drone i > 1,

pqk+1
i ← pqi + ∆ Drone i>1 position propagation.

Following the covariance update proposed in [Castellanos et al.
2004; de Palézieux et al. 2016], we marginalize out the position error

covariance of the position dynamics for the leader drone, Ppk+1
1 =

0 ∈ R3×3, and for all remaining drones, Ppk+1
i = Pp

k
i +Qpos ∈ R

3×3.
The parameter Qpos is a diagonal matrix containing the standard
deviation of the expected position change from the initial state, and
is a tunable parameter.

Human pose propagation: Again applying assumption (4), the
estimated center of mass of the human is also translated by ∆,

xk+1
j ← xj + ∆. (2)

The covariance of the skeletal joints state is then given by Pk+1
j =

Pkj + Q j . Q j is again a diagonal matrix containing the standard
deviation of the expected position change from the initial state.

5.2 Filter measurements
After having established an initialization of the positions, we esti-
mate δxpose and hence update the pose state xpose using the follow-
ing measurements:
• Camera measurements: Pixel-coordinates of the measured
marker positions from each camera, denoted by zj .
• Bone-length measurements: denoted by xb , and obtained
with the estimated bias state, which we discuss in Section 5.4.

Joint residual: At each iteration we receive new camera measure-
ments, in our implementation 2D marker positions extracted from
the images. With these measurements we perform an update step
of the filter. More specifically, we use the pixel measurements of all
markers seen by all cameras to minimize the residual between the
estimated marker positions and the incoming measurements.
Without loss of generality, but slight abuse of notation, we de-

scribe the measurement residual of a joint a seen by camera i . To
build the residual ρ j between the joint measurement and the esti-
mated joint measurement, we project the estimated joint position
pj ⊂ xprior into the camera frame using the prior camera position
pq ⊂ xprior and orientation q̄c ⊂ xprior. The projection is performed
via a standard pinhole camera model [Hartley and Zisserman 2003].
The estimated 2D joint position is then attained via a projection
into undistorted pixel coordinates,

hj (xprior) =
[
mx fu +Cu
my fv +Cv

]
with m =

1
rcz

[
rcx
rcy

]
, (3)

where r = pj − pq is the relative vector between the joint estimate
and the camera center, rc = R(q̄c)r is the vector r rotated into the
camera frame and rcz is the z-component of rc . Pixel coordinates
m are computed via the camera intrinsics f = [fu , fv] and C =
[Cu ,Cv]. The residual for joint a seen by camera i is then given by

ρ j = v − hj (xprior) ∈ R2, (4)

where v ⊂ zj denotes the measurement for joint a and camera i .

Bone length residual: Conceptually, we treat the bone lengths
as constant. However, for convenience we follow [Friedland 1969]
and include them as measurements affected by zero mean Gaussian
noise into our computations.
An individual bone-length prediction can be computed as the

Euclidean distance between two adjacent 3D joint positions pja and

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

Flycon: Real-time Environment-independent Multi-view Human Pose Estimation with Aerial Vehicles • 182:7

pjb . It is therefore given by hb = ∥pja − pjb ∥. For a single bone i ,
the bone-length residual ρb is then

ρb = bi − hb (xprior) ∈ R, (5)

where bi ⊂ xb is the constant, but a-priori unknown, bone-length.
We estimate this quantity online, see Sec. 5.4 for details. Intuitively,
this residual will ensure that the solution converges to a skeletal
configuration in which bones have a constant length. While the
physical bone does not change its length at all, this formulation
allows for slight variation in relative joint distances. This is due to
the difficulties of integrating hard-constraints into recursive filters
and due to the fact that the markers and their detections may move
relative to the actual joint. Furthermore, this step makes per-user
calibration of the system unnecessary.

Finally, the individual residuals are stacked into a singe residual
vector ρ = [ρ j , . . . , ρ j , ρb . . . , ρb]T . ρ is then used to update the
total state.

5.3 Filter Update
To update the total state xpose, via Eq. (1), we first compute the error
state δxpose by performing a Kalman iteration, thus minimizing the
residuals ρ.

We compute the Kalman gain K with respect to the measurement
models hj (·) and hb (·), evaluated at the current state estimate. We
then compute the Jacobian, denoted by H, of Eq. (4) and Eq. (5)
with respect to the error state δxpose and linearized around its
expected value E

[
δxpose

]
= 0. Note that this step in practice is

highly involved and involves computation of derivatives for the
quaternions in xpose ∈ SO(3), with respect to the error state δxpose.
The full Lie-group derivatives are given in the Appendix D.

The a posteriori error state is then computed by

δxpose = Kρ, (6)

and the estimated total state is updated such that the expected error
state is once again zero E [δx] = 0. This allows us to rewrite Eq. (1):

xk+1
pose = xkpose ⊗ δxpose. (7)

To make this nonlinear state estimation problem of a discrete-
time stochastic system tractable in real-time, we have posed it as an
error-state extended Kalman filter (EKF), which computes the state
estimates as maximum a posteriori (MAP) estimate. The details of
the computation of the fusion step are given in Appendix C. The
computed a posteriori error state δxpose is thus only a first order
approximation of the true error state. The accuracy of the state
estimate can be improved by repeatedly performing an update with
a single set of measurements, this is known as an iterated state up-
date (ISEKF) [Gibbs 2011]. Via re-linearization of the measurement
equation around the updated state, the IEKF avoids issues with filter
convergence, due to accumulated linearization error. The covariance
matrix is updated with the standard Kalman Filter equation:

Pk+1 = (I − KH) Pk (8)

We now have attained an estimate of the joint state of the multi-
robot human formation including the desired human pose configu-
ration via optimizing xpose.

