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Abstract

We present HiDe, a novel hierarchical reinforcement learning architecture that suc-
cessfully solves long horizon control tasks and generalizes to unseen test scenarios.
Functional decomposition between planning and low-level control is achieved by
explicitly separating the state-action spaces across the hierarchy, which allows the
integration of task-relevant knowledge per layer. We propose an RL-based planner
to efficiently leverage the information in the planning layer of the hierarchy, while
the control layer learns a goal-conditioned control policy. The hierarchy is trained
jointly but allows for the composition of different policies such as transferring layers
across multiple agents. We experimentally show that our method generalizes across
unseen test environments and can scale to tasks well beyond 3x horizon length
compared to both learning and non-learning based approaches. We evaluate on com-
plex continuous control tasks with sparse rewards, including navigation and robot
manipulation. See videos athttps://sites.google.com/view/hide-rl,

1 Introduction

Reinforcement learning (RL) can solve long horizon control tasks with continuous state-action
spaces in robotics [1H3]], such as locomotion [4], manipulation [S]], or human-robot interaction [6]].
However, tasks that involve extended planning and sparse rewards still pose many challenges in
successfully reasoning over long horizons and in achieving generalization from training to different
test environments. Therefore, hierarchical reinforcement learning (HRL) splits the decision making
problem into several subtasks at different levels of abstraction [[7, |8]], often learned separately via
curriculum learning [9H12]], or end-to-end via off-policy and goal-conditioning [[13H15]]. However,
these methods share the full-state space across layers, even if low-level control states are not strictly
required for planning. This limits i) modularity in the sense of transferring higher level policies
across different control agents and ii) the ability to generalize to unseen test tasks without retraining.

In this paper, we study how a more explicit hierarchical task decomposition into local control and
global planning tasks can alleviate both issues. In particular, we hypothesize that explicit decoupling
of the state-action spaces of different layers, whilst providing suitable task-relevant knowledge and
efficient means to leverage it, leads to a task decomposition that is beneficial for generalization across
agents and environments. Thus, we propose a 2-level hierarchy (see Figure[Ip) that is suited for
continuous control tasks with a 2D-planning component. Furthermore, we show in our experiments
that planning in 3D is also possible. Global environment information is only available to the planning
layer, whereas the full internal state of the agent is only accessible by the control layer. To leverage
the global information, we propose the integration of an efficient, RL-based planner.

The benefit of this explicit task decomposition is manyfold. First, the individual layers have access
only to task-relevant information, enabling layers to focus on their individual tasks [[16]. Second, the
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Figure 1: a) Showing the decompositionality of our approach, the planning policy of simple agent
is combined with more complex control policies. b) Our 2-layer HRL architecture. The planning
layer 7y receives information crucial for planning spj4, and provides subgoals g; to the lower level. A
goal-conditioned control policy 7 learns to reach the target g; given the agent’s internal state Sipernal-

modularity allows for the composition of new agents without retraining. We demonstrate this via
transferring the planning layer across different low-level agents ranging from a simple 2DoF ball to a
17DoF humanoid. The approach even allows to generalize across domains, combining layers from
navigation and robotic manipulation tasks to solve a compound task (see Figure[Th).

In our framework, which we call HiDe, a goal-conditioned control policy 7y on the lower-level of
the hierarchy interacts with the environment. It has access to the proprioceptive state of an agent
and learns to achieve subgoals g; that are provided by the planning layer policy m;. The planning
layer has access to task-relevant information, e.g., a top-down view image, and needs to find a
subgoal-path towards a goal. We stress that the integration of such additional information into HRL
approaches is non-trivial. For example, naively adding an image to HRL methods [13}[14]] causes an
explosion of the state-space complexity and hence leads to failure as we show in Section[5.1} We
propose a specialized, efficient planning layer, based on MVProp [[17] with an added learned dynamic
agent-centric attention window which transforms the task-relevant prior into a value map. The action
of 7 is the position that maximizes the masked value map and is fed as a subgoal to the control
policy 7y. While the policies are functionally decoupled, they are trained jointly, which we show to
be beneficial over separately training a control agent and attaching a conventional planner.

We focus on continuous control problems that involve navigation and path planning from top-down
view, e.g., an agent navigating a warehouse or a robotic arm pushing a block. However, we show as
a proof of concept that HiDe can also work in non-euclidean space and be extended to planning in
3D. In our experiments, we first demonstrate that generalization and scaling remain challenging for
state-of-the-art HRL approaches and are outperformed by our method. We also compare against a
baseline with a non-learning based planner, where a control policy trained with RL is guided by a
conventional RRT planner [18]. We then show that our method can scale beyond 3x longer horizons
and generalize to randomly configured layouts. Lastly, we demonstrate transfer across agents and
domains. The results indicate that an explicit decomposition of policy layers in combination with
task-relevant knowledge and an efficient planner are an effective tool to help generalize to unseen
environments and make HRL more practicable. In summary our main contributions include:

* A novel HRL architecture that enforces functional decomposition into global planning and
low-level control through a strict separation of the state space per layer, in combination with
an RL-based planner on the higher layer of the hierarchy, to solve long horizon control tasks.

* We provide empirical evidence that task-relevant priors are essential components to enable
generalization to unseen test environments and to scale to larger environments, which HRL
methods struggle with.

* Demonstration of transfer of individual modular layers across different agents and domains.

2 Background

2.1 Goal-Conditioned Reinforcement Learning

We model a Markov Decision Process (MDP) augmented with a set of goals G. We define the MDP as
atuple M = {S, A,G,R,~, T, po, }» where S and A are set of states and actions, respectively, R; =



(s, ag, g¢) areward function, -y a discount factor € [0, 1], 7 = p(s¢4+1]s¢, a¢) the transition dynamics
of the environment and py = p(s;) the initial state distribution, with s; € S and a; € A. Each
episode is initialized with a goal g € G and an initial state is sampled from py. We aim to find a policy
m:8S x G — A, which maximizes the expected return. We a an actor-critic framework where the

goal augmented action-value function is defined as: Q(s¢, 9¢, a) = Ea,~m s, 1T {ZiT:t VIR .

