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Abstract— Among the currently available grasp-type selec-
tion techniques for hand prostheses, there is a distinct lack of
intuitive, robust, low-latency solutions. In this paper we investi-
gate the use of a portable, forearm-mounted, video-based tech-
nique for the prediction of hand-grasp preshaping for arbitrary
objects. The purpose of this system is to automatically select the
grasp-type for the user of the prosthesis, potentially increasing
ease-of-use and functionality. This system can be used to supple-
ment and improve existing control strategies, such as surface
electromyography (sEMG) pattern recognition, for prosthetic
and orthotic devices. We designed and created a suitable dataset
consisting of RGB-D video data for 2212 grasp examples split
evenly across 7 classes; 6 grasps commonly used in activities of
daily living, and an additional no-grasp category. We processed
and analyzed the dataset using several state-of-the-art deep
learning architectures. Our selected model shows promising
results for realistic, intuitive, real-world use, reaching per-frame
accuracies on video sequences of up to 95.90% on the validation
set. Such a system could be integrated into the palm of a hand
prosthesis, allowing an automatic prediction of the grasp-type
without requiring any special movements or aiming by the user.

I. INTRODUCTION

Although modern hand prostheses are becoming increas-
ingly more advanced and capable of a great number of grasp
types [1–3], there is a distinct lack of an intuitive, low-latency
and robust method for the selection of grasp-type. We address
this using a framework capable of choosing a grasp-type with-
out any additional actions required; the user reaches toward an
object, the system selects the appropriate grasp, and the user
can open and close the hand using a standard proportional
sEMG control. We created a custom dataset for this purpose
and present a model that generates predictions for each frame
in the video. To the best of our knowledge, this is the first
approach to select grasp-type based purely on video data,
requiring no additional input or special actions by the user.

Currently, the grasp-type selection in dexterous hand pros-
theses is often performed by eliciting specific sEMG signal
patterns via muscle contractions, such as co-contractions of
antagonist muscles [4]. The process for a grasp can be divided
into: a) grasp initiation, b) grasp-type selection and c) grasp
execution. With sEMG sequences, a) and b) require explicit,
specific and non-intuitive [5] actions from the user; something
humans do not have to do to operate their biological hands.
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Fig. 1. Top: System schematic. As the user reaches for the desired object (a),
the forearm-mounted RGB-D video camera (b) and Myo armband (c) stream
data to a smartphone application (d). The system uses this data to generate the
required grasp-type (in this example, medium wrap). Bottom: Model diagram
for the grasp-type prediction over a grasping sequence with video input.

Our method seeks to eliminate the need for special, non-
intuitive actions from the user for steps a) and b); instead,
our system will detect the onset of a), also known as gesture
spotting, and predict the grasp-type needed for b). One
commercial device, the CoApt Complete Control (CoApt
Engineering, USA), also seeks to eliminate these non-intuitive
actions, and is able to control many commercially available
prostheses using sEMG-based pattern recognition. This does,
however, rely on a minimum of 8 electrodes to be attached
to the user1. Other methods, such as via a smartphone
application or proximity sensors, have been developed for
grasp-type selection (iLimb, Touch Bionics, UK)2.

For human grasping, there is a relationship between the
distance between subject and object, the object’s size and
shape, and grasp prehension [6]. There is also information
concerning the size and fragility of the object embedded in
the velocity and acceleration profiles of the hand [7], which
also affects the choice of grasp. We take this as motivation

1http://www.coaptengineering.com/
2http://www.touchbionics.com/
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Fig. 2. A visualization of the input to the two models. The left and right of the series of boxes represent the start and end of the recorded video sample, with
each box representing a single frame of the video. The timestamps for “arm ready” and “object touched” are shown, with the reaching phase between them.
The frames outside the reaching phase are labeled with no-grasp, and the frames within the reaching phase are labeled with the grasp label selected by the
user for the given sample (i.e. one of the grasps show in Figure 3). a) shows the selected single frames, and b) shows two examples of the full sequence input.

to use the visual properties of the desired object, along with
the motion of the forearm during grasping, in the selection
of the grasp-type.

