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In this supplementary document, we provide additional details on data pre-
processing (Sec. 1), implementation (Sec. 2), and datasets (Sec. 3). We also
present more experiment and ablation results (Sec. 4) to validate our design
choices. Lastly, we provide an in-depth discussion of the limitations and possible
negative societal impacts of our method (Sec. 5).

In the supplementary video, we illustrate the overall pipeline and showcase
video comparisons of our method against baselines.

1 Data Preprocessing

In this section, we detail our data preprocessing procedures. First, we explain
the camera localization process in Sec. 1.1 and the human pose estimation in
Sec. 1.2. We then describe the alignment of humans and scenes in Sec. 1.3.
Finally, Sec. 1.4 and Sec. 1.5 outline the generation of supplementary supervision
signals, including monocular cues and masks.

1.1 Scene Preprocessing

Frame Selection. For casually captured videos using a mobile phone, we ex-
tract the sharpest frames at equal time intervals to alleviate issues such as mo-
tion blur, redundant information from consecutive frames, and excessively long
preprocessing time.

Camera Localization. After frame extraction, we perform image undistortion
to correct radial distortion, which is the primary type of distortion on mobile
phone cameras. We then perform camera localization using COLMAP [23] and
HLoc [22]. Specifically, we use the SuperPoint [5] feature combined with Light-
Glue [16] matching due to their superior accuracy compared to the default SIFT
feature and exhaustive matching. To mitigate issues with duplicate structures
and repetitive patterns in SfM [2], we restrict feature matching to frames within
a temporal window. Figure Fig. 1 illustrates the effects of these engineering ef-
forts. In cases of completely failed localization, we initialize the camera poses
with poses from the iPhone’s ARKit and perform bundle adjustment for three
iterations. In the feature extraction stage, we filter out pixels corresponding to
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Exhaustive Matching Sequential Matching

Fig. 1: Camera localization with the presence of duplicate structures. There
are two staircases on both sides and the sequential matching can obtain more accurate
camera poses with the temporal prior.

dynamic humans using dilated masks from RVM [15]. Lastly, we use BlenderNeu-
ralangelo [14] to extract the bounding regions for the scene normalization. We
also obtain sparse point clouds via triangulation from COLMAP, which we use
to determine human scales in Sec. 1.3.

1.2 Human Pose Estimation

We utilize SMPL [17] body models as the human prior in human body recon-
struction. To estimate the initial SMPL parameters of humans in the videos,
we employ the body pose regressor ROMP [24] on each frame separately. The
initially estimated per-frame SMPL parameters often exhibit inaccuracies and
temporal inconsistencies, particularly in frames where objects occlude humans.
Therefore, we further refine the SMPL estimation with a joint loss and a tem-
poral loss following a similar approach to [8]. Specifically, we minimize the 2D
distance between the 2D joint predictions Ĵ obtained from OpenPose [3] and the
2D projection of the 3D SMPL joints J(θ) given SMPL parameters θ:
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where Π represents the 3D to 2D projection operators given camera poses and
wi denotes the corresponding OpenPose confidence. To make the optimization
robust to outliers, we apply the robust Geman-McClure function ρ(·) on the
error term.

In addition, we incorporate a temporal loss that penalizes the difference in
the 3D joint locations between consecutive frames:
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This loss penalizes pose jittering and infills plausible body poses in occluded
frames.

In this refinement stage, we utilize all the frames in the video for better tem-
poral consistency. We use Adam [11] optimizer to optimize all SMPL parameters
for 150 iterations with the aforementioned losses:

Lrefine = Ljoint + λtempLtemp, (3)

where λtemp is a hyperparameter to balance smoothness and fidelity to 2D ob-
servations. The effect of such optimization is illustrated in the second and third
columns in Fig. 3.

1.3 Human-Scene Alignment

The training of HSR requires the human and the scene to be posed in a glob-
ally consistent coordinate system. However, the estimated per-frame SMPL pa-
rameters describe the human bodies in the camera coordinate system. Besides,
off-the-shelf human pose estimators, such as VIBE [13] and ROMP [24], adopt a
weak-perspective camera model based on the assumption that the depth of hu-
man bodies is negligible compared to the height and width of human bodies. To
align all SMPL estimations in a globally consistent world coordinate system, we
need to compute the relative human scale as well as the global 6-DoF root-body
trajectories with a perspective camera model.

For the scale ambiguity problem as shown in the left fpart of Fig. 2, we
detect the ground plane in the scene and assume the human body will have
contact with the ground plane in most of the frames. We transform the SMPL
parameters into the world space with the camera poses from COLMAP and
compute the minimum scale that one of the world space SMPL mesh vertices
will be in contact with the ground plane for each frame. We take the median
of the estimated scales from all the frames and use it as the single scale for
all the frames. The right part of Fig. 2 shows the results after alignment. This
helps us reduce the temporal jittering in scales and makes our method robust
to certain human motions such as jumping. In case of failed ground detection
due to few feature detections in the textureless ground, our pipeline allows for a
user-specified scale that visually aligns humans with the scene and can optimize
the scale in the joint optimization in the later stage.