The Q-function (critic) and the policy 7 (actor) are approximated by using neural networks with
parameters 9 and ™. The objective for < minimizes the loss:

L(69) =Enm [(Q(Stagt7at;9Q) - yt)Q} , where

1
yr = 1(st, 9t ) + YQ(St41, Gro1, ary1; 0°).
The policy parameters 6™ are trained to maximize the Q-value:
L(0™) = E, [Q(Suguat;gQ”StaQuGt = 7T(Smgt§9w)] 2

2.2 Hindsight Techniques

In HAC, Levy et. al [13]] apply two hindsight techniques to address the challenges introduced by
the non-stationary nature of hierarchical policies and the environments with sparse rewards. In
order to train a policy 7;, optimal behavior of the lower-level policy is simulated by hindsight
action transitions. More specifically, the action a; of the upper policy is replaced with a state s;_;
that is actually achieved by the lower-level policy 7;_1. Identically to HER [19], hindsight goal
transitions replace the subgoal g;_; with an achieved state s;_1, which consequently assigns a reward
to the lower-level policy 7;_; for achieving the virtual subgoal. Additionally, a third technique
called subgoal testing is proposed. The incentive of subgoal testing is to help a higher-level policy
understand the current capability of a lower-level policy and to learn Q-values for subgoal actions that
are out of reach. We find all three techniques effective and apply them to our model during training.

2.3 Value Propagation Networks

Tamar et. al [20] introduce value iteration networks (VIN) for path planning problems. Nardelli et. al
[L7] propose value propagation networks (MVProp) with better sample efficiency and generalization
behavior. MVProp creates reward- and propagation maps covering the environment. A reward map
highlights the goal location and a propagation map determines the propagation factor of values
through a particular location. The reward map is an image 7; ; of the same size as the environment
image, where 7; ; = 0 if the pixel (7, j) overlaps with the goal position and —1 otherwise. The value
map V is calculated by unrolling max-pooling operations in a neighborhood NV for £ steps as follows:

.
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The action (i.e., the target position) is selected to be the pixels (i’, 7/) maximizing the value in a
predefined 3x3 neighborhood N (i, jo) of the agent’s current position (ig, jo):

7(s, (i0,Jo)) = argmax vz(,k;, 4)
i’,3'€N (i0,jo)

Note that the window N (7g, jo) is determined by the discrete, pixel-wise actions.

3 Hierarchical Decompositional Reinforcement Learning

We introduce a hierarchical architecture, HiDe, allowing for an explicit functional decomposition
across layers. Our method achieves temporal abstractions via nested policies. Moreover, our
architecture enforces functional decomposition explicitly by reducing the state in each layer to only
task-relevant information. The planning layer is responsible for planning a path towards a goal and
hence receives global information about the environment. The control layer has access to the agent’s
internal state and learns a control policy that can achieve subgoals from the planning layer. The layers
are jointly-trained by using the hindsight techniques and subgoal testing presented in Section
to overcome the sparsity of the reward and the non-stationarity caused by off-policy training. Our
design significantly improves generalization and makes cross-agent transfer possible (see Section [3)).



e T

Spos ‘ >

Attention
=

G

argmax — Spos —» g1
ij

MVProp

V Vv /

Figure 2: Planning layer 71 (Spos, Simg, G) illustrated for the 2D case. Given an image simg and goal
G, the MVProp network computes a value map V. An attention mask M, using the agent’s position
Spos Testricts V' to a local subgoal map V. The policy 7; selects max value and assigns the control
policy 7 with a sugboal relative to the agent’s position. For the 3D case, see Eq. E}@and Figure E}:
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3.1 Planning Layer

The planning layer is expected to learn high-level actions over a long horizon, which define a coarse
path towards a goal. In related work [13H15]], the planning layer learns an implicit value function and
shares the same architecture as the lower layers. Since the task is learned for a specific environment,
generalization is inherently limited. In contrast, we introduce a planning specific layer consisting of
several components to learn the map and to find a feasible path to the goal.

Our planning layer for the 2D case is illustrated in Figure[2] We utilize a value propagation network
(MVProp) [[17]] to learn an explicit value map which projects the collected rewards onto the environ-
ment space. For example, given a discretized 3D model of the environment, a convolutional network
determines the per voxel flow probability p; ; .. The probability value of a voxel corresponding to an
obstacle should be 0 and that for free passages 1, respectively.

Nardelli et. all [17]] only use 2D images and a predefined 3 x 3 neighborhood of the agent’s current
position and pass the location of the maximum value in this neighbourhood as goal position to the
agent (Equation [d). We extend this to be able to handle both 3D and 2D inputs and augment the
MVProp network with an attention model which learns to define the neighborhood dynamically
and adaptively. Given the value map V' and the agent’s current position spes, We estimate how far
the agent can move, modeled by a Gaussian. More specifically, we predict a full covariance matrix
> with the agent’s global position sp,s as mean. We later build a mask M of the same size as the
environment space simg by using the likelihood function:

Migk = N((Z,], k)|3p()Sa E) ®))

Intuitively, the mask defines the density for the agent’s success rate. Our planning policy selects an
action (i.e., subgoal) that maximizes the masked value map as follows:

V=MV
71 (Spos, Simg, G) = argmax ; j x — Spos (6)
1,5,k

where T; ; ;; corresponds to the value at voxel (i, 7, k) on the masked value map V. Note that the
subgoal selected by the planner is relative to the agent’s current position sp,, resulting in better
generalization as we show in Section[5.1.3] While we present the more general 3D case in Equations
[Bl{6l we reduce the equations by one dimension for the 2D case used in most of our experiments.