The use of video data for choosing a grasp-type is non-
trivial; it is essentially two nested tasks. First, it must be
determined if the user is performing a grasp or not (referred
to as gesture spotting in gesture recognition literature), and if
they are performing a grasp, determine which type of grasp
is being used. The system must also deal with a moving
camera, mounted on the user’s body, and target objects that
may be occluded by the user’s body or by parts of the envi-
ronment. Differing lighting conditions also affect the video
representation of the objects. As deep learning architectures
have had success in solving similar problems, such as various
gesture recognition [8–10] and image recognition [11] tasks,
we will focus our efforts on these types of models.

Our goal is to use this information embedded in the objects
and the motion data embedded in the video to increase the in-
tuitiveness and reduce the latency of the grasp-type selection
process, thereby reducing the cognitive burden placed on the
user of a hand prosthesis. Reliability and consistency are two
essential requirements for assistive and restorative solutions,
so we focus on a subset of common grasps and design a
dataset to investigate the maximum performance that can
be achieved using such a system. The dataset consists of a
baseline dataset (used for training), where we limit ourselves
to a few indoor locations, and a hard dataset (used only for
testing), where we test our model on unseen locations and
novel objects. We also design the system to be wearable and
portable, so that it could be easily adapted for real-life use in
the future. The ideal system would have the RGB-D camera
embedded into the palm of the hand prosthesis, respectively
a wrist support for an orthosis. However, in order to validate
the concept the system was designed to be effective for the
data acquisition with a healthy subject and was subsequently
adapted for this purpose, as depicted in Figure 1.

II. RELATED WORK

One of the most commonly researched methods to achieve
more intuitive prosthetic control is sEMG pattern recognition
[12]. High classification accuracies (around 90%) have been
achieved in laboratory settings [13]. However, limitations
such as lack of robustness and reliability have limited
the translation of pattern-recognition-based myoelectric
control systems into clinical practice and commercial
devices. Such limitations have prompted the investigation
of alternative methods to supplement or replace the sEMG-
based control [14]. In particular, the use of additional

sources of information such as inertial data or computer
vision, have been shown to be a promising approach [5].

Focusing on implementations exploiting computer vision,
the first work using a camera for the purpose of grasp-type
selection for dexterous hand prostheses comes, to the best
of our knowledge, from [15]. This project uses a rule-based
system and combines an ultrasound distance sensor with
an RGB webcam. It applies traditional computer vision
techniques to estimate the size of the object in order to
identify the appropriate grip aperture and one of four grasp
types. This system requires a so-called “aiming-phase”,
which is an explicit movement to target the desired object.
Ghazaei et al. [16] included a more flexible deep learning
based approach and also mounted an RGB webcam to the
back of the hand and relied on the same “aiming-phase”
requirement as [15]. Other systems use depth information to
improve grasp-type selection. Markovic et al. [17] mounted
a pair of stereo cameras onto glasses and combined this with
an augmented reality feedback system to select the required
grasp-type and aperture for a given object. Štrbac et al. [18]
collected RGB-D video data directly via a tripod-mounted
Kinect to select the aperture and grasp-type.

These efforts toward automating the grasp-type selection
for hand prostheses often add some additional burden to the
user, whether it be additional non-intuitive movements like an
explicit “aiming phase”, or a restricted workspace. In the case
of the “aiming phase,” this constraint also adds latency to the
system, limiting the efficiency of the user in interacting with
the environment. The aim of this work is to provide a new
portable, low-latency and intuitive system able to identify the
intended grasp without adding additional burden to the user.

