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Fig. 1. We propose a computational method that leverages the motion capabilities of drones to imitate the visual look of first-person view (FPV) shots. These
shots are usually obtained by a human camera operator that follows the action e.g., by walking or running (A). Such footage is intentionally shot to contain
motion artifacts. Our method allows a drone to imitate such shots but offers more flexibility. For example, long shots that imitate a shoulder rig operator walking
and then running (B). The result video is acquired in a single session, automatically, with a seamless transition between the operator’s motion dynamics (C).

We propose an approach to capture subjective first-person view (FPV) videos
by drones for automated cinematography. FPV shots are intentionally not
smooth to increase the level of immersion for the audience, and are usually
captured by a walking camera operator holding traditional camera equip-
ment. Our goal is to automatically control a drone in such a way that it
imitates the motion dynamics of a walking camera operator, and in turn
capture FPV videos. For this, given a user-defined camera path, orientation
and velocity, we first present a method to automatically generate the opera-
tor’s motion pattern and the associated motion of the camera, considering
the damping mechanism of the camera equipment. Second, we propose a
general computational approach that generates the drone commands to
imitate the desired motion pattern. We express this task as a constrained
optimization problem, where we aim to fulfill high-level user-defined goals,
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while imitating the dynamics of the walking camera operator and taking the
drone’s physical constraints into account. Our approach is fully automatic,
runs in real time, and is interactive, which provides artistic freedom in de-
signing shots. It does not require a motion capture system, and works both
indoors and outdoors. The validity of our approach has been confirmed via
quantitative and qualitative evaluations.
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1 INTRODUCTION
The cinematographic effects of different shot types can profoundly
affect the way the audience interprets the scene and character [Katz
1991]. Common shot types can be separated into two main cate-
gories. The first category are third-person point of view or objective
shots: this narrative style presents the action from the perspective
of an ideal external observer. The second category are first-person
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point of view (FPV) or subjective shots: these let the audience expe-
rience the action through the eyes of a character and refer to the "I"
of the story [Katz 1991].
Objective shots require smooth camera motion usually achieved

by static cameras, dollies, rails or cranes. In contrast, subjective shots
are intentionally not perfectly stabilized and contain camera motion
that corresponds to walking patterns in order to increase the level
of immersion of the audience into the scene. Typically such shots
are filmed by a human camera operator using dedicated camera
equipment, such as a shoulder rig or a Steadicam (see Figure 1)
which dampen walking effects to different degrees.

Both camera types enable unique shots and are commonly used
in Holywood productions. Directors value that their style of camera
motion places the audience in the scene and gives the scene a frenetic
feel, full of energy1. However, operating a Steadicam or a shoulder
rig requires significant expertise and training1 [Holway and Hayball
2013] and thus is only reserved for skilled camera operators. This
leads to increasing operator- and movie production costs.
Recently, the flexibility, price and relative ease-of-use of drones

have led to much attention in the computer graphics and robotics
literature [Gebhardt et al. 2016; Gebhardt and Hilliges 2018; Geb-
hardt et al. 2018; Joubert et al. 2015; Roberts and Hanrahan 2016;
Xie et al. 2018]. While paving the way for the use of drones in cine-
matography, existing approaches are focused on generating smooth
camera motion, which is strongly correlated with aesthetically pleas-
ing perception of the resulting footage when filming static scenes
(cf. [Gebhardt et al. 2018]). Thus such approaches are only applicable
to third-person objective shots, and hence cannot create the desired
visual effect to capture subjective FPV shots.

In this paper, we propose the first computational approach to au-
tomatically capture subjective FPV shots with drones. Our method
allows to evoke the same visual effect as created manually by a
skilled camera operator but requires very little to no training. There-
fore, it provides the video director the exact control over the type
and amount of motion patterns and enables precisely controlled
camera motion which can be replicated over multiple takes. Filming
subjective shots with drones is a challenging task. Such a method
must be precise to ensure repeatability of shots yet must run in real
time in order to be able to react to the motion of the actor. Moreover,
such a method must be capable of creating camera motion that
evokes the immersive feeling associated to subjective shots while
respecting the physical limitations of the drone (which are very
different to those of a human).

Embracing these challenges, we propose a constrained optimiza-
tion method to generate drone and gimbal control inputs in real time.
At the core of the method lies the concept of imitating a physical
system (the human) via a different dynamical system (the drone). To
this end, we propose a method that leverages a parametric model of
human walking to generate the desired velocities of the camera in
the camera frame. A receding horizon closed-loop optimal control
scheme then produces the drone and gimbal inputs to best match
the desired camera motion and a user-specified trajectory along
which the drone progresses.

1https://www.lightsfilmschool.com/blog/how-to-use-a-shoulder-rig-
filmmaking-tutorial

This results in a close imitation of the visual effect achieved by
experienced operators but provides the director more flexibility
in terms of chaining shots and transitioning between shot styles.
Furthermore, the method provides flexibility in terms of the environ-
ment in which filming is possible. For example, using a Steadicam
while climbing stairs or filming on unsteady surfaces is normally
difficult for human operators but becomes straightforward when
using drones.
Our approach runs both in indoor and outdoor environments,

and does not require a motion capture system. We demonstrate our
approach in a number of scenarios, such as imitating different hu-
man dynamics (walking, running and stepping stairs), with different
speeds, as well as different motion directions (e.g., forward, back-
ward and sideways). Moreover, we demonstrate that our approach
enables seamless transitions between different shot styles that were
previously impossible, for example from walking FPV to smooth
aerial dolly shots. We evaluate our method in a number of quantita-
tive and qualitative experiments. Finally, a large perceptual study
suggests that the resulting footage is virtually indistinguishable
from footage captured by a professional camera operator.

2 RELATED WORK
Automated cinematography in virtual environments: Several meth-

ods have been proposed for automated camera placement [Lino et al.
2011], control [Drucker and Zeltzer 1994; Lino and Christie 2012,
2015] and motion planning [Li and Cheng 2008; Yeh et al. 2011]
in the context of automated cinematography in virtual environ-
ments [Christie et al. 2008]. However, since they are designed for
virtual environments, they do not consider the physical constraints
of real systems, and thus might generate physically unfeasible
drone trajectories.

Automated drone cinematography: Several tools have been pro-
posed to plan aerial videography. For example, some existing apps
and drones allow the users to place waypoints on a 2D map [APM
2016; DJI 2016; Technology 2016] or to interactively control the
drone’s camera as it follows a pre-determined path [3D Robotics
2015]. However, these tools generally 1) do not ensure the phys-
ical feasibility of the generated drone trajectories, and 2) are not
designed to imitate the visual look of subjective FPV shots.

The (offline) planning of physically feasible drone camera trajec-
tories for cinematography has recently received a lot of attention
[Gebhardt et al. 2016; Gebhardt and Hilliges 2018; Gebhardt et al.
2018; Joubert et al. 2015; Roberts and Hanrahan 2016; Xie et al.
2018]. Such tools allow for planning of aerial shots and employ op-
timization that considers both aesthetic objectives and the drone’s
physical constraints. However, these methods are designed to repli-
cate the visual look of smooth camera motions, usually acquired by
dollies, rails and cranes for third-person objective shots. Moreover,
they work offline, i.e., they cannot interactively react in real time to
moving actors in dynamic scenes.
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Online trajectory generation for drone cinematography: In the con-
text of capturing dynamic scenes, several works have been proposed
to generate real-time drone camera trajectories. For example, plan-
ning camera motion in a lower dimensional subspace, [Galvane et al.
2016; Joubert et al. 2016] achieved real-time performance. [Nägeli
et al. 2017a] used a Model Predictive Controller (MPC) to locally op-
timize visual cinematographic constraints like the position and size
of the captured targets on the screen. [Nägeli et al. 2017b] extended
this work by using a Model Predictive Contour Control (MPCC)
scheme for multiple drones and enabled actor-driven tracking on
a geometric reference path i.e., their method does not require a
predefined time-stamped reference camera path as MPC approaches
do. It allows the user to design the reference camera path, referred
to as virtual camera rails. [Galvane et al. 2018] proposed a solution
for the computation of these virtual rails and provided a high-level
coordination strategy for the placement of multiple drones. Simi-
larly to these methods, our approach can fulfill various high-level
user goals in real time for dynamic scenes, such as following a user-
defined camera path, velocity and orientation. Our key novelty is
that we optimize the drone commands to also imitate the dynamics
of a walking camera operator in real time, and thus automatically
capture subjective FPV shots. This means that, in contrast to previ-
ous methods, our approach considers two dynamical systems in its
formulation (dynamics of a drone and a walking camera operator).