The benefits of having an attention model are twofold. First, the planning layer considers the agent
dynamics in assigning subgoals which may lead to fine- or coarse-grained subgoals depending on the
underlying agent’s performance. Second, the Gaussian window allows us to define a dynamic set of
actions for the planning policy 7, which is essential to find a path of subgoals on the map. While the
action space includes all pixels of the value map V/, it is limited to the subset of only reachable pixels
by the Gaussian mask M. We find that this leads to better obstacle avoidance behaviour such as the
corners and walls shown in Figure []in the Appendix.

Since our planning layer operates in a discrete action space, the resolution of the projected image
defines the minimum amount of displacement for the agent, affecting maneuverability. This could
be tackled by using a soft-argmax [21] to select the subgoal pixel, allowing to choose real-valued



actions and providing invariance to image resolution. In our experiments we see no difference in
terms of the final performance. However, since the former setting allows for the use of DQN [22]]
instead of DDPG [1]], we prefer the discrete action space for simplicity and faster convergence. Both
the MVProp (Equation [3)) and Gaussian likelihood (Equation [5)) operations are differentiable. Hence,
MVProp and the attention model parameters are trained by minimizing the standard mean squared
Bellman error objective as defined in Equation|[I]

3.2 Control Layer

The control layer learns a goal-conditioned control policy. Unlike the planning layer, it has access to
the agent’s full internal state Siyemal, including joint positions and velocities. In the control tasks we
consider, the agent has to learn a policy to reach a certain goal position, e.g., reach a target position
in a navigation domain. We use the hindsight techniques (cf. Section[2.2)) so that the control policy
receives rewards even in failure cases. All policies in our hierarchy are trained jointly. We use DDPG
[ (Equations[T}2) to train the control layer and DQN [22] for the planning layer.

4 Related Work

Hierarchical Reinforcement Learning Learning hierarchical policies has seen lasting interest
[7, 23126, [16]], but many approaches are limited to discrete domains. Sasha et. al [12]] introduce
FeUdal Networks (FUN), inspired by [[16]. In FUN, a hierarchic decomposition is achieved via a
learned state representation in latent space, but only works with discrete actions. More recently,
off-policy methods that work for goal-conditioned continuous control tasks have been introduced
[13H15027]]. Nachum et. al [[14}15]] present HIRO and HIRO-LR, an off-policy HRL method with
two levels of hierarchy. The non-stationary signal of the upper policy is mitigated via off-policy
corrections. In HIRO-LR, the method is extended by learning a representation of the state and subgoal
space space from environment images. In contrast to our approach, both methods use a dense reward
function. Levy et. al [13]] introduce Hierarchical Actor-Critic (HAC) that can jointly learn multiple
policies in parallel via different hindsight techniques from sparse rewards. HAC, HIRO and HIRO-LR
consist of a set of nested policies where the goal of a policy is provided by the top layer. In contrast to
our method, the same state space is used in all layers, which prohibits transfer of layers across agents.
We introduce a modular design to decouple the functionality of individual layers. This allows us to
define different state, action and goal spaces for each layer. Our method is closest to HIRO-LR, which
also has access to a top-down view image. Although the learned space representation of HIRO-LR
can generalize to a mirrored environment, the policies need to be retrained for each task. Contrarily,
HiDe generalizes without retraining through the explicit use of the environment image for planning.

Planning in Reinforcement Learning In model-based RL, much attention has been given to
learning of a dynamics model of the environment and subsequent planning [28-30]. Eysenbach et. al
[31] propose a planning method that performs a graph search over the replay buffer. However, they
require to spawn the agent at different locations in the environment and let it learn a distance function
in order to build the search graph. Unlike model-based RL, we do not learn state transitions explicitly.
Instead, we learn a spatial value map from collected rewards.

Recently, differentiable planning modules that are trained via model-free RL have been proposed
[17, 20, 132} 33]]. Tamar et. al [20] establish a connection between CNNs and Value Iteration
[34]. They propose Value Iteration Networks (VIN), where model-free RL policies are additionally
conditioned on a fully differrentiable planning module. MVProp [17] extends this by making it
more parameter-efficient and generalizable. Our planning layer is based on MVProp. However, we
do not rely on a fixed neighborhood mask for action selection. Instead we learn an attention mask
which is used to generate intermediate goals for the low-level policy. We also extend our planner
to 3D, whereas MVProp is only shown in 2D. Gupta et. al [35]] learn a map of indoor spaces and
do planning using a multi-scale VIN. However, the robot operates only on a discrete set of macro
actions. Nasiriany et. al [36] use a goal-conditioned policy for learning a TDM-based planner on
latent representations. Srinivas et. al [[33] propose Universal Planning Networks (UPN), which also
learn how to plan an optimal action trajectory via a latent space representation. Miiller et. al. [37]
separate planning from low-level control to achieve generalization by using a supervised planner and
a PID-controller. In contrast to our approach, the latter methods either rely on expert demonstrations
or need to be retrained in order to achieve transfer to harder tasks.



(a) Complex Ant Navigation (b) Robotic Manipulation (c) 3D Reacher Task

Figure 3: a) The complex navigation training environment from Section The red sphere
indicates the goal. b) The robot manipulation task from Section[5.2} ¢) The 3D reacher task presented
in Section@ The green and yellow spheres indicate the goals for the robot’s elbow and tip.

S Experiments

We evaluate our method on a series of continuous control taskﬂ Experiment and implementation
details are provided in the Appendix. First, we compare to various baseline methods in navigation
tasks (see Figure ) in Section[5.1.1)and provide an ablation study for our design choices in Section
(.13 In Section&ﬂ we show that HiDe can scale beyond 2-3x larger environments (see Figure [3h).
Section [5.2]demonstrates that our approach indeed leads to functional decomposition by transferring
layers across agents and domains (see Figure[3p) . Finally, we show in Section [5.3|that HiDe can be
extended to planning in 3D and use non-image based priors, such as a joint map (see Figure 3k).

