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Fig. 1: HSR jointly reconstructs dynamic humans and static scenes in a shared global
coordinate system from monocular RGB videos. This approach enables HSR to account
for physical interactions between humans and scenes, effectively addressing issues of
interpenetration and occlusion.

Abstract. An overarching goal for computer-aided perception systems
is the holistic understanding of the human-centric 3D world, including
faithful reconstructions of humans, scenes, and their global spatial re-
lationships. While recent progress in monocular 3D reconstruction has
been made for footage of either humans or scenes alone, the joint re-
construction of both humans and scenes, along with their global spatial
information, remains an unsolved challenge. To address this, we intro-
duce a novel and unified framework that simultaneously achieves tem-
porally and spatially coherent 3D reconstruction of static scenes with
dynamic humans from monocular RGB videos. Specifically, we param-
eterize temporally consistent canonical human models and static scene
representations using two neural fields in a shared 3D space. Additionally,
we develop a global optimization framework that considers physical con-
straints imposed by potential human-scene interpenetration and occlu-
sion. Compared to separate reconstructions, our framework enables de-
tailed and holistic geometry reconstructions of both humans and scenes.
Furthermore, we introduce a synthetic dataset for quantitative evalua-
tions. Extensive experiments and ablation studies on both real-world and
synthetic videos demonstrate the efficacy of our framework in monocular
human-scene reconstruction. Code and data are publicly available on our
project page.
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1 Introduction

Digitally recreating real-life scenarios, particularly those involving human-centric
activities, is crucial for empowering machines to perceive and interact with the
world around them. Consider a delivery robot navigating to hand over a package
to a person as a motivational example. For successful interaction, the robot’s per-
ception system must perceive the 3D layout of its surroundings and accurately
interpret the state and dynamics of the humans within that space. This necessi-
tates a comprehensive approach to reconstructing both humans and scenes, along
with understanding their spatial relationships. Moreover, this reconstruction ca-
pability must be robust and capable of adapting to new individuals, varying
clothing styles, and diverse environments without specific templates. Therefore,
our goal is to achieve holistic 3D reconstructions of static scenes and dynamic
human occupants from monocular RGB videos captured by consumer devices.

Most previous works treat static scene reconstruction and dynamic human
reconstruction separately. For example, with advances in neural volume render-
ing [44, 60, 70, 71], researchers have explored reconstructing scenes with neural
implicit functions [40, 48, 59, 74], but all of these works ignore dynamic com-
ponents such as humans. Simultaneously, there has been remarkable progress
in deformable object reconstruction from images, especially articulated humans
[6, 21, 24, 37, 50, 65]. Although successful in their respective tasks, the challenge
remains in leveraging these methods to simultaneously reconstruct both scenes
and humans as motivated above. As we have found experimentally, naively com-
bining these two lines of methods produces artifacts such as truncated human
bodies and human-scene interpenetration This is because it lacks the spatial re-
lationship between humans and scenes, where humans are unaware of scenes and
vice versa. In addition, most human reconstruction methods assume a complete
observation of the human, ignoring the common human-scene occlusion.

To address these issues, we propose HSR based on the following insight:
modeling static scenes and dynamic humans should be reconciled into a single,
unified framework that treats the problem holistically. More concretely, we utilize
two neural fields - one for modeling the dynamic human in canonical space [21]
and another for the static scene [74]. We formulate a global, joint optimization
over all of the learnable parameters of the dynamic human and static scene. This
includes physical constraints imposed by the potential human-scene occlusion
and interpenetration. In addition, a 3D body model-guided sampling strategy
for surface-based neural volume rendering then facilitates the separation of the
dynamic human and static environment. The 3D body model is utilized to guide
the sampling process, which helps to effectively model sharp boundaries between
the dynamic human and static environment. This proves beneficial even when
faced with significant human-scene occlusions. We also use estimated normal and



HSR: Holistic 3D Human-Scene Reconstruction from Monocular Videos 3

depth maps to improve reconstruction quality. This approach enables plausible
and detailed holistic geometry reconstructions of the entire space

Our experiments demonstrate that our method achieves accurate human-
scene decomposition and detailed 3D reconstruction. Furthermore, comparisons
with existing methods indicate superior performance of our method compared to
prior works. To facilitate quantitative comparison, we contribute a novel semi-
synthetic test set with accurate 3D geometry of complete scenes. Finally, exten-
sive ablation experiments validate our design choices.