5.4 Bone length estimation
The bias, or bone-length states xb , of our filter remain constant
over time, but are unknown a-priori. We use an additional linear
Kalman filter with a zero order state propagation model [Gibbs
2011] to estimate the bonelength, given the estimated joint positions
pj ∈ xprior. We only perform the filter update of a bone if both
corresponding joints pja and pjb are seen at least by two cameras.

6 CAMERA CONTROL
For accurate human pose estimation we must ensure that the human
is always in the field of view of each drone and that each drone in the
swarm records the human from a different viewpoint. To achieve
this, we build upon the control method of [Naegeli et al. 2017],
defining aN -step finite-horizon constrained non-linear optimization
problem at time instant k . Note that here we assume known drone
and human states, as well as 2D marker positions, given by the filter.

Robot model: To generate correct control inputs, a mathematical
model of the drone in form of a non-linear differentiable function
f : Rnx×nu → Rnx , discretized using a standard forward Euler
approach, is needed. The discrete-time state update equation of the
drone is

xk+1
d = f (xkd , u

k) ,

wherenx is the dimension of the state xd ∈ Rnx ,nu is the dimension
of the input u ∈ Rnu and superindex k denotes the discrete time
instant. In our experiments we use a Parrot Bebop2 and include
dynamics of the (software) gimbal. This results in nx = 11 and
nu = 6, see Appendix B. With this model we define a number of
cost terms to constrain the camera motion relative to the user.

6.1 Marker visibility
To ensure that each drone can observe as many of the markers as
possible, we ask each drone to keep the bounding box of the detected
and labeled marker positions at a desired 2D position on-screen.
To the orientation of the human to maximize marker coverage,
we control the relative distance to the human via the size of the
projected bounding box and the viewing direction of each dronewith
respect. Via a constant velocity model we then predict the human
states xh into the future. These include the position ph of the center
of the bounding box and its orientation. Image space locations are
controlled via a quadratic error measure ci : Rnx+6 → R+ on the
residual ϵm of the actual and desired look-at vectors:

ci(xpose) = ∥ϵm ∥2 with ϵm =
rcch
∥rcch ∥

−
rcd
∥rcd ∥

, (9)

where rcch is the ray from the camera to the human and rcd =
(md , 1) ∈ R3 is the vector through the desired screen-space po-
sition, where pixel coordinates md are computed via the camera
intrinsics.

The screen-size of the bounding box is controlled via the quadratic
error function cd : R7 → R+ on the residual between the actual σ
and the desired σd Euclidean distance between the user’s position
ph , extracted from xh , and the camera’s pq :

cd(xpose) =
 ∥ph − pq ∥2 − σd

2 . (10)

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

182:8 • T. Nägeli et al.

Similarly, the relative viewing angle per drone is controlled via
the quadratic error function ca : Rnx+6 → R+ on the residual ϵa of
the camera relative to the orientation of the human:

ca(xpose) = ∥ϵa ∥2 with ϵa =
rch
∥rch ∥

−
ad
∥ad ∥

, (11)

where rch is the vector from the center of the camera to the human
in global frame, and ad is the desired relative viewing orientation,
given by

ad =
[
sinθd cos (ψd +ψh) , sinθd sin (ψd +ψh) , cosθd

]T
,

whereψh is the current orientation of the human and θd andψd are
the desired viewing angles, both specified by the user and different
for each drone to observe the human from different view points.

6.2 Trajectory optimization
For a given drone, and in a slight abuse of notation, we denote by x =
[xd 0, . . . , xd N] and u = [u0, . . . , uN−1] the computed trajectory
and inputs, where x0

d and u0 are the initial states and drone inputs.
We take a linear combination of the error measures for image

location Eq. (9), size Eq. (10) and viewing angle Eq. (11) to define a
stage cost for trajectory optimization:

Jk = alci(x
k
pose) + adcd(x

k
pose) + aaca (x

k
pose) , (12)

where the scalar weight parameters al ,ad ,aa > 0 can be set inter-
actively to control the (relative) importance of the different terms.
The trajectory and control inputs of the drone at each time step are
computed via the solution of the following N -step finite horizon
constrained nonlinear optimization problem at time instant t .

min
x,u

N−1∑
k=0

(
Jk + uk

T
Ruk

)
+ aN JN (13)

subject to x0 = x̂d (t) (Initial state)

xk+1
d = f (xkd , u

k), (Dynamics)

xkd ∈ X, (State constraints)

uk ∈ U, (Input constraints)
∀k ∈ {0, . . . ,N − 1}

xd
N ∈ X, (State constraints)

where R ∈ Snu+ is a positive definite penalty matrix to avoid ex-
cessive use of the control inputs. The scalar aN > 0 is a weight
parameter used to weight a terminal cost JN on the final stage. This
is common in finite-horizon schemes to mimic long horizons, ap-
proximating the infinite horizon solution. The vector x̂d (t) denotes
the estimated value of the current state xd . Finally, the sets X and
U denote the sets of feasible states and inputs for the drone, respec-
tively. These can be derived from physical limits of the environment
and by the internal constraints of the flying camera hardware, e.g.
bounds on vertical and horizontal velocities as well as on roll and
pitch angles. We obtained the limits from the documentation of the
Parrot SDK [Par 2015]. While each quadrotor model has different
values of these bounds, in general such bounds exist and can be
assumed to be known for a particular model.