5.1 Maze Navigation

We introduce the following task configurations:

Maze Training The training environment, where the task is to reach a goal from a fixed start position.
Maze Backward The training environment with swapped start and goal positions.

Maze Flipped The mirrored training environment.

Maze Random A set of 500 randomly generated mazes with random start and goal positions.

We always train in the Maze Training environment. The reward signal during training is constantly -1,
unless the agent reaches the given goal (except for HIRO/HIRO-LR which use an L2-shaped reward).
We test the agents on the above task configurations. We intend to answer the following questions:

1. Can our method generalize to unseen test cases and environment layouts?
2. Can we scale to larger environments with more complex layouts (see Figure [3p)?

We compare our method to state-of-the-art HRL approaches including HIRO [[15]], HIRO-LR [13]],
HAC [13]], and a more conventional navigation baseline dubbed RRT+LL. HIRO-LR is the closest
related work, since it also receives a top-down view image of the environment and is a fully learned
hierarchy. Our preliminary experiments have shown that HAC and HIRO cannot solve the task when
provided with an environment image (see Table[5]in the Appendix), likely due to the increase of the
state space by factor of 14. We therefore only show results of HAC and HIRO where they are able to
solve the training task, i.e., without accessing an image. To compare against a baseline with complete
separation, we introduce RRT+LL. We train a goal-conditioned control policy with RL in an empty
environment and attach an RRT planner [[18]], which finds a path from top-down views via tree-search
and does not require training. See Table[3in the Appendix for an overview of all the baselines.

5.1.1 Simple Maze Navigation

Table[T] (left) summarizes the results for the simple maze tasks. All HRL models

successfully learned the training task (see Figure ). The models’ generalization I._
abilities are evaluated in the unseen Maze Backward and Maze Flipped tasks.

While HIRO, HIRO-LR and HAC manage to solve the training environment with

success rates between 91% and 82%, they suffer from overfitting to the training I v

task, indicated by the 0% success rates in the unseen test scenarios. HIRO-LR,

which uses the top-down view implicitly to learn a goal space representation,

Figure 4: Simple
2Videos available at: https://sites.google.com/view/hide-rl Maze Training.
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Table 1: Success rates of achieving a goal in the maze navigation environments.

Simple Maze Complex Maze
Method \ Training Backward Flipped \ Training Random Backward Flipped
HAC 82+ 16 0£0 0£+0 0£0 0£0 0£0 0£0
HIRO 91 +£2 0+0 0+0 68 £8 365 0+0 0+0
HIRO-LR | 83+8 0£0 0£+0 20+ 21 15+7 0£0 0£0
RRT+LL | 25+13 22 +12 29 +£10 13+9 48 £3 7T+4 5+5

HiDe 94 + 2 85 +9 93+£2 | 87T+2 85+3 79£8 79 £12

also fails. For the navigation baseline RRT+LL, the success rate stays between 22% and 29% for
all tasks. Although the planner can generalize to different tasks, it cannot learn to cooperate with
the low-level control as in our hierarchy. Contrarily, our method is able to achieve 93% and 85%
success rates in the generalization tasks without retraining. We argue that this is mainly due to the
strict separation of concerns, which allows the integration of task-relevant priors, in combination with
HiDe’s efficient planner.

5.1.2 Complex Maze Navigation

In this experiment, we evaluate how well the methods scale to larger environments with longer
horizons. Thus, we train an ant agent in a more complex environment layout (cf. Figure[3p), i.e., we
increase the size of the environment by roughly 50% and add more obstacles, thereby also increasing
the distance to the final reward. The results are reported in Table|l| (right). HAC fails to learn the
training task, while HIRO and HIRO-LR reach success rates of 68% and 20%, respectively. Hence,
there is a significant performance drop for both methods if the state-space increases. RRT+LL only
reaches success rates between 5% and 13%, except for the Maze Random task. The higher success
rates in Maze Random compared to the other test cases can be attributed to the randomization of both
the environment layout as well as the start and goal position, which can result in short trajectories
without obstacles. Contrary to the baselines, our model’s performance decreases only slightly in the
training task compared to the simple maze in Section[5.1.T|and also generalizes to all of the unseen
test cases. The decrease in performance is due to the increased difficulty of the task. In terms of
convergence, we find that in the simple maze case HIRO is competitive with HiDe, due to its reduced
state space (no image), but convergence slows with an increase in maze complexity. Contrary, HiDe
shows similar convergence behavior in both experiments (cf. Figure[/|in the Appendix). To push the
limits of our method, we gradually increase the environment size and observe that only at a 300%
increase, the performance drops to around 50% (see Figure|8|in the Appendix). These results indicate
that task-relevant information and efficient methods to leverage it are essential components to scale to
larger environments. Most failure cases for HiDe arise if the agent gets stuck at a wall and falls over.

5.1.3 Ablation Study

To support the claim that our architectural design Table 2: Ablation study in the simple maze
choices support the generalization and scaling ca- navigation environments from Section
pabilities, we analyze empirical results of different
variants of our method. To show the benefits of =~ Methods | Training Backward Flipped
relative positions, we compare HiDe against a vari- .
ant with absolute positions, dubbed HiDe-A. Unlike H1De-A 88 + 2 17+ 15 36 + 16
the case of relative positions, the policy needs to H%De-3x3 46 & 32 243 31+ 28
learn all values within the ranée of the environment H¥De-5x5 92+4 L35 82418
dimensions in this setting. Second, we run an abla- HlDe-9x9 93+4 16 +27 mET
tion study for HiDe with a fixed vx;indow size, i.e HID?'RRT 77+ 53 £ 13 7246
. . NN HiDe 94+2 85+9 93+2
we train and evaluate an ant agent on window sizes
3% 3,5 x5,and 9 x 9. Lastly, we compare to a variant where HiDe’s decoupled state-space structure
is used for training, but the RL-based planner is replaced with an RRT planner. As indicated in Table[2]
HiDe-A is competitive in the training task, but fails to match the generalization performance of HiDe.
showing that relative positions are crucial for generalization. The learned attention window (HiDe)
achieves better or comparable performance than the fixed window variants. Moreover, it eliminates
the need for tuning the window size per agent and environment. HiDe-RRT performs significantly
worse in all tasks, showing that our learned planner outperforms training with a conventional planner.