A human-grasping dataset for activities of daily living,
containing various modalities such as RGB-D video, full-
body IMU, and egocentric RGB video was recently released
and is presented in [19]. Like our system, the RGB-D camera
is mounted on the forearm and captures a view of the object
being approached by the hand. With 3826 grasp-samples
spread across 33 different types and 13 subjects, this dataset
has too much variation for our current purposes. If we con-
sider restricting ourselves to a subset of this dataset consisting
of a single subject and fewer grasps, the resulting subset
would not have enough samples for training a deep learning
model. This dataset would also require a large amount of
manual effort in terms of relabeling, cropping videos and
timestamping to match our dataset. However, the similarities
between this recent dataset and our own work suggest the
feasibility and applicability of this type of approach.
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III. METHODS

A. System Overview

We designed our system with the hardware shown in
Figure 1; an RGB-D camera collects video data as the hand
approaches an object and is attached to an armband via a
3D-printed mount, while a smartphone application handles
the user interaction and recording of data. Using the collected
samples from the Handcam baseline dataset, we train and
evaluate several deep learning models for predicting the
required grasp-type. We also present a hard dataset, which
contains new locations and novel objects, and use it to test
our best model’s performance. In the interest of future work,
the armband we selected is the Myo armband (Thalmic
Labs, Canada), which we also use to collect IMU data.

B. Grasp Recognition Pipeline

Fig. 3. The six grasps selected for use in this system, along with some exam-
ples of the types of objects used for each category. Grasp diagrams from [20].

1) Grasp Types: We chose six grasp types from [20] that
are commonly used in activities of daily living. The selected
grasps are: power sphere, medium wrap, tip pinch, precision
disk, lateral pinch, and writing tripod; depicted in Figure 3.
We add a seventh grasp category, which we call the no-
grasp. The no-grasp class was introduced in an effort to
both (1) help the system identifying when there is no valid
object for grasping, and (2) to discourage the system from
learning the grasp type based on the movements of the hand.
Regarding (1), these are obtained by including two no-grasp
phases in each acquisition: one before the starting of the
reaching phase, before there is a target object in view, and
a second one after the object was touched/grasped, since the
configuration of the hand should not change automatically
while the object is being held. Regarding (2), since the data
acquisition was performed by an able-bodied subject and his
hand was visible in the video, the system could in principle
identify the grasp-type based on the hand movement instead
of using information about the object and the motion. If this
were the case, the grasp-selection may not work in a real
application; if the hand motion is used for selection and the
hand is not visible because the device is embedded into the
prosthetic hand’s palm, then it may never select a grasp-type.
We rather want the system to identify the grasp-type based on
the object and scene that the hand approaches; therefore, no-
grasp movements are recorded by performing one of the other
six grasps toward an area which contains no target object.

2) Models: Figure 2 represents our usage of each sample
in the dataset. Since each frame in the sequence has a label
(one of the grasp types in Figure 3 or no-grasp), we can
train models of two types: single frames and sequences
(more on frame labeling in Section III-C). For single frames
we train a ResNet [11] with cross-entropy loss:

JCE(θ) = −
M∑
i

yi log(P (ŷi)) (1)

Where θ are the model parameters, M is the number of
classes, yi is the true label and ŷi is the predicted label.
The ResNet is applied to the individual frames, as shown
in Figure 1 (bottom), with a final fully-connected layer in
place of the LSTM.

For our sequence models, we remove the final fully-
connected layer from our trained single frame ResNets and
use the exposed feature vector as an input to an LSTM
[21] and also use cross-entropy loss. A visualization of
the sequence models is shown in Figure 1 (bottom). For
each of the two model types (single frames, sequences), we
trained a separate network on RGB, depth-only, and RGB-D
input modalities. We used 10-fold cross-validation with
class-balanced 90% train / 10% validation splits. All models
were subject to early stopping based on the validation
accuracy. The ResNet was trained from scratch.