3 PRELIMINARIES

3.1 Notation
Here we introduce the most important notation used in the paper.
For a full treatment we refer to Appendix A. Throughout this paper,
we denote position, velocity and orientation vectors as p(.) , v(.)

and o(.) , respectively. Superscripts 𝑞, ℎ,𝑚 and 𝑠 refer to the quadro-
tor, human walking model, imitation model and smooth reference
path, respectively (e.g., p𝑞 denotes the quadrotor’s position vector).
Subscripts 𝑥 , 𝑦 and 𝑧 denote the directions in the corresponding
world or body frame (e.g., 𝑣ℎ𝑥 denotes the human walking model
velocity in 𝑥 direction). States, inputs and outputs of a dynamical
system are denoted as x(.) , u(.) and y(.) , respectively (e.g., yℎ refers
to the output vector of the human walking model). For better un-
derstanding of the human walking model, we just denote its states
as 𝜽ℎ . The estimated value of any variable 𝑥 is written 𝑥 , while
its setpoint (i.e., its desired value) is written 𝑥 . All units are in SI
system i.e., positions (m), velocities (m/s), orientations (rad) and
angular velocities (rad/s).

3.2 Quadrotor Dynamical Model
Our method is agnostic to the quadrotor hardware. Our experi-
mental setup is a Parrot Bebop 2, and we use a quadrotor dynam-
ical model similar to [Nägeli et al. 2017b]. Let p𝑞 ∈ R3 denote
the quadrotor’s position, v𝑞 = [𝑣𝑞𝑥 , 𝑣

𝑞
𝑦, 𝑣

𝑞
𝑧 ] ∈ R3 its velocity and

o𝑞 = [Φ𝑞,Θ𝑞,𝜓𝑞] ∈ R3 its orientation (roll, pitch and yaw). The
identified quadrotor model is of the form x𝑞

𝑘+1 = 𝑓 𝑞 (x𝑞
𝑘
, u𝑞

𝑘
) where

x𝑞 = [p𝑞, 𝑣𝑞𝑥 , 𝑣
𝑞
𝑦,Φ

𝑞,Θ𝑞,𝜓𝑞, 𝜃𝑔 ,𝜓𝑔 ]𝑇 ∈ R10, x𝑞 ∈ 𝛘

u𝑞 = [𝑣𝑞𝑧 , 𝜙𝑞, 𝜃𝑞, 𝜔
𝑞

𝜓
, 𝜔𝜃𝑔 , 𝜔𝜓𝑔

]𝑇 ∈ R6, u𝑞 ∈ 𝜻
(1)

and 𝑓 𝑞 : R10 × R6 → R10 is an identified non-linear map which
assigns to the current quadrotor state x𝑞 and input u𝑞 , the successor
state at each instant 𝑘 . The state of the flying camera consists of its
position p𝑞 , velocity (𝑣𝑞𝑥 , 𝑣

𝑞
𝑦) and orientation (Φ𝑞,Θ𝑞,𝜓𝑞), as well

as the gimbal pitch and yaw angles (𝜃𝑔 ,𝜓𝑔 ). The control inputs
are the desired roll and pitch angles of the quadrotor (𝜙𝑞, 𝜃𝑞), the
translational and rotational velocities of its z-body axis (𝑣𝑞𝑧 , 𝜔

𝑞

𝜓
) as

well as the pitch and yaw rates of the camera gimbal (𝜔𝜃𝑔 , 𝜔𝜓𝑔
). 𝝌

and 𝜻 are the set of admissible quadrotor states and inputs derived
from its physical limitations.

3.3 FPV Camera Motion Pattern
The typical look of subjective FPV shots is due to the walking pat-
tern of camera operators. Therefore, to imitate FPV shots with
drones, we first need to model the human walking dynamics. In
our context of cinematography, we need a model that fulfills the
following requirements. First, the human walking pattern consists
of several components (i.e., the vertical, lateral and rotational walk-
ing patterns). Therefore, we need a realistic walking model that
simultaneously encompasses all these components. Second, video
directors must be able to react to the actor’s motion. Hence, the
model must be adaptive, such that it can automatically adjust, for
example, the operator’s step frequency to match the desired walking
velocity. This velocity can be defined interactively and in real time
by the video director. Third, the model must be usable in real-time
drone control schemes. In our drone control scheme, it is important
to have a segment-free model instead of hybrid and multi-segment
models commonly used to simulate human walking pattern [Gregg
et al. 2012; Hasaneini et al. 2013; Manchester and Umenberger 2014;
Sharbafi and Seyfarth 2015]. In other words, the model must have a
single function in the time-domain to explain the different phases
of the human walking instead of having multiple functions to ex-
plain each phase. The segment-free model simplifies our controller
design because we do not have to consider multiple models, nor the
switching effect between each of them.

Camera operator walking pattern: Several methods have been
proposed in the fields of biomechanics and biped robotics to sim-
ulate realistic mechanical models of human walking, such as the
inverted pendulum model, passive dynamics walking and the zero
moment point(ZMP)-based method, see [Xiang et al. 2010] for a
review of existing methods. However, these models cannot be di-
rectly used for our drone FPV shot imitation purpose because they
are not segment-free. The model of [Carpentier et al. 2017] is the
first segment-free time-domain model developed and demonstrated
to explain human walking. However, it does not consider the lat-
eral or rotational walking patterns, which are important to repli-
cate subjective FPV shots. [Faraji and Ijspeert 2017] proposed a 3D
human walking model appropriate for Model Predictive Control
(MPC) schemes. However, the center of mass height is constant in
their model (e.g., no vertical displacement). Zijlstra and Hof [1997]
showed that lateral movement of the walking pattern is a simple
sinusoidal signal based on a 3D inverted pendulum model. We will
build upon the ideas of [Carpentier et al. 2017] and [Zijlstra and
Hof 1997] to make a single adaptive walking camera model (see
Section 4.2 for more details).
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4 METHOD

4.1 Overview
We propose a computational method to imitate the visual charac-
teristics of FPV shots with a drone. Our real-time algorithm allows
drones to imitate the dynamics of a walking camera operator while
following a user-defined trajectory and considering the physical
limitations of the drone. Our method allows to switch between dif-
ferent shot styles with seamless transitions (e.g., switching from a
smooth dolly shot to a FPV shoulder rig shot). Our method also en-
ables a director to interactively adjust the parameters of the camera
walking model, such as the walking speed of the operator or the
amount of camera shake. Our algorithm is illustrated in Figure 2 and
iteratively performs the following steps (letters below correspond
to those in Figure 2).

Visual style: The video director can interactively define and adjust
in real time the following (collectively called user preferences):
(A) the desired trajectory as a global guidance for the drone cam-

era path and orientation, i.e., the user only needs to define the
desired key-frames similar to [Gebhardt et al. 2018; Nägeli
et al. 2017b] (desired position and orientation of the camera
for sparse locations in 3D space).

(B) the desired shot style (camera equipment) for drone imitation,
such as FPV shoulder rig or Steadicam shot styles.

(C) the camera velocity. For example, to smoothly accelerate from
low to high walking speed, up to running.

FPV Shot Generation: At each iteration,
(D) corresponding to the user preferences, our method adaptively

generates the walking camera model. The generated model
also includes damping parameters based on the camera equip-
ment selected by the user. The walking camera model then
predicts positional and angular velocity set-points over its
prediction horizon.

(E) the predicted set-points, the desired trajectory and the drone’s
on-board sensor data (e.g., IMU and optical flow sensor) are
used as inputs to compute the drone control commands via a
receding horizon closed-loop optimal controller.