5.2 Transfer of Policies

We argue that a key to transferability and generalization behavior in hierarchical RL lies in enforcing
a separation of concerns across different layers. To examine whether the overall task is truly split into
separate sub-tasks, we perform a set of experiments to demonstrate transfer behavior.

Agent Transfer For this experiment, we train different control agents with
HiDe. We then transfer the planning layer of one agent to another agent, e.g.,
we replace the planning layer of a complex ant agent by the planning layer
trained on a simple 2 DoF ball agent. We observe that transfer is possible
and only leads to a marginal decrease in performance (cf. Table[I0]in the
Appendix). Most failure cases arise at corners, where the ball’s planner
tries to use a path close to the walls. Contrarily, the ant’s planner is more
conservative as subgoals close to the wall may lead to overturning. We hereby
show that transfer of layers between agents is possible and therefore find
our hypothesis to be valid. To further demonstrate our method’s transfer
capabilities, we train a humanoid agent (17 DoF) in an empty environment. We then use the planning
lﬁer from a ball agent and connect it as is with the control layer of the trained humanoid (see Figure

S)F]

Figure 5: Humanoid
agent transfer.

Domain Transfer In this experiment, we demonstrate the capability of HiDe to transfer the plan-
ning layer from a simple ball agent, trained on a pure navigation task, to a robot manipulation agent
(see Figure [3p). To this end, we train a ball agent with HiDe. Moreover, we train a control policy
for a robot manipulation task in the OpenAl Gym "Push" environment [38]], which learns to move a
cube to a relative position goal. Note that the manipulation task does not encounter any obstacles
during training. To attain the compound agent, we attach the planning layer of the ball agent to the
manipulation policy (cf. Figure[Th). The planning layer has access to the environment layout and the
cube’s position, which is a common assumption in robot manipulation tasks. For testing, we generate
500 random environment layouts. As in the navigation experiments in Section[5.1.1] state-of-the-art
methods are able to solve these tasks when trained on a single, simple environment layout. However,
they do not generalize to other layouts without retraining. In contrast, our evaluation of the compound
HiDe agent on unseen testing layouts shows a success rate of 49% (cf. Table[TT]in the Appendix).
Thus, our modular approach can achieve domain transfer and generalize to different environments.

5.3 Representation of Priors and 3D-Planning

While the majority of our experiments use 2D-images for planning, we show via a proof-of-concept
that our method i) can be extended to planning in 3D ii) works with non-top-down view sources of
information. To this end, we add a 3DoF robotic arm that has to reach goals in 3D configuration space
(see Figure[3t). Instead of a top-down view, we project the robot’s joint angles onto a 3D-map which
is used as input to our planning layer. We train the 3D variant of our planning layer (see Section
and 3D CNNs to compute the value map. Our method can successfully solve the taskﬂ If the
planning space would exceed 3 dimensions, a mapping from higher dimensional representation space
to a 2D or 3D latent space could be a potential solution. We leave this for future work.

6 Conclusion

In this paper, we introduce a novel HRL architecture that can solve long-horizon, continuous control
tasks with sparse rewards that require planning. The architecture, which is trained end-to-end, consists
of a RL-based planning layer which learns an explicit value map and is connected with a low-level
control layer. Our method is able to generalize to previously unseen settings and environments.
Furthermore, we show that transfer of planners between different agents can be achieved, enabling us
to move a planner trained with a simplistic agent to a more complex agent, such as a humanoid or a
robot manipulator. The key insight lies in a strict separation of concerns with task-relevant priors that
allow for efficient planning and in consequence leads to better generalization. Interesting directions
for future work include extensions to higher dimensional planning tasks and multi-agent scenarios.

3Videos available at https://sites.google.com/view/hide-rl
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Broader Impact

Our method HiDe has potential applications in the field of continuous control in robotics, specifically
for navigation and manipulation robots. Example applications include a robot navigating a warehouse
or pick and place tasks for a manipulator. So far RL methods have struggled to demonstrate good
generalization across training and test environments, leaving much work to be done before these are
applicable in the real-world. We see our work as one important building block towards this goal and
provide one example of how such generalization can be achieved.

While our work is mostly academic in nature and practical applications are still far-off, we see
potential benefits in advancements in automation of tedious manual tasks, for example, in healthcare,
factories and the supply chain. While automation may render some occupations redundant, it can
also create new jobs and hence opportunities to alter the type of work we do. Moreover, robots may
fill in or assist jobs in areas with labor shortages, such as in health and elderly care.

One potential risk in deploying RL robots is the lack of interpretability and explainability of actions,
which is an active area of research in and of itself. Enforcing a strict separation of subtasks in a
hierarchical system such as HiDe may be helpful in understanding the behavior of robots trained
with RL. More specifically, as a human, it may not be necessary to understand the inner workings
of a robot (the control), but is rather important to understand decisions on a more abstract level
(planning). This may also have implications for future systems that let people interactively shape and
train complex robotic systems.
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A Environment Details

We build on the Mujoco [39] environments used in [[14]. The rewards in all experiments are sparse,
i.e., 0 for reaching the goal and —1 otherwise. We consider the goal reached if |s — g|max < 1. All
environments use d¢t = 0.02. Each episode in the simple maze navigation experiment (Section
is terminated after 500 steps and after 800 steps for the complex maze experiment (Section[>.1.2)).
In the robot manipulation experiment (Section[5.2), we terminate after 800 steps and in the reacher
experiments (Section after 200 steps.