C. Data Collection - Handcam Baseline Dataset

The proposed system collects RGB-D video for each
sample. The RGB-D video was recorded with a structured
light camera (Orbbec Astra Mini S, Orbbec 3D, USA) at
30FPS with a resolution of 320x240px and a depth resolution
of 100 µm. We also collect IMU data, sampled at 50Hz via
the Myo armband. The IMU data is unused in this paper,
and is collected for future use. Although the Myo armband is
also designed to collect sEMG data, the official MyoSDK for
Android does not yet support streaming raw sEMG data. To
support the goal of performing gesture spotting (the decision
between grasp and no-grasp), we also record timestamps
corresponding to the start of the reaching phase of the grasp
(arm-ready), and when the object is first touched (object-
touched). For a visualization of how these timestamps are
used in a sample, see Figure 2. The data collection was han-
dled by a custom application on an Android smartphone for
portability. To begin a data collection session, the user con-
nects the camera and Myo armband to the smartphone. After
the application confirms proper configuration and connec-
tions, the grasp-type icons are enabled and recording can be-
gin. The procedure for collecting a grasp sample is as follows:

1) Place object on table.
2) Arm at side, object is on table.
3) Select the grasp-type on app (recording begins).
4) Prepare arm to reach for object. Touch screen to record

arm ready timestamp when arm first points toward
object.

5) Reach forward and grasp object using chosen grasp-
type. Upon first contact with object, touch screen to
record object touched timestamp.

6) Finish grasp, hold object. Touch screen to stop
recording.
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Data collection was performed using this process on
around 200 different objects (recorded in approximately 8h
over several days). Each object was grasp approximately
5 times in each of two data collection locations, with the
object placed in a random orientation and starting position
for each sample. The two data collection locations were both
indoors, one with a low white table and the other a medium
height dark wooden table. One healthy subject (24 years-old,
male) collected all 2212 samples in these two locations, with
balanced classes of 316 samples for each of the 7 grasp-types
(including the no-grasp). An example image from a video
sample for a “medium wrap” grasp is shown in Figure 4.

Fig. 4. An image from the reaching phase of a “medium wrap” grasp.
The calibrated depth is shown as a yellow overlay onto the RGB, where
brighter corresponds to a closer depth value. The pixelization on the bottom
left is due to the minimum usable distance of the depth sensor; this part
of the table is within 0.3m of the camera.

1) Preprocessing: The collected samples are first checked
for consistency in order to verify that all files are present
and non-empty. Timestamps across the different data sources
are then synchronized. For the IMU data from the Myo
armband we subtract the first timestamp from all future
timestamps. To synchronize the grasp-event timestamps
arm-ready and object-touched with the camera frames, a
special sample video was recorded; with the camera pointed
at the screen of the smartphone, the screen was touched to
record the arm ready and object touched timestamps. The
timestamps of these video frames were used as an offset to
synchronize the video and grasp-event data for all samples.

D. Data Collection - Handcam “Hard” Dataset
We designed several test sets to evaluate the limitations of

our models. Our training set is limited to two locations, so we
investigate the performance in an additional, unseen location.
The new location is also indoors, but is a table of different

color, texture, height, and lighting conditions than the other
two. Since we did not record which unique object is used in
each sample, the validation set contains novel samples but
there is no guarantee for how many novel objects it contains.
This because each sample is only tagged with a grasp-type
and each unique object was grasped approximately 5 times in
each location. We then randomly sampled 284 grasp-samples
from each of the 7 grasp-types for each validation split,
maintaining the class balance. So it is also possible, although
improbable, that all the samples of one unique object ended
up in the training set with none in the validation set, or
vice-versa. Therefore we recorded samples of several objects
that were not included in either the training or validation sets.
We recorded one test set for each combination of the above
variations, yielding a total of 3 test sets. For each test set, two
objects for each grasp-type were used, and they were grasped
two times each, yielding a total of 24 grasp samples in each
of the 3 test sets. We emphasize that this hard dataset was
not used for training purposes and was only used as a test of
the model’s ability to generalize. The test sets were recorded
by the same subject as the main training and validation sets,
and followed the same procedure as in Section III-C.

IV. RESULTS

For accuracy, a prediction is considered correct if the
model chooses exactly the correct grasp-type for the given
frame, including the no-grasp label. For sequences this is
applied to each frame, so to achieve 100% accuracy for a
given sample, the network must choose the correct label for
every frame in the sequence. For sequence data, we also
present precision and recall. They are reported as average
and standard deviation over the 10 splits for the validation
set, and over the results obtained with the 10 models on the
hard set.