In summary, our contributions are:
– a novel unified framework to holistically reconstruct 3D scenes with dynamic

people from monocular videos, achieving robust and detailed 3D reconstruc-
tions with a clean separation even under challenging human-scene occlusions
and interpenetrations,

– a novel semi-synthetic dataset with rich 3D annotations, allowing for com-
paring monocular dynamic scene reconstruction methods,

– extensive ablation studies and comparisons demonstrating the effectiveness
of our proposed components and the entire system.

2 Related Work

Dynamic Human Reconstruction. Explicit representations have been suc-
cessfully used for monocular human performance capture but required person-
alized, manually rigged templates, such as human scans [24,25,66]. Some meth-
ods [1, 8, 20, 46] have addressed this, but explicit mesh representations are in-
herently limited by a fixed resolution. Methods that directly regress 3D surfaces
have shown impressive results [2, 15, 27–29, 32, 49, 50, 65, 79]. However, they of-
ten struggle with building a consistent representation over time and require
3D data for supervision. More recently, implicit neural fields combined with
neural rendering have emerged as a way to fit articulated human models to
videos [21, 33–35, 39, 47, 54, 55, 63]. Vid2Avatar [21] and SelfRecon [33] improve
geometry reconstruction quality by adopting an SDF-based representation and
enable reconstructing human avatars from monocular videos. OccNeRF [64] in-
corporates attention and graph convolution to hallucinate occluded regions and
achieve plausible novel view rendering. Unlike these methods that focus primarily
on the human subject, our work aims to achieve a consistent 3D reconstruction
of both humans and scenes.
Static Scene Reconstruction. Multi-view stereo (MVS) is a common tech-
nique for reconstructing the dense geometry of static scenes [17,19,52,58,68,69].
Many learning-based MVS methods leverage CNNs to overcome the limitation
of hand-crafted modeling attempts of traditional methods [9,19,42,57,58,68,69].
Recently, with the rise of NeRF [44], researchers have explored static scene re-
constructions with neural implicit functions. IDR [71] reconstructs surfaces as
the zero-level set of an MLP. While achieving good reconstruction, IDR requires
accurate object masks during training. To avoid using masks, VolSDF [70] and
NeuS [60] modify NeRF and use signed distance function (SDF) to represent the
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density function in neural volume rendering. Since some works [62,75] show that
there exists an ambiguity between appearance and geometry in NeRF, many
variants based on VolSDF or NeuS adopt better geometry supervision and im-
prove reconstruction accuracy [13, 16, 59]. MonoSDF [74] uses monocular depth
and normal estimation to provide geometric constraints across images. However,
all these methods consider only static scenes without moving subjects, limiting
their applicability to life-like scenes.
Human-Scene Interaction. Human-scene interaction in 2D and 3D has been
widely studied in the literature [5, 7, 22, 26, 30, 31, 38, 45, 51, 72, 73]. A line of
research estimates human body poses in scenes from RGB images [26,30] or with
the aid of wearable sensors [12,23,36,43,77]. Most methods require a prescanned
scene and do not estimate detailed human surface geometry. Recently, Total-
Recon [53] focuses on reconstructing articulated objects and scenes from RGBD
input. PPR [67] reconstructs articulated objects and scenes from monocular
videos, employing physical simulation to determine relative scales and optimize
poses. However, they do not model humans explicitly, leading to insufficient
reconstruction quality of human subjects. In summary, prior work either assumes
a ready-made 3D scene scan, does not reconstruct the detailed human surface
geometry, or requires additional sensor inputs. These limitations prevent such
techniques from being deployed to applications where prior knowledge of scenes
and human surface geometry cannot be afforded.

3 Method

We first describe how we model the geometry and appearance for the human
and the scene in Sec. 3.1. Next, we discuss how we obtain a final pixel value via
compositional volume rendering in Sec. 3.2. Finally, Sec. 3.3 shows our global
optimization procedure. For an overview of our method, please refer to Fig. 2.
In the following, we assume that two sets of 3D points have been sampled along
a ray: one set for the human part {xd}Ni=1, and the other for the scene {xs}Ni=1.
More details on sampling are explained in Sec. 3.2.