Fig. 4. Our system consists of two drones observing 13 active LED markers
worn on the users body. The controller (see Sec. 6.2) computes drone inputs
to keep asmanymarkers as possible visible. From the 2D detections observed
by the MAVs the human pose is estimated in real-time.

Fig. 5. The active marker detection scheme only requires little modification
to the Parrot Bebop’s hardware and is hence cheap. First, the lens-mount
has to be removed using a heat-gun (left). Then, the infrared filter (red) can
be removed and the daylight filter (blue) can be fitted to the lens mound. In
the last step, the camera has to be reassembled and re-calibrated.

Additional constraints for avoiding collisions between the drones
and between each drone and the tracked human could also be added,
analogously to [Naegeli et al. 2017].

The drone is actuated using the optimal inputs from the first step
u0. Importantly, a new trajectory is recomputed at each time-step,
taking updated sensor data into consideration.

7 IMPLEMENTATION
Our experiments are conducted on a standard desktop PC (Quadcore
Intel i7 CPU@3.5 GHz). The subjects are tracked directly by the
drones via a custom active LED marker scheme. No external motion
capture system was used. We implement the recursive estimation
algorithm using Matlab.

Quadrotor hardware: We use Parrot Bebop2 quadrotors in all
our experiments with an integrated electronic gimbal the camera
has been modified to remove daylight illumination but record IR
illumination (cf. Fig. 5). All communication between the drones
and the host PC is handled via ROS [Quigley et al. 2009] and we
directly send the control inputs from the first time-step u0 without
an additional feedback controller for trajectory tracking.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

Flycon: Real-time Environment-independent Multi-view Human Pose Estimation with Aerial Vehicles • 182:9

Fig. 6. Experiment 1: A subject performing jumping jacks. The sequence is captured with a camera and the reconstruction of our system is overlaid. The speed
limitation of motions we can track is limited by the framerate of the Parrot Bebop 2 live image stream and therefore by the marker tracking. The estimated
joint positions are indicated in yellow, the estimated skeleton is marked in green.

7.1 Active markers
Our method takes 2D joint detections as input. While body-part
detection in monocular images is possible [Chen and Yuille 2014;
Newell et al. 2016; Tompson et al. 2014; Toshev and Szegedy 2014;
Wei et al. 2016] we leave full integration of such methods for future
work. Instead we utilize body-worn markers allowing for simple
detection and unique labeling of joints. Our setup consists of 13
active IR-LED markers attached to a morphsuit (see Fig. 4).
A band-pass filter was added to the camera lenses, removing

daylight but letting IR illumination pass (Fig. 5). This allows for
outdoor use of the system. Each marker is composed of two LEDs,
one illuminated permanently and the other displaying a unique
temporal pattern. Markers are segmented from the background via
simple image processing operations. The temporal pattern creates
varying image intensities which are converted into a bit-stream
which is used to uniquely identify markers and to track them over
time (see Appendix E for details.)

8 EXPERIMENTS
Our method enables motion capture in scenarios that are difficult or
entirely infeasible with traditional techniques. Hence, direct quanti-
tative evaluation of accuracy is difficult. Furthermore, the accuracy
is affected by the placement of markers on the body and processing
of the resulting images as well as camera calibration. We demon-
strate the feasibility and robustness of our proof-of-concept imple-
mentation in five experimental evaluations where we continuously
reconstruct full body pose of a subject during fast movements, mov-
ing through large-scale scenes, in difficult to reach locations, indoors
and outdoors.

Fast Motion (Ex 1): In a first experiment, a participant performs
jumping jacks. The sequence in Fig. 6 shows one half-cycle of a
jumping jack (duration: 0.15 seconds). The maximal joint velocity is
limited by the camera sampling rate (30Hz in our experiment). The
reconstructed joint positions are indicated in yellow, the skeleton is

Fig. 7. Experiment 2: A subject is climbing up a wall. The drones follow the
subject over different elevations and locations. The markers are indicated
in yellow, the estimated skeleton in green. The drones are indicated in red.)

projected into the image and rendered in green. Please also refer to
the accompanying video.

Climbing (Ex 2): To demonstrate the location independence we
show results form our system being deployed in a difficult to reach
location. A subject climbs up, across, and down a climbing wall,

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

182:10 • T. Nägeli et al.

while the drones track the position. Extracts from this sequence can
be seen in Fig. 7. The drone positions (indicated in red) are opti-
mized to see all markers and hence automatically follow the subject,
adjusting their height above ground without external control.

Fig. 8. Experiment 3: Top: Subject walking over a long distance and time
period in circles - indicated in blue - with a walking speed around 1.5ms (top).
The drones follow the subject and always position themselves to optimally
observe the markers, mounted on the back of the subject. Bottom: recon-
structed gait cycle recorded during the experiment.

Long trajectory (Ex 3): Long-range trajectories are a particularly
challenging scenario for traditional motion capture approaches. To
demonstrate the environment independence of our approach, we
ask a participant to walk in large circles in an area that exceeds
typical motion capture spaces significantly. Fig. 8, top shows dif-
ferent snapshots from the sequence, drones highlighted in red. Fig.
8, bottom illustrates the corresponding estimated skeletal config-
urations. Note that in this experiment the system tracks the user
over time period of 3 min and over a trajectory length of 170 meters.
We observed an absolute position drift of about 2m, caused by the
integrating nature of the optical flow estimates. In Fig. 9 we show
the cumulated joint positions (red), relative to the person’s center
of mass over the long walking sequence.