Using our approach, the drone dynamics converge to the desired
walking camera operator dynamics (see the blue curve illustrating
the drone motion as a walking operator in the output block of
Figure 2) while it follows the desired trajectory (the red dashed
curve in the output block of Figure 2).

4.2 Walking Camera Model
Following the discussion of Section 3.3, we will build upon the ideas
of [Carpentier et al. 2017] and [Zijlstra and Hof 1997] to model the
vertical and lateral displacements of the human walking pattern,
respectively. We will combine them into one single model, make it
adaptive, include rotational displacements and further extend it to
simulate the damping effects of cinematographic equipment.

Humanwalkingmodel: Wenowpresent our adaptive and segment-
free camera operator walking model. Let pℎ = [𝑝ℎ𝑥 , 𝑝ℎ𝑦, 𝑝ℎ𝑧 ] ∈ R3

denote the position of the human walking model in its body-frame
and vℎ = [𝑣ℎ𝑥 , 𝑣ℎ𝑦, 𝑣ℎ𝑧 ] ∈ R3 its velocity while 𝜓ℎ and 𝜔ℎ are the

human walking rotation and angular velocity around its z-body
axis, respectively (see Figure 3). We model the human lateral (left-
right) walking motion 𝑝ℎ𝑦 and its rotation around the z-body axis
𝜓ℎ as a sinusoidal signal while we formulate its vertical (up-down)
displacement 𝑝ℎ𝑧 as a parametric curtate cycloid curve2 w.r.t. the
human walking time3 𝜏ℎ𝑧 (green, black and blue curves in Figure 3,
respectively). We use the simple constant velocity model at each
sampling time to model the human walking motion in the x-axis
¤𝑝ℎ𝑥 = 𝑣ℎ𝑥 (orange curve in Figure 3). The only input to our model
is the user-defined walking velocity 𝑣ℎ𝑥 at each time instant. The
outputs, states, and the initial conditions are

yℎ = [𝑝ℎ𝑦, 𝑣ℎ𝑦, 𝑝ℎ𝑧 , 𝑣ℎ𝑧 , 𝜏ℎ𝑧 ,𝜓ℎ, 𝜔ℎ]𝑇 ,

𝜽ℎ = [𝜃ℎ𝑦, 𝜃ℎ𝑧 , 𝜃ℎ𝜓 ]
𝑇 , 𝜽ℎ (0) = [0, 𝜋/2, 0]𝑇 .

(2)

The outputs yℎ are the human lateral (𝑝ℎ𝑦, 𝑣ℎ𝑦 ) and vertical (𝑝ℎ𝑧 , 𝑣ℎ𝑧 , 𝜏ℎ𝑧 )
walking pattern, as well as its rotation and angular velocity (𝜓ℎ, 𝜔ℎ)
around the z-body axis. The states 𝜽ℎ of our model are the phase of
the lateral, vertical and rotational walking pattern denoted as 𝜃ℎ𝑦 ,
𝜃ℎ𝑧 and 𝜃ℎ

𝜓
, respectively. Our human walking model is represented

as a continuous non-linear state space model

¤𝜽ℎ =

[
𝜔ℎ
𝑦 𝜔ℎ

𝑧 𝜔ℎ
𝜓

]𝑇
, (3)

yℎ = [𝑎𝑦 sin(𝜃ℎ𝑦) 𝑎𝑦𝜔
ℎ
𝑦 cos(𝜃ℎ𝑦) ℎℎ − 𝑟 sin(𝜃ℎ𝑧 )

−𝑟𝜔ℎ
𝑧 cos(𝜃ℎ𝑧 ) 𝑡 + 𝑟 cos(𝜃ℎ𝑧 ) 𝑎𝜓 sin(𝜃ℎ

𝜓
) 𝑎𝜓𝜔

ℎ
𝜓

cos(𝜃ℎ
𝜓
)]𝑇 ,

where 𝑎𝑦 , 𝑎𝜓 and 𝑟 are the amplitudes of the human lateral, rota-
tional and vertical walking pattern. ℎℎ is the height of a human
and 𝑡 is the time. 𝜔ℎ

𝑦 , 𝜔ℎ
𝑧 and 𝜔ℎ

𝜓
denote the lateral, vertical and

rotational human walking pattern angular frequencies, respectively.
We adaptively compute these walking frequencies (𝜔ℎ

𝑦 , 𝜔ℎ
𝑧 , 𝜔ℎ

𝜓
) by

computing the corresponding step length 𝑙ℎ𝑠 and step frequency 𝑓 ℎ𝑠
from the user-defined walking velocity 𝑣ℎ𝑥 as

𝑙ℎ𝑠 = 𝛽0 + 𝛽1 |𝑣ℎ𝑥 | + 𝛽2𝑣
ℎ
𝑥

2
(step length)

𝑓 ℎ𝑠 =
|𝑣ℎ𝑥 |
𝑙ℎ𝑠

(step frequency)

𝜔ℎ
𝑦 = 𝜔ℎ

𝜓
= 𝜋 𝑓 ℎ𝑠 (walking model frequencies)

𝜔ℎ
𝑧 = 2𝜋 𝑓 ℎ𝑠 (4)

where 𝛽0, 𝛽1 and 𝛽2 are fixed known constants identified for a
walking person by [Seitz and Köster 2012]. We discretize our human
walking model and use it to predict the walking pattern over a finite
prediction horizon 𝑁 . Since 𝜏ℎ𝑧 is a non-linear function of time,
we re-sample the vertical motion pattern over the horizon. Thus
attaining samples (𝜏ℎ𝑧𝑘 , 𝑣

ℎ
𝑧𝑘
) where 𝑘 ∈ 1, · · · , 𝑁 , at the sampling

rate required for drone control.

2A parametric curtate cycloid is the curve described by a point rigidly attached to
a wheel rolling on a flat surface (see blue curve and dotted circles in Figure 3).

3𝜏ℎ𝑧 is the x-axis of the parametric curtate cycloid curve 𝑝ℎ𝑧 and is a non-linear
function of time 𝑡 .
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Fig. 2. Overview of our FPV shot generation method. Left to right: A user defines the reference camera path, shot style and forward velocity of the camera
operator (A, B, C). Then we predict the velocity and orientation profile of the desired imitation model in a prediction horizon (D). Finally our MPCC formulation
computes the control commands (E) such that the drone flies closely to the user-defined camera path (dotted red curve) while it replicates the desired imitation
model dynamics (blue curve).

Fig. 3. Our human walking model in its body-frame. See text for details.

Camera stabilizers: Each camera stabilizer (e.g., shoulder rig,
Steadicam or dolly) is designed to damp some components of the
human walking motion. In our human walking model, the parame-
ters 𝑟 , 𝑎𝑦 and 𝑎𝜓 in Eq. (3) define the range of the vertical, lateral
and rotational human walking pattern. These parameters can be
adjusted to imitate each of these camera stabilizers. For example,
to capture a smooth dolly shot, the video director sets them all to
zero in our human walking model. To imitate shakier human shots,
the director can simply set them to higher values in an interactive
manner via online visual feedback (see Section 8.3). Hence, our
method can both imitate and seamlessly switch between various
shot styles (e.g., objective smooth dolly or subjective FPV shots)
using the same algorithm.

4.3 Imitative MPCC Formulation
Given the dynamical models of drones (Section 3.2), walking camera
operator and camera stabilizer (Section 4.2), we now present our
approach to compute the drone commands to imitate the target
camera’s motion pattern. We express this task as a constrained
optimization problem, where we aim to fulfill the high-level user-
defined goals, while imitating the dynamics of the walking camera
operator and taking the drone’s physical constraints into account.
In the following, we first define the different cost terms of our
optimization and then present our general optimization formulation.

