
A Environment Details

We build on the Mujoco [1] environments used in [2]. The rewards in all experiments are sparse,
i.e., 0 for reaching the goal and −1 otherwise. We consider the goal reached if |s− g|max < 1. All
environments use dt = 0.02. Each episode in the simple maze navigation experiment (Section ??)
is terminated after 500 steps and after 800 steps for the complex maze experiment (Section ??). In
the robot manipulation experiment (Section ??), we terminate after 800 steps and in the reacher
experiments (Section ??) after 200 steps.

A.1 Agents

Our ant agent is equivalent to the one in [3]. In other words, the ant from Rllab [4] with gear power
of 16 instead of 150 and 10 frame skip instead of 5. Our ball agent is the PointMass agent from
DM Control Suite [5]. We changed the joints so that the ball rolls instead of sliding. Furthermore,
we resize the motor gear and the ball itself to match the maze size. For the manipulation robot,
we slightly adapt the "Push" task from OpenAI gym [6]. The original environment uses an inverse
kinematic controller to steer the robot, whereas joint positions are enforced and realistic physics are
ignored. This can cause unwanted behavior, such as penetration through objects. Hence, we change
the control inputs to motor torques for the joints. For the robot reacher task, we also adapt the version
of the "Reacher" task from OpenAI [6]. Instead of being provided with euclidean position goals, the
agents needs to reach goals in the robot’s joint angle configuration space.

A.2 Environments

A.2.1 Navigation Mazes

All navigation mazes are modelled by immovable blocks of size 4 × 4 × 4. [2] uses blocks of
8 × 8 × 8. The environment shapes are clearly depicted in Figure 1. For the randomly generated
maze, we sample each block with probability being empty p = 0.7. The start and goal positions are
also sampled randomly at uniform with a minimum of 5 blocks distance apart. Mazes where start
and goal positions are adjacent or where the goal is not reachable are discarded. For evaluation, we
generated 500 of such environments and reused them (one per episode) for all experiments. We will
provide the random environments along with the code.

A.2.2 Manipulation Environments

The manipulation environments differ from the navigation mazes in scale. Each wall is of size
0.05× 0.05× 0.03. We use a layout of 9× 9 blocks. The object position is the position used for the
planning layer. When the object escapes the top-down view range, the episodes are terminated. The
random layouts were generated using the same methodology as for the navigation mazes.

A.2.3 Robot Reacher Environments

The robot reacher environment is an adapted version of the OpenAI gym [6] implementation. We add
an additional degree of freedom to extend it to 3D space. The joint angles are projected onto a map
of size 12× 12× 12, where the axes correspond to the joint angles of the robot links. The goals are
randomly sampled points in the robot’s configuration space.

B Implementation Details

Our PyTorch [7] implementation will be available on the project website1.

B.1 Baseline Experiments

For HIRO, HIRO-LR and HAC we used the authors’ original implementations23. To improve the
performance of HAC, we modified their Hindsight Experience Replay [8] implementation so that

1HiDe: https://sites.google.com/view/hide-rl
2HIRO: https://github.com/tensorflow/models/tree/master/research/efficient-hrl
3HAC: https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
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they use the FUTURE strategy. More importantly, we also added target networks to both the actor and
critic to improve the performance. For HIRO, we ran the hiro_xy variant, which uses only position
coordinates for subgoals instead of all joint positions to have a fair comparison with our method. For
HIRO-LR, we provide top-down view images of size 5x5x3 as in the original implementation. We
train both HIRO and HIRO-LR for 10 million steps as reported in [9]. For RRT+LL, we adapted the
RRT python implementation4 from [10] to our problem. We trained a goal-conditioned low-level
control policy in an empty environment with DDPG. During testing, we provide the low-level control
policies with subgoals from the RRT planner. We used OpenAI’s baselines [11] for the DDPG+HER
implementation. When pretraining for domain transfer, we made the achieved goals relative before
feeding them into the network. For a better overview of the features the algorithms use, see Table 1.

Features HiDe RRT+LL HIRO-LR HIRO HAC DDPG+HER

Images X X X x x x
Random start pos x x x x X X
Random end pos x X X X X X
Agent position X X x X X X
Shaped reward x x X X x x
Agent transfer X X x x x x

Table 1: Overview of related work and our method with their respective features. Features marked
with a tick are included in the algorithm whereas features marked with a cross are not. See glossary
below for a detailed description of the features.

Glossary:
Images: If the state space has access to images.
Random start pos: If the starting position is randomized during training.
Random end pos: If the goal position is randomized during training.
Agent position: If the state space has access to the agent’s position.
Shaped reward: If the algorithm learns using a shaped reward.
Agent transfer: Whether transfer of layers between agents is possible without retraining.