A. Handcam - Baseline Set
1) Single frames: We extracted 20 single frames at

random, without replacement, from each sample in the
Handcam baseline dataset and used them to train a wide
ResNet [11] to predict the grasp-type (from the 7 grasp-types,
including the no-grasp). We examined two model variations:
a ResNet-18 with image size of 112x112px, and a ResNet-50
bottleneck with input size of 224x224px. The ResNet-18 is
small enough to be suitable for later use in end-to-end training
with an LSTM [21], while the ResNet-50 is too large for
efficient end-to-end training but has a higher model capacity.
For each of the two model variations, we trained a separate
network on RGB, depth, and RGB-D input modalities. For
data augmentation we applied random crops. We train these
two ResNets and compare their accuracy in Table I.

TABLE I
VALIDATION SET - SINGLE FRAMES - ACCURACY (%)

Type RGB Depth RGB-D

ResNet-50 94.62 ± 1.89 76.90 ± 3.97 95.01 ± 1.80
ResNet-18 92.98 ± 1.65 73.24 ± 2.45 93.27 ± 2.00

As expected, the ResNet-50 outperforms the ResNet-18
in all modalities, likely due to its larger model capacity.
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We note that the depth significantly underperforms both
RGB and RGB-D for the two models. Due to the minimum
distance of the depth sensor (~0.3m), some depth frames
will contain no object data when the object is closer than
this minimum distance. The models therefore have a more
difficult time with single depth frames.

2) Sequences: Here we use a model that can predict the
required grasp-type for each frame in a video sequence. We
apply a ResNet, reusing the single frame models trained
in Section IV-A.1, to each frame in the sequence. The
fully-connected layer is removed from the ResNet, and the
underlying feature vector is used as an input for a 1 layer
LSTM with 1024 hidden units. In this section, we have
two types of sequence models: frozen, where we freeze
the ResNet weights during training, and end-to-end, where
we allow the gradient to flow through the LSTM into
the ResNet weights. In order to allow model convergence
in the latter, the learning rate we used for updating the
ResNet weights was 10x lower than the learning rate for
the LSTM. For training we chose a sequence length of 60
frames and randomly sampled these subsequences from each
grasp-sample, as a means of data augmentation. Validation
samples are always evaluated on their full sequence length.
We applied a central crop to all image sequences. The results
for the sequence models are presented in Tables II and III.

TABLE II
VALIDATION SET - SEQUENCES - ACCURACY (%)

ResNet Size RGB Depth RGB-D

50 (frozen) 95.12 ± 0.62 93.72 ± 1.13 94.33 ± 2.02
18 (frozen) 94.64 ± 0.76 92.65 ± 1.21 95.29 ± 0.59
18 (end-to-end) 95.50 ± 0.31 93.27 ± 0.64 95.90 ± 0.61

TABLE III
VALIDATION SET - SEQUENCES - RGB-D PRECISION & RECALL

Grasp Precision Recall

Power Sphere 0.91 ± 0.03 0.91 ± 0.05
Medium Wrap 0.92 ± 0.03 0.96 ± 0.01
Tip Pinch 0.91 ± 0.05 0.93 ± 0.03
Precision Disc 0.91 ± 0.04 0.91 ± 0.05
Lateral Pinch 0.92 ± 0.03 0.97 ± 0.02
Writing Tripod 0.92 ± 0.02 0.96 ± 0.01
No-Grasp 0.98 ± 0.00 0.97 ± 0.01

The sequence ResNet-18 models performed nearly as well
as, and sometimes better than, the frozen ResNet-50/LSTM.
This shows that although the ResNet-18 had a lower accuracy
on the single frames, the LSTM was able to leverage the
temporal information to overcome the more limited model
capacity of the ResNet-18, emphasizing the importance of
the temporal component in solving this task. We also note
that the accuracy of the depth modality drastically improved
compared to the single frame model, suggesting that the
LSTM is able to ignore frames that contain no object depth
information, as described in Section IV-A.1. The end-to-end
training of the ResNet-18/LSTM allowed for a slight further
increase of the accuracy.