Following the human walkingmodel dynamics: To enable a quadro-
tor to imitate the dynamics of a walking camera operator (defined
in Eq. (3)), the quadrotor’s dynamical model must follow the corre-
sponding humanwalkingmodel dynamics. This imitation constraint
means that the quadrotor position p𝑞 and orientation𝜓𝑞 states must
follow the corresponding position pℎ and orientation𝜓ℎ of the hu-
manwalkingmodel at each time stage𝑘 . We use penalty functions to
convert our constrained problem (e.g., imitating human dynamics)
into an unconstrained problem by introducing an artificial penalty
for violating the constraint. First, we use the human walking model
dynamics to predict its velocity and angular velocity over a predic-
tion horizon i.e., vℎ

𝑘
= [𝑣ℎ𝑥𝑘 , 𝑣

ℎ
𝑦𝑘
, 𝑣ℎ𝑧𝑘 ] and 𝜔ℎ

𝑘
for all 𝑘 from 1 to 𝑁 .

At each instant 𝑘 , we set the initial conditions of the human walking
model with its current state. Then, to ensure the convergence of the
velocity and angular velocity of the quadrotor to the human walk-
ing model states in a prediction horizon, we define the following
imitation cost term 𝑐𝑖𝑚 as:

𝑐𝑖𝑚 (v𝑞, vℎ, 𝜔𝑞

𝜓
, 𝜔ℎ) = | |v𝑞 − vℎ | |2 + ||𝜔𝑞

𝜓
− 𝜔ℎ | |2 . (5)

When the velocities and angular velocities of the quadrotor con-
verge to the corresponding human walking model velocities, the
quadrotor position p𝑞 =

∫
v𝑞𝑑𝑡 and its orientation 𝜓𝑞 =

∫
𝜔
𝑞

𝜓
𝑑𝑡

will also follow the human walking model position and orientation
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states. Since our drone inputs are velocity and angular velocity in
and around its z-body axis (see Eq. (1)), we define the imitation term
based on the velocities and angular velocities, instead of positions
and orientations, to directly compute the drone commands. In addi-
tion, it may be more intuitive for a user to interactively define the
desired camera velocity instead of its position.

Following a desired trajectory: Our goal is to imitate the dynamics
of a walking camera operator on a user-defined smooth path. Since
the human walking model is formulated in the human body-frame,
we need to reformulate our imitation cost (see Eq. (5)) based on the
drone velocities in the drone’s body-frame and consider the effects of
the user-defined smooth path (see the dashed black line in Figure 4).
We assume that a human walks on a desired path while its forward
velocity is in the tangent direction of the path at each instant, and
its vertical displacement (up-down) is along the z-direction in the
world frame (see Figure 4).

Denoting with a𝑡 the normalized tangent vector of the desired
trajectory, let a𝑧 define the unit vector along the z-direction in the
world frame. Therefore, the normalized vector orthogonal to the
desired trajectory is obtained by a𝑛 = a𝑧 × a𝑡 i.e., the vector in
the lateral (left-right) direction of the human walking model. To
imitate the motion of a camera carried by a walking operator, we
project the quadrotor velocity v𝑞 onto the a𝑡 , a𝑛 and a𝑧 directions
and encourage it to be similar to the human walking velocities
(𝑣ℎ𝑥 , 𝑣ℎ𝑦 , 𝑣ℎ𝑧 ) in its body-frame as (see Figure 4)

𝑐a𝑡 (v𝑞, 𝑣ℎ𝑥 , a𝑡 ) = | |𝑒𝑡 | |2 where 𝑒𝑡 = ⟨v𝑞, a𝑡 ⟩ − 𝑣ℎ𝑥 ,

𝑐a𝑛 (v𝑞, 𝑣ℎ𝑦, a𝑛) = | |𝑒𝑛 | |2 where 𝑒𝑛 = ⟨v𝑞, a𝑛⟩ − 𝑣ℎ𝑦,

𝑐a𝑧 (v𝑞, 𝑣ℎ𝑧 , a𝑧) = | |𝑒𝑧 | |2 where 𝑒𝑧 = ⟨v𝑞, a𝑧⟩ − 𝑣ℎ𝑧 .

(6)

Furthermore, we encourage its angular velocity 𝜔ℎ to be similar
to the corresponding quadrotor state:

𝑐𝜔𝜓 (𝜔𝑞

𝜓
, 𝜔ℎ) = | |𝜔𝑞

𝜓
− 𝜔ℎ | |2 . (7)

We also allow a user to interactively and in real time control the
orientation of the drone camera by adjusting both the drone pan-tilt
gimbal4 and the drone rotation around its z-body axis. To this end,
we define a cost term for the desired drone rotation around its z-axis:

𝑐𝜓 (𝜓𝑞,𝜓𝑞) = | |𝜓𝑞 −𝜓𝑞 | |2, (8)

where𝜓𝑞 denotes the desired reference yaw angle of the camera.
To follow the desired trajectory and avoid drift from the desired

path, we add a path following cost composed of the lag and con-
tour terms 𝑐𝑙 and 𝑐𝑐 based on the approach proposed in [Gebhardt
et al. 2018] (see Appendix B, Eq. (12) for more details). In contrast
to Model Predictive Control (MPC) approaches which require a
time-stamped reference trajectory, our MPCC-based formulation
enables the video director to interactively and in real time adjust
the desired walking velocity for the drone to react to the motion
of the actor. To avoid excessive use of the control inputs and limit
progress acceleration rate on the path, we use the cost term 𝑐𝑖𝑛𝑝

(see Appendix B, Eq. (14) for more details).

4Parrot Bebop2 has a fast electrical gimbal, and its SDK allows a user to directly
set the desired pan-tilt gimbal angles.

Fig. 4. To track the dynamics of the human walking model, our optimization
method encourages the quadrotor velocity v𝑞 to be similar to the human
walking velocities at the directions a𝑡 , a𝑛 and a𝑧 on the smooth spline.
We minimize the associated errors 𝑒𝑡 , 𝑒𝑛 and 𝑒𝑧 in a prediction horizon,
which enables a drone to follow the walking camera operator dynamics
(blue curve) on a user-defined smooth path (dashed black curve).

Optimization formulation: Finally, we define our drone imitation
objective function by linearly combining the cost terms described
above, grouped into four categories: 1) Imitation of the walking
camera model: (𝑐a𝑡 , 𝑐a𝑛 , 𝑐a𝑧 , 𝑐𝜔𝜓 ) in Eq. (6) and Eq. (7). 2) Camera
orientation: 𝑐𝜓 in Eq. (8). 3) Path following: (𝑐𝑙 , 𝑐𝑐 ) in Eq. (12). 4) Lim-
iting control inputs: 𝑐𝑖𝑛𝑝 in Eq. (14) to avoid excessive use, leading
to jerky camera motion. The final cost term is given by:

𝐽𝑘 =

(
𝑤a

(
𝑐a𝑡 (v𝑞

𝑘
, 𝑣ℎ𝑥𝑘 , a𝑡𝑘 ) + 𝑐

a𝑛 (v𝑞
𝑘
, 𝑣ℎ𝑦𝑘 , a𝑛𝑘 ) + 𝑐

a𝑧 (v𝑞
𝑘
, 𝑣ℎ𝑧𝑘 , a𝑧𝑘 )

)
+𝑤𝜔𝜓

𝑐𝜔𝜓 (𝜔𝑞

𝜓𝑘
, 𝜔ℎ

𝑘
)
)
+𝑤𝜓𝑐

𝜓 (𝜓𝑞

𝑘
,𝜓

𝑞

𝑘
) (9)

+
(
𝑤𝑙𝑐

𝑙 (𝜃𝑠
𝑘
, p𝑞

𝑘
) +𝑤𝑐𝑐

𝑐 (𝜃𝑠
𝑘
, p𝑞

𝑘
)
)
+ 𝑐𝑖𝑛𝑝 (𝑎𝑠

𝑘
, u𝑞

𝑘
),

where the weights𝑤a,𝑤𝜔𝜓
,𝑤𝜓 ,𝑤𝑙 and𝑤𝑐 are adjusted for trade-off

between imitation of the dynamical walking model and following
the desired path. We used the same weights for all the results shown
in this paper and their values are tabularized in Appendix D.