Ground-truth comparison (Ex 4): To compute the expected accu-
racy of our method we performed an experiment with a motion
capture system. In particular, we compare the estimated distance
between the hand of the subject and one of the drone cameras with
that obtained from the vicon based ground truth. In Fig. 10 we show
the distance from the left hand to the first drone camera. Over a 30
second sequence We obtained a standard deviation of 2.2cm.

Outdoor Test (Ex 5): We assess the environment independence of
the proposed approach via an additional outdoor experiment. Fig.
11 shows a motion sequence with the live reconstruction of the
skeleton (green) in overlay. The drones are highlighted in red for
better visibility.

Fig. 9. The joint positions (yellow) of Experiment 3 (see Fig. 8) are plotted
over time (red) with respect to the center of mass. The noise distribution is
2cm with respect to the mean joint-trajectory.

Fig. 10. Experiment 4: Ground truth comparison between the hands and
the camera while walking. In the plot we show the relative distance (x top,
y middle and z bottom) between the left hand and the first camera as a
representative result. The ground truth is blue, our estimate is red. The
standard deviation is 2.2cm.

Computational Complexity. In principle, the our method could
track multiple sets of markers (multiple subjects). However, the
complexity of the algorithm grows cubically with the number of
measurements and quadratically with the number of states. In our
proof of concept implementation the number of states is (6n + 3m)
and the number of measurements is (2m ×n). Yet, the current image
frame-rate (30Hz) is well below the filter update speed (100Hz), pro-
viding enough margin to increase the number of drones or subjects
tracked.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

Flycon: Real-time Environment-independent Multi-view Human Pose Estimation with Aerial Vehicles • 182:11

Fig. 11. Experiment 5: Our system works indoors and outdoors. Here we show extract from a long walking trajectory in varied terrain. Best viewed in the
accompanying video.

9 LIMITATIONS AND CONCLUSIONS
In this paper we proposed a marker based real-time method for the
infrastructure-free estimation of articulated human motion. The ap-
proach leverages a swarm of camera-equipped flying robots (MAVs)
and jointly optimizes the swarm’s and skeletal states, including
3D joint positions and a set of bones, in real-time. The problem
is phrased as a non-linear recursive filtering estimation, namely
IESKF, allowing us to naturally link state estimates and measure-
ments over time. Furthermore, a robo-centric formulation minimizes
accumulation of error due to linearization around the last state and
uncertainty about the global transform. The method provides robust
long-term predictions of the global pose of the multi-robot swarm
and the human skeletal configuration.

In this paper, we demonstrated the proposed method in a number
of challenging settings where traditional multi-view methods are
not applicable. In our proof of concept system, we use a minimum
working example of two flying drones. Although the markers can
be put arbitrary on the subject, the current marker locations on the
back of the subject were chosen for visibility with two drones. If the
movement of the person is very fast, visibility could be lost with
the current solution. This can be solved by employing more drones,
e.g., two additional ones in front of the person.
Our work lies the foundation for a host of exciting avenues for

future work. Foremost we currently rely on active LED-markers to
detect 2D joint locations. The framework would naturally admit
2D detections stemming from a deep-learning method that extracts
these joint detections from natural images alone (e.g., [Toshev and
Szegedy 2014; Wei et al. 2016]) or are even directly from videos (e.g.,
[Song et al. 2017]). However, note that our method requires accu-
rate tracking of the human and makes small-motion assumptions,
hence integration of a deep-learning approach into our pipeline
would have to address several interesting challenges and would
require strict real-time performance. Furthermore, environment fea-
tures could be automatically extracted and tracked to enable even
more accurate localization of the MAVs and tracking of the human.
Another interesting aspect is to extend our method to work with
learning-based approaches that directly predict 3D-pose from im-
ages (e.g., [Mehta et al. 2017]). This would require changes to the
formulation of the skeletal estimation algorithm but could be a very
fruitful direction for future work. Another interesting challenge is
to incorporate our method into a pipeline that capture dense surface
deformation via model-fitting or related approaches (e.g., [Rhodin

et al. 2015; Robertini et al. 2016]). Finally, we are keen to explore
applications of our method in graphics, AR/VR and bio-mechanics.

REFERENCES
2015. Parrot SDK. (2015). http://developer.parrot.com/.
Javier Alonso-Mora, Eduardo Montijano, Tobias Nägeli, Otmar Hilliges, Mac Schwager,

and Daniela Rus. 2018. Distributed multi-robot formation control in dynamic
environments. Autonomous Robots (July 2018).

Luca Ballan, Aparna Taneja, Jürgen Gall, Luc Van Gool, and Marc Pollefeys. 2012.
Motion capture of hands in action using discriminative salient points. Computer
Vision–ECCV 2012 (2012), 640–653.

Meysam Basiri, Felix Schill, Dario Floreano, and Pedro Lima. 2013. Audio-based relative
positioning system for multiple micro air vehicle systems. In Robotics: Science and
Systems RSS2013.

Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and
Michael J Black. 2016. Keep it SMPL: Automatic estimation of 3D human pose and
shape from a single image. In European Conference on Computer Vision. Springer,
561–578.

Christoph Bregler and JitendraMalik. 1998. Tracking people with twists and exponential
maps. In Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE
Computer Society Conference on. IEEE, 8–15.

Pierre-Jean Bristeau, François Callou, David Vissière, and Nicolas Petit. 2011. The Nav-
igation and Control technology inside the AR.Drone micro UAV. IFAC Proceedings
Volumes 44, 1 (2011), 1477 – 1484. https://doi.org/10.3182/20110828-6-IT-1002.02327
18th IFAC World Congress.