B.2 Ablation Baselines

We compare HiDe against several different versions to justify our design choices. In HiDe-A(bsolute),
we use absolute positions for the goal and the agent’s position. In HiDe-3x3, HiDe-5x5, HiDe-9x9,
we compare our learned attention window against fixed window sizes for selecting subgoals. In
HiDe-RRT, we use RRT planning [12] for the top-layer, while the lower layer is trained as in HiDe.
This is to show that our learned planner improves the overall performance.

B.3 Evaluation Details

For evaluation in the maze navigation experiment of Section ??, we trained 5 seeds each for 2.5M
steps for the simple maze navigation and 10M steps for the complex maze navigation “Training”
environments. We performed continuous evaluation (every 100 episodes for 100 episodes). After
training, we selected the best checkpoint based on the continuous evaluation of each seed. Then,
we tested the learned policies for 500 episodes and reported the average success rate. Although the
agent and goal positions are fixed, the initial joint positions and velocities are sampled from uniform
distribution as is standard in OpenAI Gym environments [6]. Therefore, the tables in the results (cf.
Table ??) contain means and standard deviations across 5 seeds.

B.4 Network Structure

B.4.1 Planning Layer

Input images for the planning layer were binarized in the following way: each pixel corresponds to
one block (0 if it was a wall or 1 if it was a corridor). In our planning layer, we process the input

4RRT: https://github.com/AtsushiSakai/PythonRobotics
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image via two convolutional layers with 3× 3× 3 for the 3D case and 3× 3 kernels for the 2D case.
Both layers have only 1 input and output channel and are padded so that the output size is the same
as the input size. We propagate the value through the value map as in [13] K = 35 times using a
3× 3× 3 max pooling layer (3× 3 for 2D). Finally, the value map and position image is processed
by 3 convolutions with 32 output channels and 3× 3× 3 filter window (3× 3 in 2D) interleaved by
2× 2× 2 max pool (2× 2 for 2D) with ReLU activation functions and zero padding. The final result
is flattened and processed by two fully connected layers with 64 neurons, each producing outputs:
σ1, σ2, σ3 and the respective pairwise correlation coefficients ρ. We use softplus activation functions
for the σ values and tanh activation functions for the correlation coefficients. The final covariance
matrix Σ is given by

Σ =

 σ2
1 ρ1,2 σ1σ2 ρ1,3 σ1σ3

ρ1,2 σ1σ2 σ2
2 ρ2,3 σ2σ3

ρ1,3 σ1σ3 ρ2,3 σ2σ3 σ2
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so that the matrix is always symmetric and positive definite. For numerical reasons, we multiply by
the binarized kernel mask instead of the actual Gaussian densities. We set the values greater than the
mean to 1 and the others to zeros.

B.4.2 Control Layer

We use the same network architecture for the lower layer as proposed by [3], i.e. we use 3 times a
fully connected layer with ReLU activation function. The control layer is activated with tanh, which
is then scaled to the action range.

B.4.3 Training Parameters

• Discount γ = 0.98 for all agents.

• Adam optimizer. Learning rate 0.001 for all actors and critics.

• Soft updates using moving average; τ = 0.05 for all controllers.

• Replay buffer size was designed to store 500 episodes, similarly as in [3]

• We performed 40 updates after each epoch on each layer, after the replay buffer contained at
least 256 transitions.

• Batch size 1024.

• No gradient clipping

• Rewards 0 and -1 without any normalization.

• Observations also were not normalized.

• 2 HER transitions per transition using the FUTURE strategy [8].

• Exploration noise: 0.05 and 0.1 for the planning and control layer respectively.

B.5 Computational Infrastructure

All HiDe, HAC and HIRO experiments were trained on 1 GPU (GTX 1080). OpenAI DDPG+HER
baselines were trained on 19 CPUs using the baseline repository [11].
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(a) Simple Maze Navigation (b) Complex Maze Navigation

Figure 1: Maze environments for the tasks reported in a) Section ?? and ??, b) Section ??. The red
sphere indicates the goal, the pink cubes represent the subgoals. Agents are trained in only Training
and tested in Backward, Flipped, and Random environments.

C Additional Results

C.1 Maze Navigation
Table 2: Success rates of the individual seeds for achieving a goal in the maze navigation tasks.