3.1 Neural Avatar and Scene Representation

In this section, we formally introduce the geometry and appearance representa-
tions for humans and scenes in HSR. To account for dynamic human motion, we
explain how skeletal deformation is used to model articulated human bodies.
Geometry Representation. We model the canonical human (H) and scene
geometry (S) as two neural networks, fH

sdf and fS
sdf, where each one predicts the

signed distance value for any 3D point in its respective space. Specifically:

fH
sdf : R3+nθ → R1+nz ; (xc,θ) →| (ξH , zH), (1)

fS
sdf : R3 → R1+nz ; xs →| (ξS , zS). (2)

The human shape fH
sdf is modeled in the canonical space and deformed into

the observation space with LBS deformations [41]. To capture pose-dependent
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Fig. 2: Method overview. Given a ray, we sample two sets of points along it, one
for the human {xd}Ni=1 and one for the scene {xs}Ni=1. The points for the human are
sampled only inside the 3D human bounding box. We model the human H in a canonical
space with an SDF-based shape neural network fH

sdf [21] and a texture network fH
rgb,

then deform it using skinning techniques. Similarly, the scene is represented with neural
fields fS

sdf and fS
rgb [74]. The outputs from both branches are used to composite a final

image via SDF-based volume rendering. This allows us to jointly optimize the scene
and human, treating the problem of 3D human-scene reconstruction holistically.

local non-rigid deformations such as dynamically changing wrinkles on clothes,
we concatenate the human pose θ as an additional input to xc. The pose pa-
rameters θ are the SMPL [41] pose parameters with dimensionality nθ. Each
network outputs the signed distance value, ξL and a global geometry feature zL,
where L ∈ {H,S}. The shape SL is then given by the zero-level set of fL

sdf:

SL = { x | fL
sdf(·) = 0 }. (3)

We jointly optimize the shape and pose parameters during training, which
naturally encourages accurate pixel-level alignment and smooth motion. Com-
pared to the 3D spatial location, the pose parameters are relatively high-dimen-
sional. This can lead to overfitting shapes to the pose parameters instead of
achieving temporally consistent canonical shapes. To address this issue, we per-
form linear dimension reduction on the pose parameters, enable the pose condi-
tion at a later stage, and periodically reset the pose parameters to zero.
Appearance Representation. The appearance of the human and the scene is
modeled via two neural networks fL

rgb, which predict color values for 3D points:

fH
rgb : R3+nθ+nz+3 → R3; (xc,θ, z

H ,nd) →| cH , (4)

fS
rgb : R3+3+nz+3 → R3; (xs,v, z

S ,ns) →| cS . (5)
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Again, the human network fH
rgb operates in the canonical space and is condi-

tioned on the SMPL pose θ. In contrast, the scene network fS
rgb is conditioned on

the viewing direction v. Both networks fL
rgb receive the global geometry feature

zL computed by the shape network fL
sdf. Lastly, to achieve better disentanglement

of geometry and appearance, we also condition fL
rgb on the respective normals :

nd =
∂ξH(xc,θ)

∂xd
, ns =

∂ξS(xs)

∂xs
. (6)

Skeletal Deformation. We model human networks in a canonical and pose-
independent space. To map between the canonical and the posed space, we use
skeletal deformations following [21]. Given the bone transformation matrix Bi

for joint i ∈ {1, ..., nb} extracted from θ, we can map between a pair of the
canonical point xc and hte corresponding deformed point xd via linear blend
skinning (LBS) and its inverse:

xd =

nb∑
i=1

wi
cBi xc, xc = (

nb∑
i=1

wi
dBi)

−1 xd, (7)

where nb denotes the number of bones in the transformation, and w(·) represents
the skinning weights for x(·). We choose wd to be the skinning weight of the
SMPL vertex that is closest to xd (and analogously for wc and xc in the canonical
space). With this deformation, the normals nd can be computed as [78]:

nd =
∂ξH(xc,θ)

∂xc

∂xc

∂xd
=

∂ξH(xc,θ)

∂xc
(

nb∑
i=1

wi
dBi)

−1. (8)

Choice of Coordinate System. Previous works on human reconstruction [21,
33] position cameras based on their relative location to the canonical human
body. In contrast to a human-centric coordinate system, we place everything
within a consistent global coordinate system. This choice not only facilitates
spatially coherent 3D human reconstructions but also improves human-scene de-
composition through multi-view photometric consistency. As a result, this leads
to the correct reconstruction of foreground occluders, which is essential to model
occlusion. We demonstrate the effectiveness of such a choice of coordinate system
in the supplementary material. To align the estimated human pose from each
frame and the scene into a global coordinate system, we use the contact priors
similar to NeuMan [34] to resolve the scale ambiguity. This gives us a rough
estimation of the human scale in the scene. The scale can be further refined in
the optimization stage to match the 2D projection of human bodies.