A.1 Agents

Our ant agent is equivalent to the one in [[13]. In other words, the ant from Rllab [40] with gear power
of 16 instead of 150 and 10 frame skip instead of 5. Our ball agent is the PointMass agent from
DM Control Suite [41]. We changed the joints so that the ball rolls instead of sliding. Furthermore,
we resize the motor gear and the ball itself to match the maze size. For the manipulation robot, we
slightly adapt the "Push" task from OpenAl gym [38]]. The original environment uses an inverse
kinematic controller to steer the robot, whereas joint positions are enforced and realistic physics are
ignored. This can cause unwanted behavior, such as penetration through objects. Hence, we change
the control inputs to motor torques for the joints. For the robot reacher task, we also adapt the version
of the "Reacher" task from OpenAl [38§]]. Instead of being provided with euclidean position goals, the
agents needs to reach goals in the robot’s joint angle configuration space.

A.2 Environments

A.2.1 Navigation Mazes

All navigation mazes are modelled by immovable blocks of size 4 x 4 x 4. [14] uses blocks of
8 x 8 x 8. The environment shapes are clearly depicted in Figure[6] For the randomly generated
maze, we sample each block with probability being empty p = 0.7. The start and goal positions are
also sampled randomly at uniform with a minimum of 5 blocks distance apart. Mazes where start
and goal positions are adjacent or where the goal is not reachable are discarded. For evaluation, we
generated 500 of such environments and reused them (one per episode) for all experiments. We will
provide the random environments along with the code.

A.2.2 Manipulation Environments

The manipulation environments differ from the navigation mazes in scale. Each wall is of size
0.05 x 0.05 x 0.03. We use a layout of 9 x 9 blocks. The object position is the position used for the
planning layer. When the object escapes the top-down view range, the episodes are terminated. The
random layouts were generated using the same methodology as for the navigation mazes.

A.2.3 Robot Reacher Environments

The robot reacher environment is an adapted version of the OpenAl gym [38] implementation. We
add an additional degree of freedom to extend it to 3D space. The joint angles are projected onto a
map of size 12 x 12 x 12, where the axes correspond to the joint angles of the robot links. The goals
are randomly sampled points in the robot’s configuration space.

B Implementation Details
Our PyTorch [42] implementation will be available on the project websiteﬂ

B.1 Baseline Experiments

For HIRO, HIRO-LR and HAC we used the authors’ original implementationsfﬂ To improve the
performance of HAC, we modified their Hindsight Experience Replay [19]] implementation so that

“HiDe: https://sites.google.com/view/hide-rl
SHIRO: https://github.com/tensorflow/models/tree/master/research/efficient-hrl
SHAC: https://github.com/andrew- j-levy/Hierarchical-Actor-Critc-HAC-
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they use the FUTURE strategy. More importantly, we also added target networks to both the actor and
critic to improve the performance. For HIRO, we ran the hiro_xy variant, which uses only position
coordinates for subgoals instead of all joint positions to have a fair comparison with our method. For
HIRO-LR, we provide top-down view images of size 5x5x3 as in the original implementation. We
train both HIRO and HIRO-LR for 10 million steps as reported in [15]. For RRT+LL, we adapted the
RRT python implementatimﬂ from [43] to our problem. We trained a goal-conditioned low-level
control policy in an empty environment with DDPG. During testing, we provide the low-level control
policies with subgoals from the RRT planner. We used OpenAI’s baselines [44]] for the DDPG+HER
implementation. When pretraining for domain transfer, we made the achieved goals relative before
feeding them into the network. For a better overview of the features the algorithms use, see Table[3]

Features HiDe RRT+LL HIRO-LR HIRO HAC DDPG+HER
Images v v v X X X
Random start pos X X X X v v
Random end pos X v v v v v
Agent position v v X v v v
Shaped reward X X v v X X
Agent transfer v v X X X X

Table 3: Overview of related work and our method with their respective features. Features marked
with a tick are included in the algorithm whereas features marked with a cross are not. See glossary
below for a detailed description of the features.

Glossary:

Images: If the state space has access to images.

Random start pos: If the starting position is randomized during training.

Random end pos: If the goal position is randomized during training.

Agent position: If the state space has access to the agent’s position.

Shaped reward: If the algorithm learns using a shaped reward.

Agent transfer: Whether transfer of layers between agents is possible without retraining.

B.2 Ablation Baselines

We compare HiDe against several different versions to justify our design choices. In HiDe-A(bsolute),
we use absolute positions for the goal and the agent’s position. In HiDe-3x3, HiDe-5x5, HiDe-9x9,
we compare our learned attention window against fixed window sizes for selecting subgoals. In
HiDe-RRT, we use RRT planning [18] for the top-layer, while the lower layer is trained as in HiDe.
This is to show that our learned planner improves the overall performance.

B.3 Evaluation Details

For evaluation in the maze navigation experiment of Section we trained 5 seeds each for 2.5M
steps for the simple maze navigation and 10M steps for the complex maze navigation “Training”
environments. We performed continuous evaluation (every 100 episodes for 100 episodes). After
training, we selected the best checkpoint based on the continuous evaluation of each seed. Then,
we tested the learned policies for 500 episodes and reported the average success rate. Although the
agent and goal positions are fixed, the initial joint positions and velocities are sampled from uniform
distribution as is standard in OpenAl Gym environments [38]]. Therefore, the tables in the results (cf.
Table[T)) contain means and standard deviations across 5 seeds.