Simple Maze Complex Maze

Method Training Backward Flipped Training Backward Flipped Random

HAC 1 96.4 00.0 00.0 00.0 00.0 00.0 00.0
HAC 2 82.0 00.0 00.0 00.0 00.0 00.0 00.0
HAC 3 85.6 00.4 00.0 00.0 00.0 00.0 00.0
HAC 4 92.8 00.0 00.0 00.0 00.0 00.0 00.0
HAC 5 55.6 00.0 00.0 00.0 00.0 00.0 00.0

HIRO 1 89.0 00.0 00.0 68.0 00.0 00.0 44.6
HIRO 2 89.2 00.0 00.0 64.0 00.0 00.0 36.2
HIRO 3 94.0 00.0 00.0 80.0 00.0 00.0 33.6
HIRO 4 91.3 00.0 00.0 61.0 00.0 00.0 32.8
HIRO 5 90.8 00.0 00.0 81.0 00.0 00.0 34.4

RRT+LL 1 13.8 24.0 19.6 4.8 5.6 1.2 43.6
RRT+LL 2 40.2 6.2 45.2 6.8 4.6 13.6 50.6
RRT+LL 3 20.2 23.8 29.0 17.0 8.4 0.4 47.0
RRT+LL 4 37.2 18.6 30.0 25.6 2.2 3.4 47.2
RRT+LL 5 15.0 38.2 23.4 9.4 13.2 5.8 50.6

HIRO-LR 1 84.2 00.0 00.0 00.0 00.0 00.0 14.4
HIRO-LR 2 80 00.0 00.0 00.0 00.0 00.0 10.4
HIRO-LR 3 79.8 00.0 00.0 48.2 00.0 00.0 16.2
HIRO-LR 4 76 00.0 00.0 20.4 00.0 00.0 26.6
HIRO-LR 5 96.8 00.0 00.0 33.8 00.0 00.0 9.6

HiDe 1 93.4 90.2 94.0 86.4 82.6 87.4 88.6
HiDe 2 90.8 68.2 91.8 83.4 66.0 66.0 81.6
HiDe 3 94.8 91.4 96.2 87.6 84.6 91.0 85.4
HiDe 4 94.0 85.2 92.6 87.2 76.6 77.6 83.2
HiDe 5 96.2 87.8 92.2 89.0 87.4 77.4 87.6

Table 3: Results of the simple maze navigation for HAC and HIRO when provided with an image.
Both methods fail to solve the task, as the state space complexity is too high.

Training Backward Flipped

HAC with Image 0.0± 0.0 0.0± 0.0 0.0± 0.0
HIRO with Image 0.0± 0.0 0.0± 0.0 0.0± 0.0
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Figure 2: Learning curves with success rates for the training tasks averaged over 5 seeds for a) the
simple maze experiment from Section ??, b) the complex maze experiment from Section ??. HiDe
matches convergence properties of HIRO in the simple maze (left), albeit having a much larger state
space in the planning layer. In the more complex maze (right), HiDe shows similar convergence,
while the convergence of HIRO slows.

Figure 3: Success rates for the training task when gradually increasing the environment size and
number of obstacles. At a 300% increase, HiDe’s performance drops to 64%. See Table 4 for the
more detailed results.

Table 4: Results for individual seeds of the HiDe experiments with gradually increasing number of
obstacles and environment size.

Maze Training Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Averaged

HiDe env + 100% 84.0 83.4 82.5 75.8 75.8 80.3± 4
HiDe env + 150% 74.2 85.4 81.4 75.6 84.8 80.3± 5
HiDe env + 225% 78.0 69.6 70.8 82.2 91.4 78.4± 9
HiDe env + 300% 62.8 58.8 69.8 66.4 64.0 64.4± 4
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C.2 Ablation Studies

Experiment Training Backward Flipped

HiDe-A 1 88.2 5.4 49.4
HiDe-A 2 89.2 28.4 53.2
HiDe-A 3 84.8 35.8 29.6
HiDe-A 4 91.2 13.6 32.2
HiDe-A 5 88.2 00.0 14.4

HiDe-RRT 1 82.0 35.2 78.8
HiDe-RRT 2 80.0 72.4 75.0
HiDe-RRT 3 73.6 53.6 69.4
HiDe-RRT 4 63.4 50.6 63.4
HiDe-RRT 5 85.6 54.0 74.2

HiDe 3x3 1 28.4 0.0 4.4
HiDe 3x3 2 67.6 0.6 44.0
HiDe 3x3 3 59.6 0.4 36.4
HiDe 3x3 4 0.0 0.0 0.0
HiDe 3x3 5 76.8 6.6 67.8

HiDe 5x5 1 91.0 82.8 97.0
HiDe 5x5 2 94.6 10.6 89.6
HiDe 5x5 3 88.0 72.4 87.2
HiDe 5x5 4 91.2 14.4 83.6
HiDe 5x5 5 97.6 83.6 50.6

HiDe 9x9 1 90.6 9.4 81.2
HiDe 9x9 2 92.4 64.4 79.4
HiDe 9x9 3 89.8 1.2 85.6
HiDe 9x9 4 99.0 4 83.0
HiDe 9x9 5 94.6 3 68.2

Table 5: Individual seed results of the ablation study for the simple maze navigation task.