To compute the drone commands, the final optimization problem
is then formulated as:

minimize
x𝑞 ,u𝑞 ,Θ𝑠 ,𝑎𝑠

𝑁−1∑
𝑘=0

𝐽𝑘 +𝑤𝑁 𝐽𝑁 (10)

subject to x𝑞0 = x̂𝑞 (𝑡) (initial state)

Θ𝑠
0 = Θ̂𝑠 (𝑡) (initial progress)

x𝑞
𝑘+1 = 𝑓 (x𝑞

𝑘
, u𝑞

𝑘
) (system model)

Θ𝑠
𝑘+1 = A𝑠Θ𝑠

𝑘
+ B𝑠𝑎𝑠

𝑘
(progress along path)

x𝑞
𝑘
∈ 𝝌 (state constraints)

u𝑞
𝑘
∈ 𝜻 (input constraints)

0 ≤ Θ𝑠
𝑘
≤ Θ𝑠

𝑚𝑎𝑥 (path progress bounds)
𝑎𝑠𝑚𝑖𝑛 ≤ 𝑎𝑠

𝑘
≤ 𝑎𝑠𝑚𝑎𝑥 (progress input limits)
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where the vectors x̂𝑞 (𝑡) and Θ̂𝑠 (𝑡) denote the estimated or measured
values of the current quadrotor x𝑞 and path progress Θ𝑠 states. For
more information about the progress along the path, path progress
bounds and progress input limits, see Eq. (13) and Eq. (14) in the
Appendix B. The scalar𝑤𝑁 > 0 is a weight parameter used to weight
a so-called terminal cost 𝐽𝑁 (i.e., Eq. (9) where 𝑘 = 𝑁 and 𝑁 is the
prediction horizon). The terminal cost is usually weighted more
than the costs in previous stages (i.e.,

∑𝑁−1
𝑘=0 𝐽𝑘 ), which provides a

solution that is closer to the infinite horizon (i.e.,
∑∞
𝑘=0 𝐽𝑘 ) solution

[Nägeli et al. 2017b]. Solving this optimization problem at each
step enables a drone to imitate the dynamics of a walking camera
operator while following a desired reference path.
Our optimization formulation is general in the sense that it is

not limited to human walking, which we focus on in our exper-
iments, and can imitate other dynamical systems. Please refer to
Appendix C for more information about drone imitation of a general
dynamical system.

5 IMPLEMENTATION
Optimization: Our experiments are conducted on a standard lap-

top (Intel(R) Core(TM) i7-7700HQ CPU @2.8 GHz). We use the
drone on-board sensors and its visual odometry data in our control
algorithm. Our optimization system (see Eq. (10)) is implemented
in MATLAB and solved by the FORCES Pro software [Domahidi
and Jerez 2017] which generates fast solver code, exploiting the spe-
cial structure in a non-linear program (NLP). Our solver generates
feasible solutions in real-time at 20Hz. We initialize the solver of
Eq.(10) with the solution vector computed at the previous time-step,
perturbed by random noise. The method is robust to initialization
as we did not observe significant changes in solve time even if the
initialization is drastically perturbed.

Drone hardware: In all our experiments, we use an unmodified
Parrot Bebop2 drone with an integrated electronic gimbal. We di-
rectly send the control commands at 20Hz to the drone, and read
on-board sensor and visual odometry data via ROS [Quigley et al.
2009]. The sensory data is up-sampled from approximately 5Hz to
20Hz via a Kalman estimator. No motion capture system is used in
any of the experiments.

User interaction: The user interactively controls the operatorwalk-
ing model parameters via a joystick in real time. We use separate
keys on the joystick to interactively change the desired walking
velocity of the camera operator, the user-defined shot type and the
desired drone’s yaw angle as well as the desired gimbal’s pan and
tilt. Since we conduct our experiments outdoors without a motion
capture system, the actor and drone move on pre-defined paths.
The actor moves at an arbitrary speed, and the user interactively
adjusts the drone camera speed to correspond with the actor’s mo-
tion. The user can also adjust the amplitudes of the lateral, vertical
and rotational human walking pattern. We asked a professional
camera operator to tune these parameters based on her preferences
for different shot types.

Fig. 5. User study results. Participants’ preference in selecting between
various shot types based on their quality in representing FPV shots. See
text for details.

6 PERCEPTUAL STUDY

6.1 Experimental Setting
To qualitatively asses our drone imitation algorithm, we conducted
three evaluations, as described in the following.

Evaluation 1 [smooth drone shots vs. FPV shots]: The goal is to
check whether existing drone cinematography methods designed
to replicate smooth drone shots can capture subjective FPV shots.
In addition, we want to investigate whether people can distinguish
between smooth and FPV shots. For this, we compared 1) smooth
drone shots captured by a state-of-the-art drone cinematographic
method [Gebhardt et al. 2018] with 2) subjective FPV shots captured
by a Steadicam or a shoulder rig or our algorithm imitating a human
shoulder rig operator.

Evaluation 2 [human motion model]: Furthermore, we compared
shots obtained by 1) our drone imitation of a human shoulder rig op-
erator vs. 2) random shaky motions of the drone and vs. 3) our drone
algorithm imitating a simple walking style proposed by [Lécuyer
et al. 2006] in the context of video games (that we refer to as
"FPV game" style).

Evaluation 3 [our drone shots vs. human shoulder rig shots]: To
verify whether our drone imitation method can capture FPV shots
that look like a shot captured by a human operator, we compared
1) shots captured using a shoulder rig operated by a camera profes-
sional vs. 2) shots captured by our drone imitation algorithm set to
the shoulder rig style.

For fair visual comparisons of the shots, we used the same cam-
era on the drone and on the shoulder rig in all the experiments.
The study was conducted online. For each comparison, we placed
two videos side-by-side, randomly assigned to the left or right, and
each video pair was placed in a random order. Each participant
had to compare 17 videos (4, 6 and 7 video pairs for evaluation 1
to 3, respectively). The videos in each pair were captured at the
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Fig. 6. Representative results of feature trajectories tracked in the image space of a) a smooth drone shot [Gebhardt et al. 2018; Nägeli et al. 2017b], b) human
shoulder rig shot and c) our drone imitation of a shoulder rig shot. Each feature point trajectory is shown with a different color. The feature trajectories by our
drone imitating a shoulder rig operator (c) are similar to those of the human shoulder rig shot (b), while different to those of the smooth drone shot that
resemble line directions (a).

same scene, following an actor from behind. The participants were
asked to answer "which video represents the first-person’s point
of view, i.e., feeling more like the view of a person walking be-
hind the actor, better". They had to answer a forced binary choice:
"left video" or "right video".

6.2 Results of the Perceptual Study
In total, 106 participants answered the online survey and the results
are shown in Figure 5. Based on the user study results, we draw the
following conclusions.

Evaluation 1 in Figure 5 shows that 90.1% of participants preferred
subjective FPV shots (captured by our algorithm or a Steadicam or a
shoulder rig) over smooth shots. This suggests that people can easily
distinguish the visual differences between objective smooth drone
shots and subjective FPV shots. It also confirms that state-of-the-art
drone methods cannot capture subjective shots, due to the fact that
they aim to optimize the smoothness of the drone camera trajectory
or follow a smooth path.

Moreover, 88.9% and 80.5% (see Evaluation 2 in Figure 5) of par-
ticipants preferred our drone algorithm imitating a human shoulder
rig operator over the random camera shakes and our drone algo-
rithm imitating the FPV game style, respectively. This shows that
our human walking model (Section 4.2) leads to a higher level of
cinematographic FPV shot imitation than simply applying random
perturbations or the simple FPV game walking model.

Finally, Evaluation 3 in Figure 5 shows that the preference of
participants w.r.t. real human operator and our drone shots is sim-
ilar to chance level (47.2% vs. 52.8%). This indicates that our au-
tomatic drone method can capture subjective FPV shots that are
visually indistinguishable to those manually captured by a human
camera operator.