J A Castellanos, Jose Neira, and Juan Domingo Tardos. 2004. Limits to the consistency
of EKF-based SLAM. (2004). https://doi.org/10.1109/TAC.2000.880989

Xianjie Chen and Alan L Yuille. 2014. Articulated pose estimation by a graphical model
with image dependent pairwise relations. In NIPS. 1736–1744.

Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-Peter Seidel,
and Sebastian Thrun. 2008. Performance Capture from Sparse Multi-view Video. In
ACM SIGGRAPH 2008 Papers (SIGGRAPH ’08). ACM, New York, NY, USA, Article 98,
10 pages. https://doi.org/10.1145/1399504.1360697

N. de Palézieux, T. Nägeli, and O. Hilliges. 2016. Duo-VIO: Fast, light-weight, stereo
inertial odometry. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2237–2242. https://doi.org/10.1109/IROS.2016.7759350

Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello,
Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan
Taylor, Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. 2016. Fusion4D:
Real-time Performance Capture of Challenging Scenes. ACM Trans. Graph. 35, 4,
Article 114 (July 2016), 13 pages. https://doi.org/10.1145/2897824.2925969

Ahmed Elhayek, Edilson de Aguiar, Arjun Jain, J Thompson, Leonid Pishchulin,
Mykhaylo Andriluka, Christoph Bregler, Bernt Schiele, and Christian Theobalt.
2017. MARCOnI—ConvNet-Based MARker-Less Motion Capture in Outdoor and
Indoor Scenes. IEEE transactions on pattern analysis and machine intelligence 39, 3
(2017), 501–514.

B. Friedland. 1969. Treatment of bias in recursive filtering. IEEE Trans. Automat. Control
14, 4 (August 1969), 359–367. https://doi.org/10.1109/TAC.1969.1099223

Varun Ganapathi, Christian Plagemann, Daphne Koller, and Sebastian Thrun. 2012.
Real-time human pose tracking from range data. In European conference on computer
vision. Springer, 738–751.

Christoph Gebhardt, Benjamin Hepp, Tobias Nägeli, Stefan Stevšić, and Otmar Hilliges.
2016. Airways: Optimization-Based Planning of Quadrotor Trajectories According
to High-Level User Goals. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 2508–2519.
https://doi.org/10.1145/2858036.2858353

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

http://developer.parrot.com/
https://doi.org/10.3182/20110828-6-IT-1002.02327
https://doi.org/10.1109/TAC.2000.880989
https://doi.org/10.1145/1399504.1360697
https://doi.org/10.1109/IROS.2016.7759350
https://doi.org/10.1145/2897824.2925969
https://doi.org/10.1109/TAC.1969.1099223
https://doi.org/10.1145/2858036.2858353

182:12 • T. Nägeli et al.

Christoph Gebhardt, Stefan Stevsic, and Otmar Hilliges. 2018. Optimizing for Aestheti-
cally Pleasing Quadrotor Camera Motion. ACM Trans. Graph. 37, 4, Article 90 (2018),
11 pages.

Bruce P. Gibbs. 2011. Advanced Kalman filtering, least-squares and modeling. John
Wiley & Sons.

Richard Hartley and Andrew Zisserman. 2003. Multiple View Geometry in Computer
Vision (2 ed.). Cambridge University Press, New York, NY, USA.

Chien-Shu Hsieh. 2000. Robust two-stage Kalman filters for systems with unknown
inputs. IEEE Trans. Automat. Control 45, 12 (2000), 2374–2378.

Chong Huang, Zhenyu Yang, Yan Kong, Peng Chen, Xin Yang, and Kwang-Ting Tim
Cheng. 2018. Through-the-Lens Drone Filming. (2018).

Niels Joubert, Mike Roberts, Anh Truong, Floraine Berthouzoz, and Pat Hanrahan. 2015.
An Interactive Tool for Designing Quadrotor Camera Shots. ACM Trans. Graph. 34,
6, Article 238, 11 pages. https://doi.org/10.1145/2816795.2818106

Ern J Lefferts, F Landis Markley, and Malcolm D Shuster. 1982. Kalman filtering for
spacecraft attitude estimation. Journal of Guidance, Control, and Dynamics (1982).

Rui Li, Minjian Pang, Cong Zhao, Guyue Zhou, and Lu Fang. 2016. Monocular long-term
target following on uavs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops. 29–37.

Hyon Lim and Sudipta Sinha. 2015. Monocular Localization of a moving person
onboard a Quadrotor MAV. https://www.microsoft.com/en-us/research/publication/
trajrecon/

Huajun Liu, Xiaolin Wei, Jinxiang Chai, Inwoo Ha, and Taehyun Rhee. 2011. Realtime
human motion control with a small number of inertial sensors. In Symposium on
Interactive 3D Graphics and Games. ACM, 133–140.

S. Lupashin, A. Schollig, M. Hehn, and R. D’Andrea. 2011. The Flying Machine Arena
as of 2010. In IEEE ICRA ’11. 2970–2971. https://doi.org/10.1109/ICRA.2011.5980308

Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad
Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt. 2017.
VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera. ACM
Transactions on Graphics 36, 4, 14. https://doi.org/10.1145/3072959.3073596

Nathan Michael, D. Mellinger, Q. Lindsey, and V. Kumar. 2010. The GRASP Multiple
Micro-UAV Testbed. Robotics Automation Magazine, IEEE 17, 3 (2010), 56–65. https:
//doi.org/10.1109/MRA.2010.937855

Thomas B Moeslund, Adrian Hilton, and Volker Krüger. 2006. A survey of advances
in vision-based human motion capture and analysis. Computer vision and image
understanding 104, 2 (2006), 90–126.

T. Naegeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges. 2017. Real-time
Motion Planning for Aerial Videography with Dynamic Obstacle Avoidance and
Viewpoint Optimization. IEEE Robotics and Automation Letters 2, 3 (2017), 1696–1703.
https://doi.org/10.1109/LRA.2017.2665693

Tobias Nägeli, Christian Conte, Alexander Domahidi, Manfred Morari, and Otmar
Hilliges. 2014. Environment-independent formation flight for micro aerial vehicles.
In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on. IEEE, 1141–1146.

Tobias Nägeli, Lukas Meier, Alexander Domahidi, Javier Alonso-Mora, and Otmar
Hilliges. 2017. Real-time Planning for Automated Multi-view Drone Cinematogra-
phy. ACM Trans. Graph. 36, 4, Article 132 (July 2017), 10 pages. https://doi.org/10.
1145/3072959.3073712

Richard A Newcombe, Dieter Fox, and Steven M Seitz. 2015. Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 343–352.

Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked hourglass networks for
human pose estimation. In ECCV. 483–499.

Iasonas Oikonomidis, Nikolaos Kyriazis, and Antonis A Argyros. 2012. Tracking the
articulated motion of two strongly interacting hands. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, 1862–1869.

Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J. Black. 2015. Dyna:
A Model of Dynamic Human Shape in Motion. ACM Trans. Graph. 34, 4, Article 120
(July 2015), 14 pages. https://doi.org/10.1145/2766993

Jim Pugh and AlcherioMartinoli. 2006. Relative localization and communicationmodule
for small-scale multi-robot systems. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on. IEEE, 188–193.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. 2009. ROS: an open-source Robot Operating
System. In IEEE ICRA Workshop on Open Source Software.

Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian
Theobalt. 2015. A versatile scene model with differentiable visibility applied to
generative pose estimation. In Proceedings of the IEEE International Conference on
Computer Vision. 765–773.

Nadia Robertini, Dan Casas, Helge Rhodin, Hans-Peter Seidel, and Christian Theobalt.
2016. Model-based Outdoor Performance Capture. In Proceedings of the 2016 Inter-
national Conference on 3D Vision (3DV 2016). http://gvv.mpi-inf.mpg.de/projects/
OutdoorPerfcap/

Mike Roberts and Pat Hanrahan. 2016. Generating Dynamically Feasible Trajectories
for Quadrotor Cameras. ACM Trans. Graph. 35, 4, Article 61 (July 2016), 11 pages.

https://doi.org/10.1145/2897824.2925980
Daniel Roetenberg, Henk Luinge, and Per Slycke. 2007. Moven: Full 6dof human motion

tracking using miniature inertial sensors. Xsen Technologies, December 2, 3 (2007),
8.

S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey. 1999. Circumventing dynamic
modeling: evaluation of the error-state Kalman filter applied to mobile robot local-
ization. In Proceedings 1999 IEEE International Conference on Robotics and Automation
(Cat. No.99CH36288C), Vol. 2. 1656–1663 vol.2. https://doi.org/10.1109/ROBOT.1999.
772597

Loren Schwarz, Diana Mateus, and Nassir Navab. 2009. Discriminative human full-body
pose estimation from wearable inertial sensor data. Modelling the Physiological
Human (2009), 159–172.

Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew
Blake, Mat Cook, and Richard Moore. 2013. Real-time human pose recognition in
parts from single depth images. Commun. ACM 56, 1 (2013), 116–124.

Jie Song, LiminWang, Luc Van Gool, and Otmar Hilliges. 2017. Thin-Slicing Network: A
Deep StructuredModel for Pose Estimation in Videos. arXiv preprint arXiv:1703.10898
(2017).

Jonathan Starck and Adrian Hilton. 2003. Model-based multiple view reconstruction of
people. In null. IEEE, 915.

Carsten Stoll, Nils Hasler, Juergen Gall, Hans-Peter Seidel, and Christian Theobalt. 2011.
Fast articulated motion tracking using a sums of gaussians body model. In Computer
Vision (ICCV), 2011 IEEE International Conference on. IEEE, 951–958.

Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann, Andreas Weber, Thomas
Helten, Meinard Müller, Hans-Peter Seidel, and Bernd Eberhardt. 2011. Motion
reconstruction using sparse accelerometer data. ACM Transactions on Graphics
(TOG) 30, 3 (2011), 18.

Jonathan Taylor, Jamie Shotton, Toby Sharp, and Andrew Fitzgibbon. 2012. The vitru-
vian manifold: Inferring dense correspondences for one-shot human pose estimation.
In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,
103–110.

Bugra Tekin, Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. 2016. Fusing
2D Uncertainty and 3D Cues for Monocular Body Pose Estimation. arXiv preprint
arXiv:1611.05708 (2016).

Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. 2014. Joint training
of a convolutional network and a graphical model for human pose estimation. In
NIPS. 1799–1807.

Alexander Toshev and Christian Szegedy. 2014. Deeppose: Human pose estimation via
deep neural networks. In CVPR. 1653–1660.