Once a reasonable scale estimation is obtained, we transform the SMPL pa-
rameters from the camera coordinate frame to the world coordinate frame with
the following transformation [19]:

Rw = Rw
c Rc, (4)

tw = Rw
c (p+ tc) + twc − p (5)

where p is the pelvis location for the estimated shape parameters, Rc is the global
orientation in the camera coordinate frame, tc the translation in the camera
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Fig. 2: Human-Scene Alignment. We use the contact prior to resolve the scale
ambiguity (left) and obtain a globally coherent human pose estimation in the world
coordinate system (right).

coordinate frame, (Rw, tw) the SMPL parameters in the world coordinate frame,
and (Rw

c , twc ) the transformation from the camera coordinate frame to the world
coordinate frame.

1.4 Monocular Geometric Cues

We use pretrained models from Omnidata [7] to predict monocular depth and
normal for each frame. The model is trained on images of size 384× 384, so we
take patches of this size from the original image to estimate the corresponding
cues and align different patches together based on the overlapping regions. The
estimated depth is not metric and subjects to a scale and shift transformation.
Therefore, we apply a least square estimator to solve the scale and shift needed
to align patches of depth maps. For surface normals, we estimate the least square
solution of the rotation matrices to align patches of normal maps. This patch-
based monocular cue estimation allow us to obtain monocular cues for arbitrary
high-resolution input without the need for resizing or cropping.

1.5 Human Masks

We use SAM [12] for additional supervision on the foreground-background sepa-
ration. With proper prompting, SAM masks are accurate and robust to occlusion.
We initialize the prompt based on the mask from a human video matting model
RVM [15] and the SMPL body mask. The SMPL body mask is clean but does not
take into account occlusion. The RVM mask considers occlusion but may have
random noise in some regions of the image. Therefore, we use the intersection of
these two masks as the initial mask prompt for the SAM module. Additionnally,
we provide the bounding box of the intersection mask and 2D keypoints from
OpenPose as prompts. The initial SAM mask can be noisy at the boundaries of
the human mask. To address this, we use the estimated mask and sampled ran-
dom points from the mask as the new prompt for the SAM module. We iterate
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Fig. 3: Human Masks. We show how we gradually obtain accurate human masks
based on the noisy masks from other modules.

this process for 30 iterations to obtain a clean and occlusion-aware human mask
to assist in human-scene decoupling. The initial SMPL mask and RVM mask are
shown in the third to fifth columns of Fig. 3 for visual comparison.

2 Implementation Details

2.1 Network Architecture

Human. The canonical human shape network fH
sdf (Eq. 1 in the main manuscript)

comprises 8 blocks. Each block consists of a fully connected layer, a weight nor-
malization layer [21], and a softplus activation layer [6]. The fully connected layer
contains 256 neurons. The pose condition, denoted as θ, is obtained by concate-
nating all axis angles represented in radians. To better model high-frequency
details, we apply positional encoding with 6 frequency components to the input
points, following the approach presented in [18]. The canonical human texture
network, denoted as fH

rgb (Eq. 4 in the main manuscript), consists of four blocks.
These blocks share the same architecture as the human shape network, except
using the Sigmoid activation function for the last layer and ReLU activation
functions for the remaining layers. To expedite the convergence of the model, we
employ a pretraining strategy for the shape network. Specifically, we initialize
the shape network using a SMPL mesh in the canonical pose.

Scene. The scene shape network, denoted as fS
sdf, and the scene texture network,

denoted as fS
rgb (Eq. 2 and Eq. 5 in the main manuscript), exhibit similar network

architectures to the canonical human network design, except that we have only
2 blocks for the scene texture network. The scene texture network incorporates
the view direction v and a per-frame learnable frame code as additional input
conditions, replacing the human pose. The learnable frame code is used to take
into account the dynamic shadows caused by the moving humans in the scene. We
deploy positional encoding with 4 frequency components to the view direction
to help model the view-dependent photometric effects.
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2.2 Training Details

Our networks are trained using the Adam optimizer [11], with an initial learning
rate of 5e−4. This learning rate is exponentially decayed to 5e−5 when training
ends. The other Adam hyper-parameters are set to β1 = 0.9 and β2 = 0.999. The
complete model is trained for 250k steps, requiring approximately 24 hours of
training time on an NVIDIA RTX 4090 GPU. We use a weighted pixel sampling
strategy based on the 2D human bounding box derived from the predicted human
masks. We put 80% of pixel samples uniformly inside the 2D human bounding
box to learn the human models and separate the foreground and background.
The remaining 20% of samples are uniformly distributed over the whole image
for the background reconstruction.

2.3 Losses

Here we provide more details regarding the depth loss and the mask loss.