7 EVALUATION IN IMAGE SPACE
The above user preferences provide evidence for the utility of our
method. We note that effects in image space are the underlying
factors that influence aesthetics of the shot. In this section, we qual-
itatively and quantitatively measure such visual features. Each shot
style results in a different motion pattern of feature points that can
be tracked in the image space. For example, feature trajectories of a
smooth, linear shot are expected to be similar to lines, while they

Fig. 7. Quantitative comparison of camera shakiness in image space.

should be shakier for a shoulder rig shot. In this section, we com-
pare the trajectories in image space on videos obtained by different
approaches both visually and quantitatively. To obtain the feature
trajectories, we extract corner points [Shi and Tomasi 1993] and
track them via the KLT algorithm [Tomasi and Kanade 1991].

7.1 Qualitative Comparison
Figure 6 provides representative examples of feature trajectories for
a) a smooth drone shot captured by a state-of-the-art drone cine-
matographic method [Gebhardt et al. 2018; Nägeli et al. 2017b], b) a
shot manually captured with a shoulder rig and c) a shot captured
by our drone imitating a shoulder rig operator. It shows that the
trajectories in the smooth drone shot resemble lines, while they
display more variance in the human shoulder rig and our FPV drone
shots. Moreover, the trajectories in our drone-based imitation shot
resemble those in the human shoulder rig shot.

7.2 Quantitative Comparison
In addition to the visual comparison of the trajectories, we also
conduct a quantitative analysis by comparing the amount of shakes
of the trajectories. As a metric of shakiness, we compute how much
a trajectory deviates from a straight line. For this, we compute the
covariance matrix of each feature point trajectory, and then compute
its eigenvalues and eigenvectors. The second largest eigenvector
is orthogonal to the main direction of the feature trajectory, and
its associated eigenvalue thus corresponds to the amount of devi-
ation from this main direction. We compute this value for all the
trajectories and compute the average, which provides a measure of
shakiness for the video.
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Fig. 8. Thumbnails from some of our representative drone result videos.

We compute the shakiness metric for each video of our user study,
and show the average metric value per shot type in Figure 7. Sev-
eral observations can be made. First of all, the smooth drone shots
by [Gebhardt et al. 2018; Nägeli et al. 2017b] provide the lowest
value (0.81) since these methods (and other methods of drone cine-
matography, see related work) aim to optimize for smooth motion.
Second, our drone imitation of shoulder rig shots has a similar value
to the shoulder rig shots captured by a human operator (2.31 and
2.24 respectively). This is an additional indication that our proposed
approach can imitate shoulder rig shots. Third, (human) shoulder
rig shots (2.24) are more shaky than (human) Steadicam shots (1.29).
Fourth, our drone imitation of Steadicam shots has a similar value
to the human captured Steadicam shots (1.2 and 1.29 respectively),
which also indicates that our approach can imitate Steadicam shots.

8 QUALITATIVE EXPERIMENTS

8.1 Drone Imitation of Other Human Motions
The results shown so far in the paper are based on the human
walking model described in Section 4.2. In this section, we show that
our approach is generalizable to different human motions, including
stepping stairs and running.

Stepping stairs: Operating a shoulder rig or a Steadicam on stairs
is challenging for human operators due to the unwanted jerks trans-
ferred to the camera stabilizer while they step the stairs. In contrast,
our drone approach can simply imitate human stepping stairs with
slight modifications of our general formulation. To model human
stepping on stairs, we adjust the step length in our human walk-
ing model formulation so that it corresponds to the approximate
height and depth of the stairs. In order to consider small delays of
each foot stepping on the stairs to reach the next step, we slightly
reduce the user-defined walking velocity on each step with a sinu-
soidal pattern with the same frequency as stepping. Figure 9 and
the supplementary video show a representative result (see Figure 8
for representative frames).

Walking speed and running: Our method can also be used to
imitate a human accelerating from very low to high speed, up to
running. We let a user interactively and in real time increase the
desired camera velocity with a joystick. A representative result is
provided in Figure 1 and the supplementary video. In the first part
of the video sequence, we show how our algorithm adaptively and
in real time tunes the step length and step frequency corresponding
to the desired camera velocity.

Fig. 9. Drone imitation of human stepping stairs. Left: drone imitation of a
shoulder rig shot while the walking actor approaches the stairs. Right: drone
imitation of a human stepping stairs (another dynamical model). Transition
between the two imitation models is seamless. The drone is highlighted in
red for better visibility.

In the second part, our approach is used to imitate human running
which is given by another dynamical system. To model human
running, we build upon our human walking model (see Eq. (3)) and
modify two components. First, we change its initial condition in
Eq. (2) to 𝜽ℎ = [0, 0, 0]𝑇 because a running person reaches the peak
height in the middle of the "flight" phase of running, in contrast to
walking (see Figure 3). In addition, we adaptively adjust the human
running step length and step frequency of Eq. (4) where we change
the fixed known constants 𝛽0, 𝛽1 and 𝛽2 to the corresponding values
of a running human identified by [Bailey et al. 2017].
Overall, this experiment shows that our human walking model

adaptively tunes the imitation walking step length and frequency
corresponding to the actor’s forward walking speed to convey the
feeling of walking velocity increase in the shot up to running.

8.2 Seamless Transition
In the following, we show how our approach can be used to capture
seamless transitions between different shot styles and different
walking patterns.

From walking to stepping stairs: In this experiment (see Figure 8
and Figure 9), the drone first imitates a shoulder rig shot style while
the walking actor approaches the stairs. Then, the drone imitation
model is seamlessly switched to our human stepping stairs model
and starts stepping up the stairs as a human. The full length shot is
available in the supplementary video.
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Fig. 10. Transition from a shoulder rig FPV shot following an actor (blue
curve) to a smooth aerial dolly shot (red curve) in a seamless manner.

From shoulder rig to dolly shot: Switching between different shot
types in one continuous video take (without cuts in between) is
challenging, if not impossible, in traditional cinematography. For
example, it is not possible in practice to have a seamless transition
from a shoulder rig to a crane shot because the camera must be de-
tached and re-attached to the other rig instantaneously. To show the
capability of our algorithm to achieve seamless transitions between
different shot types in a single session, we designed an experiment
where a drone is following an actor in the shoulder rig shot mode,
and then flies away in the smooth dolly shot mode (see Figure 10
and fly away scene in Figure 8). The resulting video is available in
the supplementary material.
An additional representative result is the seamless transition

from a smooth dolly shot to a FPV shoulder rig shot, see forest
scene in Figure 8 for representative frames and its full length shot
in the supplementary video.

8.3 Real-Time Interactions
Adjusting the amount of camera shakiness: Our method enables

directors to interactively tune the amount of camera shakiness via
a joystick and to see the video result in real time. They can increase
and decrease the amount of vertical, lateral and rotational shakiness
of the camera, see Figure 11. In this way, they can make the shot
as smooth as dolly shots or as shaky as shoulder rig or Steadicam
shots. We asked a camera operator to interactively design her own
Steadicam shot style, and used the resulting drone shots in the
quantitative comparison of Section 7.2. Our shakiness metric (see
Figure 7) demonstrated that the drone (Steadicam) shots look similar
to the human (Steadicam) shots.
We provide directors the artistic freedom to design their own

camera stabilizer on top of the operator walking pattern. For exam-
ple, a director might just be interested in vertical camera shakiness.
It is very challenging for a human operator to capture the scene in
a way that the camera just goes up and down, or have a specific
amount of camera shakiness and precisely repeat this exact style
over several video takes. In contrast, our automatic approach allows
the directors to design their own style and the visual look can be
consistently replicated in different takes and videos.

Fig. 11. Interactive tuning of the camera shakiness by adjusting a) vertical,
b) lateral, and c) rotational camera shakiness. Left column: external camera
view. Right column: drone camera view showing feature trajectories tracked
in the image space. Each feature trajectory is shown with a different color.

Dancing: In this experiment, we show that ourmethod can imitate
backward walking, forward walking and stationary shots. Moreover,
the directions and velocity of the drone are controlled interactively
and in real time by the video director to follow the dancer’s move-
ments in the scene (see dance scene in Figure 8 for representative
frames and in the supplementary video). We also switch from FPV
shots to aerial shot style in a seamless manner.