T. von Marcard, B. Rosenhahn, M. J. Black, and G. Pons-Moll. 2017. Sparse Inertial
Poser: Automatic 3D Human Pose Estimation from Sparse IMUs. Comput. Graph.
Forum 36, 2 (may 2017), 349–360. https://doi.org/10.1111/cgf.13131

Shih-EnWei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. 2016. Convolutional
pose machines. In CVPR. 4724–4732.

Lan Xu, Yebin Liu, Wei Cheng, Kaiwen Guo, Guyue Zhou, Qionghai Dai, and Lu Fang.
2017. FlyCap: Markerless motion capture using multiple autonomous flying cameras.
IEEE transactions on visualization and computer graphics (2017).

Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos, Konstantinos G Derpanis, and
Kostas Daniilidis. 2016. Sparseness meets deepness: 3D human pose estimation
from monocular video. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 4966–4975.

Michael Zollhöfer, Matthias Nießner, Shahram Izadi, Christoph Rehmann, Christopher
Zach, Matthew Fisher, Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian
Theobalt, et al. 2014. Real-time non-rigid reconstruction using an RGB-D camera.
ACM Transactions on Graphics (TOG) 33, 4 (2014), 156.

A NOTATION
The following coordinate frames are used throughout this paper W
– the inertial world frame; O – the origin frame;Aj – anchor frames;
C – the camera frame; I – the IMU frame.
We follow the standard notation proposed in literature. Transla-

tion vectors between two frames A and B, expressed in frame A, are
denoted by tAB . Rotation matrices performing rotations from frame
A to frame B are denoted by RBA = R(q̄BA) ∈ SO(3), where q̄BA is
the corresponding quaternion. We adhere to the JPL quaternion def-
inition and denote a quaternion by q̄ =

[
qx i + qy j + qzk + qw

]
=

[q,qw]T . Quaternion multiplication is denoted by ⊗.
Expected or estimated values of a variable x are denoted by

E [x] = x̂ , errors are written as δx . Orientation errors are described

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

https://doi.org/10.1145/2816795.2818106
https://www.microsoft.com/en-us/research/publication/trajrecon/
https://www.microsoft.com/en-us/research/publication/trajrecon/
https://doi.org/10.1109/ICRA.2011.5980308
https://doi.org/10.1145/3072959.3073596
https://doi.org/10.1109/MRA.2010.937855
https://doi.org/10.1109/MRA.2010.937855
https://doi.org/10.1109/LRA.2017.2665693
https://doi.org/10.1145/3072959.3073712
https://doi.org/10.1145/3072959.3073712
https://doi.org/10.1145/2766993
http://gvv.mpi-inf.mpg.de/projects/OutdoorPerfcap/
http://gvv.mpi-inf.mpg.de/projects/OutdoorPerfcap/
https://doi.org/10.1145/2897824.2925980
https://doi.org/10.1109/ROBOT.1999.772597
https://doi.org/10.1109/ROBOT.1999.772597
https://doi.org/10.1111/cgf.13131

Flycon: Real-time Environment-independent Multi-view Human Pose Estimation with Aerial Vehicles • 182:13

in so(3), the tangent space of SO(3), and are written as δθ . Measure-
ments of a quantity x affected by white Gaussian noise are written
as z = x +ν with ν ∼ N(σ). Due to the many degrees-of-freedom of
the problem discussed in this paper, the resulting notation is rather
verbose.

In various parts of the algorithm, state estimates are changed
from one value to another, where the new value is often a function
of the previous state estimate. We denote the update of a variable
with an arrow←. For example, incrementing a variable x by 1 is
written x ← x + 1.

B QUADROTOR DYNAMICS MODEL
The state of the quadrotor is given by its position pq ∈ R3, its
velocity Ûpq ∈ R3 and its orientation in SO(3), i.e. roll Φq , pitch
Θq and yawψq . The camera is attached to the robot via a pan-tilt
gimbal (in case of the Bebop this is a software gimbal). The state of
the camera is given by its position pc (rigid body transformation
from pq), the velocity Ûpq and the gimbal states θд ,ψд . For ease of
explanation we assume pq − pc . We denote the state of the system,
consisting of quadrotor and gimbal, by

xd = [pq , Ûpq ,Φq ,Θq ,ψq ,θд ,ψд] ∈ R
11. (14)

Following the Parrot Bebop 2 SDK, the control inputs to the system
are given by the vector

u = [vz ,ϕq ,θq ,ωψq ,ωθд ,ωψд] ∈ R
6, (15)

where vz is the velocity of the quadrotor in the body-z axis, ϕq and
θq are the desired roll and pitch angles of the quadrotor, respectively,
ωψq is the angular speed around the body-z axis andωθд ,ωψд are the
pitch and yaw rates of the camera gimbal. The horizontal velocities
are not directly controlled.
We employ a first order low-pass Euler approximation of the

quadrotor dynamics, as follows. The translational dynamics are
then given by Ûpq = [Ûpqx,y ,vz] and Üpq = [Üpqx,y , 0], with

Üpqx,y = Rψq (ψq)
[
−tan(Φq)
tan(Θq)

]
д −C Ûpqx,y , (16)

where д = 9.81ms2 is the earth’s gravity, Rψq (ψq) ∈ SO(2) is the
rotation matrix only containing the yaw rotation of the quadrotor
andC is the drag coefficient at low speeds. The rotational dynamics
of the quadrotor are
ÛΦq = τa (ϕq − Φq), ÛΘq = τa (θq − Θq) and Ûψq = ωψq , (17)

and the gimbal pitch rate is given by Ûθд = ωθд .