Ant 1 Ant 2 Ant 3 Ant 4 Ant 5 Averaged

Training 0.0 78.8 0.0 0.0 0.0 16± 35
Random 67.2 88.8 17.6 0.0 0.0 35± 41

Backward 0.0 62.2 0.0 0.0 0.0 12± 28
Flipped 0.0 79.8 0.0 0.0 0.0 16± 36

Table 6: Results for the complex maze navigation task with HiDe-Absolute.

Figure 4: A visual comparison of (left) our dynamic attention window with a (right) fixed neighbor-
hood. The green dot corresponds to the selected subgoal in this case. Notice how our window is
shaped so that it avoids the wall and induces a further subgoal.
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C.3 Agent Transfer

A→B 1 A→B 2 A→B 3 A→B 4 A→B 5 Averaged

Training 99.8 100 100 100 100 100± 0
Random 98.4 98.6 98.0 98.6 98.8 98± 0

Backward 100 100 99.8 100 100 100± 0
Flipped 99.6 100 99.6 100 100 100± 0

Table 7: Results of HiDe for ant to ball transfer for individual seeds.

B→A 1 B→A 2 B→A 3 B→A 4 B→A 5 Averaged

Training 73.4 73.4 71.2 68.2 71.6 72± 2
Random 86.2 84.4 83.8 82.6 78.0 83± 3

Backward 56.8 48.4 66.4 57.8 58.4 58± 6
Flipped 74.4 77.4 80.0 61.6 72.8 73± 7

Table 8: Results of HiDe for ball to ant transfer for individual seeds.

C.4 Robotic Arm Manipulation

Arm 1 Arm 2 Arm 3 Arm 4 Arm 5 Averaged

Random 50 48 47 48 51 49± 1

Table 9: Results of the different seeds for the domain transfer experiments.

Figure 5: Example of three randomly configured test environments we use to demonstrate the domain
transfer of the planning layer from a locomotion domain to a manipulation robot.
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D Algorithm

Algorithm 1 Hierarchical Decompositional Reinforcement Learning (HiDe)

Input:
• Agent position spos, goal position G, and projection from environment coordinates to image

coordinates and its inverse Proj,Proj−1.
Parameters:

1. maximum subgoal horizon H = 40, subgoal testing frequency λ = 0.3

Output:
• k = 2 trained actor and critic functions π0, ..., πk−1, Q0, ..., Qk−1

for M episodes do . Train for M episodes
s← Sinit, g← Gk−1 . Get initial state and task goal
train_top_level(s, g) . Begin training
Update all actor and critic networks

end for

function π1(s :: state, g :: goal)
vmap ←MV Prop(I, g1) . Run MVProp on top-down view image and goal position
σ, ρ← CNN(vmap, P roj(spos)) . Predict mask parameters
v← vmap

⊙
N (·|spos,Σ) . Mask the value map

return a1← Proj−1(arg max v)− spos . Output relative subgoal corresponding to the max
value pixel
end function

function π0(s :: joints_state, g :: relative_subgoal)
return a0←MLP (s, g) . Output actions for actuators

end function

function TRAIN_LEVEL(i :: level, s :: state, g :: goal)
si ← s, gi ← g . Set current state and goal for level i
for H attempts or until gn, i ≤ n < k achieved do

ai← πi(si, gi) + noise (if not subgoal testing) . Sample (noisy) action from policy
if i > 0 then

Determine whether to test subgoal ai
s
′

i ← train_level(i− 1, si, ai) . Train level i− 1 using subgoal ai
else

Execute primitive action a0 and observe next state s
′

0
end if

. Create replay transitions
if i > 0 and ai not reached then

if ai was subgoal tested then . Penalize subgoal ai
Replay_Bufferi ← [s = si, a = ai, r = Penalty, s

′
= s

′

i, g = gi, γ = 0]
end if
ai ← s

′

i . Replace original action with action executed in hindsight
end if

. Evaluate executed action on current goal and hindsight goals
Replay_Bufferi ← [s = si, a = ai, r ∈ {−1, 0}, s′ = s

′

i, g = gi, γ ∈ {γ, 0}]
HER_Storagei ← [s = si, a = ai, r = TBD, s

′
= s

′

i, g = TBD, γ = TBD]

si ← s
′

i
end for
Replay_Bufferi ← Perform HER using HER_Storagei transitions
return s

′

i . Output current state
end function
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