3.2 Compositional Volume Rendering

We normalize the scene shape field into a sphere with a pre-defined radius and
align the deformed human shape with the scene by estimating a relative scale to
ensure proper 2D projection and 3D contacts [34]. We apply SDF-based volume
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rendering for both the dynamic human and static scenes. The final pixel value
is then attained via compositing these two components.
Shape-aware Sampling. Given a ray r = (o,v) with camera center o and ray
direction v, we sample N points for the human and scene networks (i.e., 2N
in total) as xi = o + tiv. We follow VolSDF [70] and use a two-stage sampling
procedure with uniform and inverse CDF sampling. To better disentangle the
human and the background even under strong occlusions, we design a shape-
aware sampling strategy that leverages 3D body models (e.g., SMPL) to guide
the sampling process. Specifically, we only sample points for the human shape
and texture fields on the part of the ray that intersects with the axis-aligned 3D
bounding box derived from the SMPL body estimation. The sampling range for
the scene is determined by the camera center and the pre-defined sphere. We
show in Fig. 5 that this sampling strategy is crucial to separate the human from
the scene cleanly.
Surface-based Volume Rendering. For the surface-based volume rendering
[70], we convert the SDF to a density value σ by applying the scaled Laplace
distribution’s Cumulative Distribution Function (CDF, L ∈ {H,S} and β, γ > 0
are learnable parameters):

σL(x) = β

(
1

2
− 1

2
sign(ξL(x))(1− exp(−|ξL(x)|

γ
))

)
. (9)

Scene Composition. To determine the final pixel value for a ray r, we raycast
the human and scene volumes separately. We then sort the sampled points based
on the distances to the camera center, followed by a scene composition step for
the volume integration:

C(r) =

2N∑
i=1

τic
L(xi), (10)

τi = exp

−
i−1∑
j=1

σL(xj)δj

(
1− exp(−σL(xi)δi)

)
, (11)

where L = H if a point xi is sampled for the human model (i.e., xi ∈ H)
and L = S otherwise. δi is the distance between two adjacent samples. Here,
the accumulated alpha value of either model for a pixel can be obtained by
αH(r) =

∑
xi∈H τi and αS(r) =

∑
xi /∈H τi. Similarly, we compute the depth

D(r) and normal N(r) of the surface intersecting the current ray as:

D(r) =

2N∑
i=1

τit
i, N(r) =

∑
xi∈H

τind(x
i) +

∑
xi /∈H

τins(x
i). (12)

3.3 Global Optimization

To train the human and scene models jointly from videos, we formulate the
training as global optimization over all K frames with the following losses.
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Image Reconstruction Loss. We calculate the L1-distance between the ren-
dered color C(r) and the pixel’s RGB value Ĉ(r) to compute the image recon-
struction loss Lk

rgb for frame k:

Lk
rgb =

1

|Rk|
∑
r∈Rk

|C(r)− Ĉ(r)|, (13)

where Rk denotes the sampled rays for frame k.
Interpenetration Loss. We penalize human-scene interpenetration of implicit
surfaces using Lk

inter. We select points that are predicted to be simultaneously
inside the human and the scene by querying the individual SDF values in both
shape networks, i.e., Sk = {xc : ξ

H(xc) < 0} ∩ {xc : ξ
S(LBS(xc)) < 0}, where

LBS is the linear blend skinning function:

Lk
inter =

1

|Sk|
∑

xc∈Sk

ξH(xc) · ξS(LBS(xc)). (14)

Mask Loss. We propose adding a foreground and background mask loss to help
guide human-scene separation and refine human pose and geometry. Specifically,
we apply a L1 loss on the occlusion-aware foreground accumulated weights and
background accumulated weights against the human mask Mk:

Lk
mask =

∑
r∈Mk

|αH(r)− 1|+
∑

r/∈Mk

|αS(r)− 1|. (15)