C ERROR STATE FILTERING
Rotation quaternions have a unit norm constraint ∥q̄∥ = 1 and thus
have only three degrees of freedom, like any other orientation pa-
rameterization. Due to the fact that a quaternion uses 4 dimensions
to describe 3 degrees of freedom, a quaternion’s covariance matrix
is singular. This issue is avoided with the error state or indirect
Extended Kalman Filter formulation [Lefferts et al. 1982].
With this formulation, rather than estimating total states, as is

the case for the direct Kalman filter, errors are estimated. Thus,
we differentiate between the total state x̂, and the error state δx.
Usually, the error between two quantities is defined as the arithmetic

difference between the two, which is how we define the error in
estimated values which are linear, such as positions:

δx := x − x̂

For orientation errors however, the arithmetic difference is not suit-
able. We define the error of an orientation using an error quaternion
δq̄, a small rotation between the estimated and true orientation.
This error is multiplicative, rather than additive:

q̄AB = δq̄AÂ ⊗ q̄ÂB ⇐⇒ δq̄AÂ = q̄AB ⊗
(
q̄ÂB

)−1

The error quaternion δq̄AÂ can be assumed to be small and the
small angle approximation can be made:

δq̄AÂ ≈

[1
2δθ
1

]
Using δθ to represent orientations in the Kalman filter reduces their
dimensionality to 3. This is both computationally advantageous and
circumvents the issues with a 4 × 4 orientation covariance matrix.
In the error state EKF, the error state δx is the quantity being

estimated and the covariance matrix P describes the uncertainty of
δx. The total state x̂ is always updated such that the expected value
of the error state E [δx] = 0. In other words, the total state x̂ always
represents the best estimate of x.

D LIE GROUP DERIVATIVES
Consider the rotation matrix R ∈ SO(3) and the vector x ∈ R3. Let

y = Rx y′ = RT x

The differentiation by x is straightforward:

∂y
∂x
= R

∂y′

∂x
= RT

The differentiation with respect to the rotation parameters that
define R, which we simply denote by ∂

∂R , is:

∂y
∂R
= −⌊y⌋×

∂y′

∂R
= −RT ⌊x⌋×, (18)

where ⌊w⌋× is the skew symmetric matrix of a three dimensional
vector w and defined as

⌊w⌋× =

0 −w3 w2
w3 0 −w1
−w2 w1 0

 .
E ACTIVE LED MARKERS
For reproducibility we detail how we extract marker IDs from the
drones onboard camera streams.

Marker labelling. To produce labeled measurements of marker
positions in the image, bright blobs corresponding to markers are
segmented from the background. Each marker blinks with a dis-
tinct bit pattern and when tracked over time the pixel intensities
may be converted into a bitstream indicating the on- or off-state
of the modulated LED. The extracted bit pattern allows for unique
identification of each marker.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

182:14 • T. Nägeli et al.

Marker detection. Intensity blobs corresponding to our marker
candidates are segmented from the background by applying an inten-
sity threshold on input frame Ii . A morphological opening operation
is used for noise removal and the remaining connected components
are marker candidates Ci . Marker candidates are tracked via a KLT
tracker and associated with the newly detected marker candidates.

Bitstream conversion. Each frame Ii provides a sample s ji ofmarker
Mj ’s current signal bit state b

j
cur ∈ {0, 1, 0.5}, where b

j
cur = 0.5

denotes a corrupted signal.
Since apparent marker intensity depends on the current state of

the blinking LED and extraneous influences, dynamic thresholding
is used to classify the state as on (logical 1) or off (logical 0). This
marker-specific threshold is computed as the moving average of a
marker’s intensities over a sample size of Nwindow frames.
Note that our system clocks are not synchronized and hence

the time at which the LEDs state switches ttransit ion has to be
approximated by a transition window [ts , te]. This is done by finding
the frames Ii and Ii+1 where the sample bits of multiple markers
change their value, i.e. find i such that |{j | s ji , s

j
i+1} | > 3. Because

the signal pattern frequency f is known, it can be assumed that
ttransit ion = ttransit ion +

1
f and the transition window can be

updated accordingly. The transition timewindow allows us grouping
samples belonging to the same signal bit b jcur . Namely, we choose
samples:

{s
j
l , ..., s

j
l+k } = {s

j
i | timestamp(Ii) > te ∧ timestamp(Ii) < ts +

1
f
}

Having multiple samples per signal leads to increased robustness of
the bit classification process. The resulting signal bit for a Marker j
is computed as b jcur = f (s

j
l , ...s

j
l+k)) with

f (s
j
l , ...s

j
l+k)) =

1, if 1

K
∑K
i=0 s

j+i
l > 0.6

0, if 1
K
∑K
i=0 s

j+i
l < 0.4

0.5, otherwise

The resulting bitstream can be used to match the extracted to the
known patterns which correspond to unique marker labels.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 182. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Modeling and Notation
	4.1 Terminology
	4.2 Notation
	4.3 Human Pose
	4.4 Drones and Cameras
	4.5 State-space Structure and Filtering Strategy

	5 Joint camera and human state estimation
	5.1 Pose State Propagation
	5.2 Filter measurements
	5.3 Filter Update
	5.4 Bone length estimation

	6 Camera control
	6.1 Marker visibility
	6.2 Trajectory optimization

	7 Implementation
	7.1 Active markers

	8 Experiments
	9 Limitations and Conclusions
	References
	A Notation
	B Quadrotor dynamics model
	C Error State Filtering
	D Lie Group Derivatives
	E Active LED markers