9 EVALUATION OF OUR WALKING CAMERA MODEL
We use the Carnegie Mellon University motion capture database
[Hodgins 2015] to analyze the accuracy of our humanwalkingmodel.
Since the only input to our model is the walking velocity 𝑣ℎ𝑥 , we
compare our model to the human walking data at different walking
speeds. To this end, we extract the 3D motion trajectory of the 7𝑡ℎ
cervical spine vertebrae (CV7) marker (see Figure 12) and use it
as ground truth. CV7 is the largest vertebrae located at the most
inferior region of the neck5, and its function is to support the skull
and enables head movements. Hence, CV7 represents the head’s
general motion pattern independent of its rotation.
We conducted both qualitative and quantitative comparisons.

For qualitative comparison, we compare the output of our fitted
model to the ground truth at different walking speeds. Our model
automatically computes the step-length, step-frequency, and lat-
eral and vertical motion patterns that correspond to the real data.
Qualitatively, the results confirm that our model follows the general
motion pattern of the ground truth (see the supplementary video
and a representative result in Figure 12). For quantitative evalua-
tion, we compute the Root Mean Squared Error (RMSE) between

5https://v20.wiki.optitrack.com/index.php?title=Biomech_(57)
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Fig. 12. Evaluation of walking camera model. A representative result of our
fitted model (red curve) to a walking person motion (blue curve) at a speed
of 1.17𝑚/𝑠 . GT is extracted from the CMU database (data id: 35-28). RMSE
between the GT and our fitted model is 1.98 𝑐𝑚.

the ground truth and our fitted model trajectories (i.e., the distance
between the corresponding 3D ground truth path and the fitted
model trajectory). The RMSE is in the range of 1.98 to 2.60 𝑐𝑚 with
a mean value of 2.34 𝑐𝑚 at different walking speeds.

10 LIMITATIONS AND FUTURE WORK
Our approach takes the drone’s physical limitations into account
to imitate various FPV shot styles, and we show it is applicable in
different scenarios such as imitating walking, running and stepping
stairs. However, the drone’s physical limitations restrict the feasible
space of the optimal solution. For example, drones have a maximum
torque velocity, and therefore cannot be used to imitate exactly the
same behavior as a system with much faster velocities.

Another example is imitating human jumping with drones. Drone
imitation of human jumping requires to (1) completely turn off the
drone propellers to imitate the free-fall phase of the jump and then,
(2) immediately requires to send drone control commands to turn
on the propellers for "landing". However, our drone SDK (Bebop 2)
does not allow to completely turn off and immediately turn on the
propellers in such a short duration.
Our work is dedicated to human walking imitation. An inter-

esting direction for future work is to extend it to animal motions.
For example, our general formulation could be used to imitate the
specific dynamics of the head motion of a horse or a dog with drones
and see the world from their perspective.
In this paper, we imitated FPV shots, for example acquired by

a shoulder rig and a Steadicam. A future direction worthwhile to
explore is to mimic other kinds of camera rig equipment, such as
a car-mounted camera rigs, e.g., a Russian Arm6, to capture car
chasing scenes in action movies.

6http://filmotechnicusa.com/russian-arm-6.html

Our work imitates a single camera operator motion style. A di-
rection worthwhile to explore is to study multi-person scenario,
for example, when there are multiple people in the scene, how
to design the drone motion to smoothly switch from FPV of one
person to another one. In addition, it would also be interesting to
conduct a systematic study with professional cinematographers.

11 CONCLUSION
We presented the first approach to automatically capture subjective
FPV shots in the context of drone cinematography. Our key tech-
nical contribution is a computational method that enables a drone
to imitate the motion pattern and dynamics of a walking camera
operator. In addition, our method is interactive, runs in real time and
also satisfies high-level user goals such as the user-defined reference
camera path, camera velocity, and shot style (e.g., smooth dolly shot
or FPV shot). The validity of our approach has been confirmed by
both quantitative and qualitative evaluations.
Our method is interactive, which provides video directors the

artistic freedom to design their own FPV shot style and tune the
amount of camera shakiness based on the online visual feedback.

Finally, we have shown that our approach allows to capture seam-
less transition videos (such as from FPV to dolly shots), which is
impossible in practice using traditional cinematographic equipment
for a human camera operator. Overall, we believe that our work,
and more generally automated drone cinematography, offer exciting
opportunities to capture new shot styles, bring novel expression
formats and new ways to design video storytelling.
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Symbol Description
x𝑞 , u𝑞 Quadrotor states and inputs
p𝑞 , v𝑞 , o𝑞 Quadrotor position, velocity and orientation vector
𝑣
𝑞
𝑥 , 𝑣

𝑞
𝑦 , 𝑣

𝑞
𝑧 Quadrotor velocity in 𝑥 , 𝑦, 𝑧 directions

Φ𝑞 , Θ𝑞 ,𝜓𝑞 Quadrotor roll, pitch and yaw
𝜙𝑞 , 𝜃𝑞 Quadrotor desired roll and pitch
𝜔
𝑞

𝜓
Quadrotor desired angular velocity around body-z

𝜃𝑔 ,𝜓𝑔 Gimbal pitch and yaw
𝜔𝜃𝑔 , 𝜔𝜓𝑔

Gimbal pitch and yaw rate

𝜽ℎ , yℎ Human walking model states and outputs
pℎ , vℎ Human walking position and velocity vector
𝑝ℎ𝑥 , 𝑝ℎ𝑦 , 𝑝ℎ𝑧 Human walking position in 𝑥 , 𝑦, 𝑧 directions
𝑣ℎ𝑥 , 𝑣ℎ𝑦 , 𝑣ℎ𝑧 Human walking velocity in 𝑥 , 𝑦, 𝑧 directions
𝜓ℎ , 𝜔ℎ Human walking yaw and angular yaw speed
𝑙ℎ𝑠 , 𝑓 ℎ𝑠 Human walking step length and step frequency
𝜃ℎ𝑦 , 𝜔ℎ

𝑦 Human walking lateral phase and angular frequency
𝜃ℎ𝑧 , 𝜔ℎ

𝑧 Human walking vertical phase and angular frequency
𝜃ℎ
𝜓
, 𝜔ℎ

𝜓
Human walking yaw phase and angular frequency

x𝑚 , u𝑚 Imitation model states and inputs
p𝑚 , v𝑚 , o𝑚 Imitation model position, velocity and orientation

𝜃𝑠 Smooth path progress parameter
Θ𝑠 , 𝑎𝑠 Progress state and input
A𝑠 , B𝑠 System matrices of progress
r(𝜃𝑠 ) Reference spline (R3)
a𝑡 (𝜃𝑠 ) Normalized vector tangent to reference spline
a𝑛 (𝜃𝑠 ) Normalized vector orthogonal to reference spline
a𝑧 (𝜃𝑠 ) Normalized vector in 𝑧 direction
𝑐𝑙 , 𝑐𝑐 Lag and contour cost
𝑁 Prediction horizon length
𝑇𝑠 Sampling time

Table 1. Summary of notation used in the body of the paper.

A NOTATION
For completeness and reproducibility of our method, Table 1 pro-
vides a summary of the notations used in the paper.

B PATH FOLLOWING
Path Following: The desired user-defined trajectory r ∈ R3 is

parameterized by 𝜃𝑠 ∈ [0, 𝐿], where 𝐿 is the path length. We con-
tinuously optimize the drone path following cost to minimize the
distance between the desired path and the drone. However, we can-
not rely on a time-stamped reference path as is commonly done in
MPC formulations [Nägeli et al. 2017a], since we want to give the
user freedom in deciding the walking camera operator model param-
eters (e.g., the forward walking velocity of a camera operator that
the drone should follow on the desired path). Similar to [Gebhardt
et al. 2018; Nägeli et al. 2017b], we decompose the drone distance

Fig. 13. Illustration of lag and contouring error decomposition.

to the closest point on the path into a contouring and lag error.
In addition, we optimize the progress parameter 𝜃𝑠 so that r(𝜃𝑠 )
returns a combination between the closest point and ensuring the
drone progresses on the path during the imitation. We define e as
the distance between the drone position p𝑞 and a point r(𝜃𝑠 ) on
the desired path, and a𝑡 (𝜃𝑠 ) as the normalized tangent vector to
the path at that point

e = r(𝜃𝑠 ) − p𝑞,

a𝑡 (𝜃𝑠 ) =
r
′ (𝜃𝑠 )

| |r′ (𝜃𝑠 ) | |
,

(11)

with r
′ (𝜃𝑠 ) =

𝜕r(𝜃𝑠 )
𝜕𝜃𝑠

. The vector e can now be decomposed into
a lag error and a contour error (see Figure 13). The lag error is
computed as the projection of e on the tangent of r(𝜃𝑠 ) while the
contour error is the component of e orthogonal to the normal:

𝑐𝑙 (𝜃𝑠 , p𝑞) = | |⟨e, a𝑡 ⟩| |2,
𝑐𝑐 (𝜃𝑠 , p𝑞) = | |e − ⟨e, a𝑡 ⟩a𝑡 | |2 .