B.4 Network Structure
B.4.1 Planning Layer

Input images for the planning layer were binarized in the following way: each pixel corresponds to
one block (0 if it was a wall or 1 if it was a corridor). In our planning layer, we process the input

"RRT: https://github.com/AtsushiSakai/PythonRobotics
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image via two convolutional layers with 3 x 3 x 3 for the 3D case and 3 x 3 kernels for the 2D case.
Both layers have only 1 input and output channel and are padded so that the output size is the same
as the input size. We propagate the value through the value map as in [17] K = 35 times using a
3 x 3 x 3 max pooling layer (3 x 3 for 2D). Finally, the value map and position image is processed
by 3 convolutions with 32 output channels and 3 x 3 x 3 filter window (3 x 3 in 2D) interleaved by
2 x 2 x 2 max pool (2 x 2 for 2D) with ReLU activation functions and zero padding. The final result
is flattened and processed by two fully connected layers with 64 neurons, each producing outputs:
01, 092,03 and the respective pairwise correlation coefficients p. We use softplus activation functions
for the o values and tanh activation functions for the correlation coefficients. The final covariance
matrix X is given by

2
o9 P1,20102 pP1,30103
_ 2
Y= |pi20102 o5 P23 0203
2
P1,30103 pP2,30203 o3

so that the matrix is always symmetric and positive definite. For numerical reasons, we multiply by
the binarized kernel mask instead of the actual Gaussian densities. We set the values greater than the
mean to 1 and the others to zeros.

B.4.2 Control Layer

We use the same network architecture for the lower layer as proposed by [[13]], i.e. we use 3 times a
fully connected layer with ReLLU activation function. The control layer is activated with tanh, which
is then scaled to the action range.

B.4.3 Training Parameters

* Discount v = 0.98 for all agents.

* Adam optimizer. Learning rate 0.001 for all actors and critics.

 Soft updates using moving average; 7 = 0.05 for all controllers.

* Replay buffer size was designed to store 500 episodes, similarly as in [[13]]

* We performed 40 updates after each epoch on each layer, after the replay buffer contained at
least 256 transitions.

 Batch size 1024.

* No gradient clipping

* Rewards 0 and -1 without any normalization.

* Observations also were not normalized.

» 2 HER transitions per transition using the FUTURE strategy [19]].

* Exploration noise: 0.05 and 0.1 for the planning and control layer respectively.

B.5 Computational Infrastructure

All HiDe, HAC and HIRO experiments were trained on 1 GPU (GTX 1080). OpenAI DDPG+HER
baselines were trained on 19 CPUs using the baseline repository [44].
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Figure 6: Maze environments for the tasks reported in a) Section and[5.1.3] b) Section
The red sphere indicates the goal, the pink cubes represent the subgoals. Agents are trained in only
Training and tested in Backward, Flipped, and Random environments.

C Additional Results

C.1 Maze Navigation
Table 4: Success rates of the individual seeds for achieving a goal in the maze navigation tasks.

Simple Maze Complex Maze
Method | Training Backward Flipped | Training Backward Flipped Random
HAC 1 96.4 00.0 00.0 00.0 00.0 00.0 00.0
HAC 2 82.0 00.0 00.0 00.0 00.0 00.0 00.0
HAC 3 85.6 00.4 00.0 00.0 00.0 00.0 00.0
HAC 4 92.8 00.0 00.0 00.0 00.0 00.0 00.0
HACS5 55.6 00.0 00.0 00.0 00.0 00.0 00.0
HIRO 1 89.0 00.0 00.0 68.0 00.0 00.0 44.6
HIRO 2 89.2 00.0 00.0 64.0 00.0 00.0 36.2
HIRO 3 94.0 00.0 00.0 80.0 00.0 00.0 33.6
HIRO 4 91.3 00.0 00.0 61.0 00.0 00.0 32.8
HIRO 5 90.8 00.0 00.0 81.0 00.0 00.0 344
RRT+LL 1 13.8 24.0 19.6 4.8 5.6 1.2 43.6
RRT+LL 2 40.2 6.2 45.2 6.8 4.6 13.6 50.6
RRT+LL 3 20.2 23.8 29.0 17.0 8.4 0.4 47.0
RRT+LL 4 37.2 18.6 30.0 25.6 2.2 34 47.2
RRT+LL 5 15.0 38.2 234 9.4 13.2 5.8 50.6
HIRO-LR 1 84.2 00.0 00.0 00.0 00.0 00.0 14.4
HIRO-LR 2 80 00.0 00.0 00.0 00.0 00.0 104
HIRO-LR 3 79.8 00.0 00.0 48.2 00.0 00.0 16.2
HIRO-LR 4 76 00.0 00.0 20.4 00.0 00.0 26.6
HIRO-LR 5 96.8 00.0 00.0 33.8 00.0 00.0 9.6
HiDe 1 93.4 90.2 94.0 86.4 82.6 87.4 88.6
HiDe 2 90.8 68.2 91.8 83.4 66.0 66.0 81.6
HiDe 3 94.8 914 96.2 87.6 84.6 91.0 85.4
HiDe 4 94.0 85.2 92.6 87.2 76.6 77.6 83.2
HiDe 5 96.2 87.8 922 89.0 87.4 77.4 87.6

Table 5: Results of the simple maze navigation for HAC and HIRO when provided with an image.
Both methods fail to solve the task, as the state space complexity is too high.

| Training Backward  Flipped

HAC with Image | 0.0£0.0 0.0£0.0 0.0£0.0
HIRO with Image | 0.0+ 0.0 0.0+0.0 0.0+0.0
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Figure 7: Learning curves with success rates for the training tasks averaged over 5 seeds for a) the
simple maze experiment from Section[5.1.1] b) the complex maze experiment from Section
HiDe matches convergence properties of HIRO in the simple maze (left), albeit having a much larger

state space in the planning layer. In the more complex maze (right), HiDe shows similar convergence,
while the convergence of HIRO slows.
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Figure 8: Success rates for the training task when gradually increasing the environment size and
number of obstacles. At a 300% increase, HiDe’s performance drops to 64%. See Table [§for the
more detailed results.

Table 6: Results for individual seeds of the HiDe experiments with gradually increasing number of
obstacles and environment size.