Due to the inaccuracy in the generated human mask, we decrease the strength
of mask supervision as training progresses. More details on mask generation and
the effectiveness of such mask loss are provided in the supplementary material.
Self-Decomposition Loss. To mitigate incorrect mask supervision and let the
model refine the human-scene separation, we use a scene decomposition loss [21].
Such a loss encourages the density distribution to be sharp and sparse so the
network can figure out the accurate boundary. This loss includes two parts:
an opacity regularization Lsparse to regularize the ray opacity via the canonical
human shape and a BCE loss that penalizes deviations of the ray opacities from
a binary {0, 1} distribution:

Lk
sparse =

1

|Rk
off|

∑
r∈Rk

off

|αH(r)|, (16)

Lk
BCE = − 1

|Rk|
∑

L∈{H,S}

∑
r∈Rk

(
αL(r) log(αL(r)

)
+ (1− αL(r)) log(1− αL(r))),

(17)
where the set of rays that do not intersect with the human is denoted as Rk

off.
We summarize both terms as Lk

dec = λBCELk
BCE + λsparseLk

sparse. We gradually
increase the weight for this loss during the optimization.
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Geometric Prior Loss. Using RGB images only to reconstruct complex and
dynamic 3D scenes is an under-constrained problem as there exists an infinite
number of photo-consistent explanations [4,75]. This is even worse for the scene
reconstruction due to the lack of explicit across-frame constraints. To this end,
we follow [74] and leverage monocular geometric priors as additional supervision
signals for the background reconstruction. Specifically, we use a pre-trained Om-
nidata model [14] to predict a depth map D̂ and a normal map N̂ for frame k.
We then enforce the depth and normal consistency between the 2D estimations
and the rendered ones:

Lk
depth =

∑
r∈Rk

∥(wD̂(r) + q)−D(r)∥2, (18)

Lk
normal =

∑
r∈Rk

∥N̂(r)−N(r)∥1 + ∥1− N̂(r)⊤N(r)∥1, (19)

where w and q are learnable scale and shift parameters. The final geometry prior
loss is then given by Lk

geo = λdepthLk
depth + λnormalLk

normal. More details on the
depth loss are provided in the supplementary material.
Eikonal Loss. Like IGR [18], we force the shape networks fH

sdf, f
S
sdf to satisfy

the Eikonal equation:

Lk
eik = Exc

(
∥∇fH

sdf(xc)∥ − 1
)2

+ Exs

(
∥∇fS

sdf(xs)∥ − 1
)2

. (20)

Full Loss. Given a video sequence with K input frames, we minimize the com-
bined loss function:

L(Θ) =

K∑
k=1

Lk
rgb(Θ) + λinterLk

inter(Θ) + λmaskLk
mask(Θ)+

λdecLk
dec(Θ) + λgeoLk

geo(Θ) + λeikLk
eik(Θ),

(21)

where Θ is the set of all optimizable parameters for the human and scene model.

4 Experiment

4.1 Evaluation Protocol

Synthetic Human Scene Dataset (SHSD). The currently available human
motion datasets that include scene scans solely consist of SMPL or SMPL-X
registrations, lacking precise ground truth for detailed human surface geome-
try [23, 26, 30]. To fill this gap, we introduce a new dataset named SHSD with
ground-truth information for the surface geometry and appearance of human
subjects and their surrounding environments. We employ a multiview capture
stage to capture and reconstruct dynamic human subjects [10] in high qual-
ity. Subsequently, we render these realistic subjects into virtual environments
with Blender [11], utilizing the virtual environments from ReplicaCAD [56] and
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CIRCLE [3] datasets. By combining life-like human scans with realistic virtual
environments, we create a dataset for further analysis and research of holistic
3D human-scene reconstruction. In total, SHSD consists of six sequences. For
more details, please refer to the supplementary material.
Real Dataset. We record six monocular sequences using a mobile phone to
demonstrate the effectiveness of our approach on real-world data. Each sequence
captures a person engaging in various poses within an everyday scene.
Baselines. We compare our methods with the state-of-the-art human recon-
struction methods SelfRecon [33] and Vid2Avatar [21]. We also compare our
results with the holistic reconstruction methods PPR [67] and Total-Recon [53].
Total-Recon [53] focuses on reconstructing articulated objects and scenes from
RGB-D input. Similarly, PPR [67] reconstructs articulated objects and scenes
from monocular videos, employing physical simulation to determine relative scale
and optimize pose. Therefore, PPR [67] and Total-Recon [53] do not specifically
focus on modeling humans explicitly.
Evaluation Metrics. For view synthesis, we report PSNR, SSIM [61], and
LPIPS [76] for image quality. In addition, we report the intersection over union
(Mask IoU) between ground truth and predicted human masks for evaluation on
human-scene decomposition. For the evaluation of human mesh reconstruction,
we use volumetric IoU (3D IoU), Chamfer distance (CD, in cm), and normal
consistency (NC) as metrics. For the quality of holistic reconstruction, we report
the cosine similarity of normal maps (N-cos, in range (0, 1)) and the L1 distance
of the depth map error (D-ℓ1, in cm).