B. Handcam - Hard Sets

We test our best sequence model, the end-to-end ResNet-
18, on the Handcam hard test sets described in Section III-D
and present the results in Tables IV and V.

TABLE IV
HARD SET - SEQUENCES - ACCURACY (%)

End-to-end ResNet-18/LSTM

New
location

New
objects

RGB Depth RGB-D

- - 95.50 ± 0.31 93.27 ± 0.64 95.90 ± 0.61

- 3 86.96 ± 2.00 88.65 ± 1.27 86.64 ± 2.01
3 - 75.97 ± 2.52 68.01 ± 1.39 73.67 ± 2.82
3 3 64.86 ± 1.47 64.21 ± 0.55 64.35 ± 0.66

As expected, the models perform worse on the hard sets
than on the baseline set. However, the networks were able
to generalize to new objects with a limited reduction in
accuracy (lower than 10% for all models), suggesting that
the training set was diverse enough in the number and types
of objects. The model struggled with new environments,
reaching a classification accuracy of up to 75.97%, but with
low precision and recall. This result is to be expected, as the
training and validation sets were recorded in only two differ-
ent environments. The relatively poor generalization to new
locations would likely be improved by recording and training
on additional samples in new locations. This applies also to
the unseen objects and locations condition, where the value
of the accuracy was mostly coming from the classification
of the no-grasp, as indicated by the precision and recall.

We also evaluated our best model, the ResNet-18/LSTM
RGB-D, on a cluttered environment with new/old objects, and
new/old environments. The system was generally unreliable
in all cases, which is to be expected as it was trained on single
objects. For more information, please see the supplemental
material at http://ait.ethz.ch/projects/2019/handcam.

V. DISCUSSION

We presented a video-based approach to automatically
predict grasp-types, requiring no explicit action by the user.
The proposed system achieves per-frame accuracies of up
to 95.90% on the video sequence data, and was able to
generalize to completely novel objects with accuracy of up
to 88.65%. Despite the low performance on new locations,
the system was able to reliably spot the difference between
no-grasp and grasp. Furthermore, there is no need for
specific actions from the user, making the system capable
of recognizing the grasp type with low-latency.

In order to evaluate the relative offline performance of
the proposed system, we look to the most closely-related
learning-based approach, from [16]. It is important to
emphasize that the following considerations involve models
trained on different datasets and therefore they are not directly
comparable, although they have the same goal of supporting
grasp-type classification. The following comparisons will
refer to the end-to-end ResNet-18/LSTM RGB-D, as we
consider it to be our best and most promising model. In the
offline experiments in [16], the system is evaluated using two
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TABLE V
HARD SET - SEQUENCES - RGB-D PRECISION & RECALL

New Objects New Location New Objects & Location
Grasp Precision Recall Precision Recall Precision Recall

Power Sphere 0.91 ± 0.08 0.84 ± 0.08 0.95 ± 0.05 0.53 ± 0.22 0.23 ± 0.36 0.04 ± 0.07
Medium Wrap 0.87 ± 0.08 0.77 ± 0.16 0.40 ± 0.42 0.07 ± 0.09 0.26 ± 0.40 0.03 ± 0.05
Tip Pinch 0.84 ± 0.10 0.54 ± 0.17 0.88 ± 0.30 0.57 ± 0.22 0.00 ± 0.00 0.00 ± 0.00
Precision Disc 0.70 ± 0.12 0.71 ± 0.26 0.50 ± 0.50 0.04 ± 0.05 0.00 ± 0.00 0.00 ± 0.00
Lateral Pinch 0.61 ± 0.43 0.23 ± 0.26 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Writing Tripod 0.94 ± 0.03 0.93 ± 0.08 0.97 ± 0.04 0.34 ± 0.23 0.19 ± 0.39 0.02 ± 0.03
No-Grasp 0.90 ± 0.02 0.98 ± 0.01 0.72 ± 0.03 1.00 ± 0.00 0.64 ± 0.00 1.00 ±0.00