Maze Training | Seed 1 Seed2 Seed3 Seed4 Seed5 | Averaged

HiDe env + 100% | 84.0 83.4 82.5 75.8 75.8 80.3£4
HiDe env + 150% | 74.2 85.4 81.4 75.6 84.8 80.3£5
HiDe env + 225% | 78.0 69.6 70.8 82.2 914 78.4+9
HiDe env + 300% | 62.8 58.8 69.8 66.4 640 | 644=£4
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C.2 Ablation Studies

Experiment | Training Backward Flipped

HiDe-A 1 88.2 54 49.4

HiDe-A 2 89.2 28.4 53.2

HiDe-A 3 84.8 35.8 29.6

HiDe-A 4 91.2 13.6 322

HiDe-A 5 88.2 00.0 14.4
HiDe-RRT 1 82.0 352 78.8
HiDe-RRT 2 80.0 72.4 75.0
HiDe-RRT 3 73.6 53.6 69.4
HiDe-RRT 4 63.4 50.6 63.4
HiDe-RRT 5 85.6 54.0 74.2
HiDe 3x3 1 28.4 0.0 4.4
HiDe 3x3 2 67.6 0.6 44.0
HiDe 3x3 3 59.6 04 36.4
HiDe 3x3 4 0.0 0.0 0.0
HiDe 3x3 5 76.8 6.6 67.8
HiDe 5x5 1 91.0 82.8 97.0
HiDe 5x5 2 94.6 10.6 89.6
HiDe 5x5 3 88.0 72.4 87.2
HiDe 5x5 4 91.2 14.4 83.6
HiDe 5x5 5 97.6 83.6 50.6
HiDe 9x9 1 90.6 94 81.2
HiDe 9x9 2 92.4 64.4 79.4
HiDe 9x9 3 89.8 1.2 85.6
HiDe 9x9 4 99.0 4 83.0
HiDe 9x9 5 94.6 3 68.2

Table 7: Individual seed results of the ablation study for the simple maze navigation task.

| Ant1 Ant2 Ant3 Ant4 Ant5 | Averaged

Training 0.0 78.8 0.0 0.0 0.0 16 £35
Random | 672 888 17.6 0.0 0.0 35+£41
Backward | 0.0 62.2 0.0 0.0 0.0 12 +28
Flipped 0.0 79.8 0.0 0.0 0.0 16 + 36

Table 8: Results for the complex maze navigation task with HiDe-Absolute.

Figure 9: A visual comparison of (left) our dynamic attention window with a (right) fixed neighbor-
hood. The green dot corresponds to the selected subgoal in this case. Notice how our window is
shaped so that it avoids the wall and induces a further subgoal.
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C.3 Agent Transfer

| AB1 A—B2 A—B3 A—B4 A—B5 | Averaged

Training 99.8 100 100 100 100 100 £0
Random 98.4 98.6 98.0 98.6 98.8 98 £ 0
Backward 100 100 99.8 100 100 100+ 0
Flipped 99.6 100 99.6 100 100 1000

Table 9: Results of HiDe for ant to ball transfer for individual seeds.

| BA1 B—A2 B—A3 B—A4 B—AS5 | Averaged

Training 73.4 73.4 71.2 68.2 71.6 72+2
Random 86.2 84.4 83.8 82.6 78.0 83+3
Backward 56.8 48.4 66.4 57.8 58.4 58 £ 6
Flipped 74.4 77.4 80.0 61.6 72.8 37

Table 10: Results of HiDe for ball to ant transfer for individual seeds.

C.4 Robotic Arm Manipulation

| A1 Arm2 Arm3 Arm4 Arm5 | Averaged
Random | 50 48 47 48 51 | 49+1

Table 11: Results of the different seeds for the domain transfer experiments.

Figure 10: Example of three randomly configured test environments we use to demonstrate the
domain transfer of the planning layer from a locomotion domain to a manipulation robot.

18



D Algorithm

Algorithm 1 Hierarchical Decompositional Reinforcement Learning (HiDe)

Input:
 Agent position s, goal position G, and projection from environment coordinates to image
coordinates and its inverse Proj,Proj~".
Parameters:
1. maximum subgoal horizon H = 40, subgoal testing frequency A = 0.3
Output:

e k = 2 trained actor and critic functions 7, ..., Tk_1, Qo, ..., Qr_1

for M episodes do > Train for M episodes
5 < Sinits § < Gr—1 > Get initial state and task goal
train_top_level(s, g) > Begin training
Update all actor and critic networks

end for

function 7 (s :: state, g :: goal)

Umap < MV Prop(1, g1) > Run MVProp on top-down view image and goal position
0, p < CNN (Vimap, Proj(spes)) > Predict mask parameters
v 4= Vmap QN ([Spos; T) > Mask the value map

return a; < Proj~!(arg maxv) — s,,s > Output relative subgoal corresponding to the max
value pixel
end function

function 7y(s :: joints_state, g :: relative_subgoal)
return ag < M LP(s,g) > Output actions for actuators

end function

function TRAIN_LEVEL(: :: level, s :: state, g :: goal)

S S,0; ¢ > Set current state and goal for level ¢
for H attempts or until g,,, ¢ < n < k achieved do
a; < m;(s;, g;) + noise (if not subgoal testing) > Sample (noisy) action from policy
if ¢ > 0 then
Determine whether to test subgoal a;
s; +— train_level(i — 1, s;,a;) > Train level ¢ — 1 using subgoal a;
else
Execute primitive action ag and observe next state s,
end if

> Create replay transitions
if 7 > 0 and a; not reached then

if a; was subgoal tested then > Penalize subgoal a;
Replay_Buf fer; + [s = s;,a = a;,r = Penalty, s = s;,g = gi,vy = 0]
end if
a; < s; > Replace original action with action executed in hindsight
end if

> Evaluate executed action on current goal and hindsight goals
Replay_Buf fer; < [s = si,a = a;,r € {—1,0},s = s;,g = gi,v € {7,0}]
HER_Storage; « [s = s;,a = a;,7 = TBD, s = 5;,g =TBD,y=TBD]
end for
Replay_/Bu f fer; < Perform HER using HER_Storage; transitions

return s; > Output current state
end function
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