(12)

Separating lag from contouring error allows us to differentiate how
we penalize a deviation outside the path (𝑐𝑐 ), from encouraging the
drone to progress forward (𝑐𝑙 ). The cost term 𝑐a𝑡 in Eq. (6) for drone
imitation of the forward velocity of a walking camera operator
encourages progress on the desired path.

Progress Along Path: We parameterize the user-defined camera
path r ∈ R3 by the path parameter 𝜃𝑠 from 0 to 𝐿. The path function
r(𝜃𝑠 ) : R→ R3 defines the desired 3D camera position w.r.t. the
path parameter 𝜃𝑠 (e.g., r(𝐿) is the last 3D point on the user-defined
path r). Given an initial path parameter at instant k (i.e., 𝜃𝑠

𝑘
), the

aim is to traverse forwards along the path from r(𝜃𝑠
𝑘
) to r(𝜃𝑠

𝑘+1).
We define the following linear discrete dynamics for 𝜃𝑠 :

Θ𝑠
𝑘+1 = A𝑠Θ𝑠

𝑘
+ B𝑠𝑎𝑠

𝑘
,

A𝑠 =

[
1 𝑇𝑠
0 1

]
, B𝑠 =

[ 1
2𝑇

2
𝑠

𝑇𝑠

]
,

0 ≤ Θ𝑠
𝑘
≤ Θ𝑠

𝑚𝑎𝑥 ,

𝑎𝑠𝑚𝑖𝑛 ≤ 𝑎𝑠
𝑘
≤ 𝑎𝑠𝑚𝑎𝑥 ,

(13)

where Θ𝑠 = [𝜃𝑠 , ¤𝜃𝑠 ]𝑇 are the path progress states, 𝑇𝑠 the sampling
time, and 𝑎𝑠 = ¥𝜃𝑠 the virtual input which determines the path
evolution 𝜃𝑠

𝑘+1, and consequently r(𝜃𝑠
𝑘+1). The constraint ¤𝜃𝑠

𝑘
≥ 0
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enforces forward motion along the path while 0 ≤ 𝜃𝑠
𝑘

≤ 𝐿 pre-
vents exceeding the user-defined path boundaries. Since we consider
the path parameter’s acceleration 𝑎𝑠 as the input, it gives us one
more degree of freedom to force a constraint on the path progress
acceleration (i.e., 𝑎𝑠

𝑚𝑖𝑛
≤ 𝑎𝑠

𝑘
≤ 𝑎𝑠𝑚𝑎𝑥 ) and avoid sudden changes

in the path progress.

Input Constraint: To avoid excessive use of the control inputs
and limit progress acceleration on the desired spline, we define
a cost term as:

𝑐𝑖𝑛𝑝 (𝑎𝑠 , u𝑞) = 𝑤𝑎𝑠 | |𝑎𝑠 | |2 + u𝑞𝑇 Ru𝑞, (14)

where𝑤𝑎𝑠 is a positive scalar weight parameter avoiding excessive
acceleration on the progress of the desired smooth path, and R ∈ S2

+
is a positive definite penalty matrix restricting control inputs.

C DRONE IMITATION OF A GENERAL DYNAMICAL
SYSTEM

Let p𝑚 ∈ R3 and o𝑚 ∈ R3 denote the position and orientation
of a non-linear model for imitation. This model is defined in its
body-frame and can be written in the form of a differentiable func-
tion or a general memoryless non-linear model whose output in
each instant just depends on its inputs at that moment. Let
v𝑚 = [𝑣𝑚𝑥 , 𝑣𝑚𝑦 , 𝑣

𝑚
𝑧 ] ∈ R3 be the velocity of the imitation model.

Let us define the imitation model in the form of a discrete differen-
tiable function 𝐼 : R𝑛𝑥×𝑛𝑢 → R𝑛𝑥 as

x𝑚
𝑘+1 = 𝐼 (x𝑚

𝑘
, u𝑚

𝑘
), (15)

where 𝑛𝑥 is the dimension of the desired imitation model states
x𝑚 ∈ R𝑛𝑥 , and 𝑛𝑢 is the dimension of its inputs u𝑚 ∈ R𝑛𝑢 . The
imitation model input depends on each specific model defined for
imitation, and its transitional and rotational states [p𝑚, o𝑚, v𝑚]𝑇
are a subset of its states and inputs {x𝑚, u𝑚}. Our goal is to imitate
the dynamics of this system with a drone while the drone follows a
user-defined path. To this end, similar to the imitation of the human
walking model (see Section 4.3), we use this imitation model Eq. (15)
to predict its velocity v𝑚 and orientation o𝑚 in a prediction horizon,
and then we use the same cost term as the drone imitation of the
human walking model to imitate this dynamical system on a desired
path. In our imitation cost term Eq. (6), we just need to change
the human walking velocity 𝑣ℎ𝑥 , 𝑣ℎ𝑦 and 𝑣ℎ𝑧 to the imitation model
velocities 𝑣𝑚𝑥 , 𝑣𝑚𝑦 and 𝑣𝑚𝑧 . To follow the rotational behavior of any
dynamical model, we define the orientation cost term as

𝑐𝑜 (o𝑞, o𝑚) = | |o𝑞 − o𝑚 | |2 . (16)

Then, similar to following the human walking dynamical system,
we construct our optimization problem (Eq. (10)).

D OPTIMIZATION WEIGHTS
The values for the weights of the objective function at Eq. (10) that
we used in the user study and experiments are listed in Table 2. We
empirically derived weights of our optimization problem based on
both the visual feedback to imitate FPV shot style and the accuracy
of our method to follow a desired path. 𝑤a defines the penalizing
rate for the imitation of the forward, lateral and vertical walking
velocities. We set the value of this weight to 100. We use a single

Weight Description Value
𝑤a velocity imitation 100
𝑤𝜔𝜓

angular velocity imitation 600
𝑤𝜓 camera orientation 150
𝑤𝑙 lag error 1000
𝑤𝑐 contour error 300
𝑤𝑎𝑠 restricting progress acceleration 0.1
R restricting control inputs diag(0,10,10,0,0,0)
𝑤𝑁 final stage weight 10

Table 2. Values of the weights used in Eq. (10).

weight 𝑤a to equally penalize violating the walking velocity con-
straint in all directions (lateral, vertical and tangent to the path).
𝑤𝜔𝜓

and 𝑤𝜓 define the penalizing rate for imitating the walking
yaw speed and following the desired camera yaw angle, respec-
tively. We set a higher value to 𝑤𝜔𝜓

than 𝑤𝜓 because our main
focus is imitating the FPV style (𝑤𝜔𝜓

= 600), and the camera should
smoothly rotate to the desired yaw angle (𝑤𝜓 = 150) to capture
natural looking FPV shots. We tune all other weights similar to
[Gebhardt et al. 2018; Nägeli et al. 2017b]. For example, we choose a
high penalty on lag error (𝑤𝑙 = 1000) to improve the approximation
quality of the contour error [Nägeli et al. 2017b]. For penalizing the
contouring error, we allow some flexibility (𝑤𝑐 = 300) in order to
account for the imitation of walking dynamics since it might be
desirable to deviate locally from the desired path in favor of the
imitation costs, i.e., the drone should locally move up-down and
left-right around the desired path.
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