different cross-validation techniques: within-object cross-
validation (WOC), where the model is evaluated on different
views of seen objects, and between-object cross-validation
(BOC), where the model is tested on objects not seen during
training. The WOC method, which achieved 85.29% accuracy
for the 4 grasp-types, is most comparable to the results
achieved on the Handcam baseline set, where the model
achieved 95.90% accuracy on the 7 grasp types. The BOC
method, which achieved 74.74%, corresponds well to the
unseen objects portion of the Handcam hard dataset presented
in this work, where the model achieved 86.64%. The results
obtained with the proposed approach are therefore promising,
supporting the feasibility of the system presented in this work.

In general, the proposed system also allows the elimination
of both the aiming phase and image pre-processing step,
which contributes to increased latency in such a system. Fur-
thermore, the use of video sequences, the inclusion of depth
data and the exploitation of the temporal information via the
LSTM can substantially improve the ability of the system to
distinguish between large and small objects of the same shape
on-the-fly during the reaching phase. In a practical implemen-
tation, the system could also identify the moment in which a
grasp-type must be chosen in order to start the pre-shaping of
the hand. This can be estimated on-the-fly by evaluating the
approaching speed and using the mechanical proprieties of
the prosthetic/effector, such as the time needed to fully close
the fingers. Finally, the results indicate that the system is able
to automatically identify the intention to grasp, with no need
for a trigger such as a predefined voluntary contraction from
the user, providing a low-latency and intuitive interface.

A. Limitations
Considering the results on the baseline and hard sets, a

clear limitation is the weak generalization to new locations.
This is however to be expected, as the number of locations in
the training set was very low compared to the variety of ob-
jects (2 locations vs ~200 objects). This can be addressed by
increasing the number of locations used in future iterations of
the data collection. The other major limitation of the system
is the type and placement of the video camera. The type of
depth camera we used (structured light) are generally quite
affordable, although this type of camera has the drawback of
a minimum distance to the object, below which the camera is
unable to provide depth information. To improve on this, we
can use a more expensive time-of-flight camera, which have
a much lower minimum range. In addition, time-of-flight
cameras can be quite small, so the camera placement could
be moved to the wrist or palm of the hand, which would

be embedded in the prosthesis or orthosis in a real-world
application, making wearing our system quite seamless for
the user. Our system was also not designed to handle cluttered
scenes, which are very common in the real-world.

B. Future Work
The system should be tested with intact and prosthesis

users to determine if the offline results will transfer to a real
application scenario, and to learn if real users would find
such a device useful in their everyday life. For use with a
hand prosthesis, the camera could be moved to the palm of
the prosthetic hand, reducing the footprint of the device. The
device can also be adapted for use with the RELab tenoexo
[22], a hand exoskeleton to assist subjects with loss of hand
function due to neurological disease or trauma. To handle
cluttered scenes where the user grasps one object from a
group of many, we may be able to implement a model which
uses attention mechanisms to focus on different areas of the
image [23], or use a fast object detector like YOLO v2 [24].
For the purposes of building an especially robust system for
everyday use, we must add additional adversarial examples.
Other deep architectures may provide better performance
and smaller model size at a higher training cost, such
as DenseNet [25], and some size-efficient networks like
SqueezeNet [26] have been implemented for inference on
FPGAs [27]. Furthermore, we could use a model like C3D
[28] to convolve the spatial and temporal information.

VI. CONCLUSION

We have presented a novel, fully-wearable system
and framework for automatically choosing the required
grasp-type for powered hand prostheses and orthoses. The
presented methods systematically outline the contributions of
each input-modality and model architecture, and we examine
the limitations and constraints of our system through several
additional hard datasets. Our system places no additional
cognitive or physical burden on the user for the operation
of their assistive device, and has realistic limitations for
basic real-world use. The results show that the system
and framework are a promising approach to automatically
selecting the grasp-type for powered hand prostheses and
orthoses, while providing a road-map for which areas require
improvement in future iterations of this system.
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