4.2 Evaluation on Human Reconstruction

We present comparisons between our methods and Vid2Avatar [21] and SelfRe-
con [33] qualitatively in Fig. 3 and quantitatively in Tab. 1. Specifically, our
method achieves better human-scene decomposition as shown in the first row in
Fig. 3 and higher mask IoU in Tab. 1. In addition, our method can deal with
severe occlusion, while Vid2Avatar and SelfRecon fail drastically, as shown in
the second row in Fig. 3. This is because we place everything in a global consis-
tent coordinate system, where obstructing objects can be reconstructed, and the
spatial relationship between human and scene objects can be correctly inferred.
In contrast, Vid2Avatar and SelfRecon hold the assumption that humans are
not occluded and adopt a human-centric coordinate system which breaks the
multiview consistency for the scene. In the third row in Fig. 3, we show that our
method is more robust to initial pose estimation error as we optimize the pose
parameters and the accurate 2D mask loss. More discussion on this is included
in the supplementary material.

4.3 Evaluation on Holistic Reconstruction

We further compare our method with PPR [67] and Total-Recon [53] in Fig. 4 and
Tab. 2. PPR utilizes RGB video input and leverages differentiable physics simu-
lations to handle foot contact. However, in physics simulations, PPR only takes
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Fig. 3: Qualitative results on human reconstruction. Our method shows superior
human-scene decomposition (first row), enhanced robustness to occlusion (second row),
and improved handling of inaccurate poses (third row) compared to baselines.

PSNR ↑ SSIM ↑ LPIPS ↓ Mask IoU ↑ 3D IoU ↑ CD ↓ NC ↑
SelfRecon [33] 20.84 0.932 0.077 0.936 0.736 3.004 0.735
Vid2Avatar [21] 22.12 0.936 0.065 0.923 0.732 2.626 0.768
Ours 22.34 0.937 0.057 0.954 0.757 2.349 0.782

Table 1: Quantitative evaluation of human reconstruction on SHSD. Our
method achieves better rendering quality, more accurate human-scene decomposition,
and more faithful geometry reconstruction.

the ground as a plane into account, neglecting other objects in the scene (e.g.,
the bed, as shown in Fig. 4). Furthermore, PPR reconstructs the wall and the
floor of the scene but struggles with detailed objects such as furniture, resulting
in notable geometry errors. In contrast, our method considers the entire scene
and makes better use of human priors, thus outperforming PPR significantly
on human-scene reconstruction. Although Total-Recon takes depth maps as an
additional input, the results presented in Fig. 4 demonstrate that our method
performs much better even with only RGB signals. For quantitative compari-
son, PPR fails on certain sequences within our dataset, thus we only report the
results on a subset of our dataset in Tab. 2. Regarding Total-Recon, since our
dataset lacks simulated LIDAR inputs from a mobile device, we exclusively com-
pare with Total-Recon on real data in Fig. 4. Please refer to our accompanying
video and supplementary materials for more comparisons and results.
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Fig. 4: Qualitative results on holistic reconstruction. Our method achieves much
better reconstruction quality even without depth input as in TotalRecon [53].

N-cos ↑ D-ℓ1 ↓
PPR [67] 0.838 42.29
Ours 0.936 15.14

Table 2: Holistic reconstruc-
tion quality on SHSD. We
report normal cosine on nor-
mal maps and depth ℓ1 distance
(cm) on depth maps. Our method
achieves much better reconstruc-
tion quality compared to PPR [67].

Fig. 5: Ablations for occlusion. With-
out shape-aware sampling or pose regular-
ization, the human shape overfits to the ob-
servations, breaking temporal consistency
across different frames.

4.4 Ablation Study

In this section, we present various ablation experiments to demonstrate the im-
portance of HSR’s design choices. The qualitative results in Fig. 5 illustrate
techniques for a consistent human reconstruction, particularly under occlusion.
Fig. 6 highlights the critical role of monocular geometric cues in monocular
video-based scene reconstruction. Additional quantitative results are included in
the supplementary material. Fig. 7 demonstrates the effectiveness of interpene-
tration loss in resolving human-scene interpenetration.
Consistent Human Reconstruction. When occlusion occurs, all supervision
signals are utilized for the foreground occlusions, leaving the occluded human
parts under-constrained. To achieve a reasonable human reconstruction in such
a scenario, we need to rely on the temporal consistency of the canonical human
space. However, the high dimensionality of pose parameters, compared to the
three-dimensional location input in Eq. (1), causes the shape network to overfit
to the pose condition, resulting in artifacts as depicted in Fig. 5. To address
this issue, we propose to enable the pose condition only at a late stage to learn
pose-dependent deformations for clothed humans. Additionally, we periodically
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Fig. 6: Effect of monocular geometric cues. Depth and normal priors provide
complementary supervision to RGB signals, resulting in much better reconstruction
quality.

Fig. 7: Effect of the interpenetration loss. Vertices colored in red indicate the in-
terpenetrated regions. Without Linter, the reconstructed human meshes unrealistically
penetrates the floor.

set the pose condition for the shape network to zero, ensuring consistency with
the canonical shape. This regularization technique helps achieve plausible human
reconstruction even under strong occlusion.
Shape-aware Sampling. In Fig. 5, we demonstrate the importance of shape-
aware sampling, which prevents artifacts such as truncated bodies. Without this
strategy, the samples will be scattered along the entire ray due to the limitation
of inverse CDF sampling. By applying a strong prior over a tight sampling range,
all samples for the human networks are concentrated around the human body,
minimally contributing to the final pixel color in case of occlusion. We include
an illustration of this scenario in the supplementary material.
Monocular Geometric Cues. We use normal and depth maps predicted by
Omnidata [14] to enhance our reconstruction quality. As shown in Fig. 6, these
cues are particularly helpful for monocular reconstruction, especially in texture-
less regions such as walls and floors.
Human-Scene Interpenetration. Holistic reconstruction from images can re-
sult in surface interpenetration due to inaccuracies in pose estimation and ge-
ometry reconstruction. The proposed interpenetration loss mitigates collision
around the contact regions as shown in Fig. 7. Our method effectively han-
dles interactions with various scene elements through our general formulation
of implicit scene modeling and the interpenetration loss. We provide a detailed
examination of human-chair contacts in the supplementary material.
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Fig. 8: Joint human-scene reconstruction. Training our method without a joint,
global optimization (Ours Individual) leads to interpenetrations and inaccurate human-
scene separation as highlighted.

Joint Human-Scene Reconstruction. To illustrate the necessity of joint
human-scene reconstruction, we design a straightforward baseline method, com-
bining MonoSDF [74] for scene reconstruction and Vid2Avatar [21] for human
reconstruction. Specifically, we use human masks to separate the human from
the scene and train each model independently. We refer to this baseline as Ours
Individual. As shown in Fig. 8, Ours Individual suffers from spatial misalign-
ment (left example) and segmentation errors (right example). In contrast, when
optimizing the human model and the scene model simultaneously, our approach
correctly determines the relative spatial order and effectively decouples the hu-
man and the scene.

5 Conclusion

We present HSR, a unified framework to jointly reconstruct static scenes with
dynamic humans from monocular RGB videos. Our method models the human
and the scene with neural implicit SDFs in a pose-independent space. Impor-
tantly, we optimize all parameters globally, making the human aware of the
scene structure to better handle occlusions and interpenetration.
Limitations. In this work, we focus on the body – itself a difficult problem –
and thus leverage SMPL for deformation. Most of our reconstructions contain
blobby hands and blurred faces. To solve this, one needs to have accurate hand
pose and facial expression estimation from relatively low-resolution observations.
Integrating more expressive deformers such as SMPL-[H|X] for better hand and
face reconstruction is an interesting future research direction.
Ethical Concerns. The collection of datasets, as well as its usage involving
human subjects, has undergone a rigorous ethical review and approval process
by an Institutional Review Board. This ensures that all necessary ethical con-
siderations and guidelines are adhered to.
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