Depth Loss. Following MonoSDF [26], we enforce the consistency between our
rendered depth map D(r) and the depth map D̂(r) predicted by the pre-trained
Omnidata model [7] using a scale-invariant loss term:

Lk
depth =

∑
r∈Rk

∥(wD̂(r) + q)−D(r)∥2, (6)

where w and q are the scale and shift factor used to align D(r) and D̂(r), and
Rk are pixels in batch k. We compute w and q with a least-square criterion [20]:

(w, q) = argmin
w,q

∑
r∈R

(wD̂(r) + q −D(r))2. (7)

w and q can be determined analytically using a closed-form solution:[
w∗

q∗

]
=
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r

drd
T
r
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r
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)
(8)

where dr = (D̂(r), 1)T . In line with the approach presented in [26], we estimate
the parameters w and q at each iteration by sampling a batch of rays randomly
within a single image. This strategy is adopted because the monocular depth
predictor cannot consistently provide accurate scales and shifts across frames
due to the varying scene geometry. It is important to note that the monocular
cues pertaining to the human subjects lack sufficient accuracy, and therefore,
we refrain from using the estimated depth or normal information of the human
subjects for supervision.

Mask Loss. The self-supervised scene decomposition loss [9] aims to guide the
optimization towards a clean and robust decoupling of the human and the scene.
However, this loss alone cannot perfectly decouple the dynamic human and the
static environment mainly due to two factors. The first factor is the dynamic



HSR 7

components like shadows which break the color consistency of the static scene
across different frames. The other issue is the inaccuracy in human pose estima-
tion. With wrong human poses, the network has to learn the background color
in the human model and the human color in the background model. Therefore,
we propose to add a foreground and background mask loss to help guide the
separation and the refinement of human pose error. Specifically, we apply a L1

loss on the occlusion-aware foreground accumulated weights and background
accumulated weights.

2.4 Volume Integration

There exist multiple ways for volume integration of two neural fields. For ex-
ample, one could take the minimum of SDF values in each field and use it as
the joint SDF value for the location. An alternative way is to obtain the density
value from SDF values in each neural field and use the linear property to add
two density values together as the joint density value for the input location. We
empirically find that these two alternative volume integration schemes deliver
inferior results. Besides, these two schemes require the evaluation of points in
two neural fields, thus more computationally expensive compared to the scheme
proposed in the main paper. As a result, we use separate sets of points for each
neural field.

3 Datasets

3.1 SHSD Dataset

We introduce a semi-synthetic dataset called the Synthetic Human Scene Dataset
(SHSD) specifically designed for the quantitative evaluation of human-scene re-
construction methods. SHSD comprises six sequences featuring different human
subjects moving around in the scene. The sequences present realistic and chal-
lenging scenarios with varying degrees of occlusion. Each sequence consists of
75 to 150 frames capturing the same human subject in different poses. These
frames are rendered in artist-authored indoor stages sourced from the Replica-
CAD [25] and CIRCLE [1] datasets. The camera trajectories follow an arc around
the human subjects, ensuring comprehensive coverage. To make the depth scale
consistent between ground truth and our preprocessed data, we align the cameras
estimated from COLMAP with the ground truth cameras via a single similarity
transformation.

For better visualization, Fig. 4 and Fig. 5 provide bird’s eye views of the
stages extracted from the ReplicaCAD and CIRCLE datasets. Furthermore,
Fig. 6 showcases four example frames from two sequences, each accompanied
by corresponding ground truth information such as masks, depth maps, and
surface normals.

In addition, we also provide the ground truth 3D human scans for evaluation
of the geometry reconstruction quality. The human scans utilized in the pro-
posed SHSD are captured using a multi-view photogrammetry system [4]. This
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Fig. 4: BEV of one synthetic stage from
ReplicaCAD [25] dataset

Fig. 5: BEV of the synthetic stage
from CIRCLE [1] dataset.

system comprises 53 RGB and 53 IR cameras, enabling comprehensive coverage
and detailed capture. Each scan consists of a high-resolution 40K-face mesh rep-
resenting the geometry of the human subject, accompanied by a 4K-resolution
texture map that provides appearance information.

It is important to note that the collection of this data, as well as its usage
involving human subjects, has undergone a rigorous ethical review and approval
process by an Institutional Review Board. This ensures that all necessary ethical
considerations and guidelines are adhered to.

We utilize Blender to generate realistic renderings and obtain various types
of ground truth information, such as full image depth, surface normals, and
human masks. For sequences created in the ReplicaCAD stages, we use lighting-
baked texture. For sequences created in the CIRCLE dataset, we use the default
lighting provided by the authors and render shaded colors.

3.2 Real Dataset

In our experimentation, we employ an iPhone 13 Pro Max to capture six real
sequences featuring individuals performing various movements within different
scenes. In certain sequences, we also feature occlusion and close contact with the
objects in the scene. Two of these sequences are recorded using the native camera
application on the iPhone, simulating real-world scenarios where auto-focus and
auto-white-balancing are enabled. This setup introduces challenges as the focal
length and white balance may vary throughout the sequences, while our model
assumes fixed focal length and color consistency. The remaining eight sequences
are recorded using Record3D, which maintains a fixed focal length and white
balance for color consistency. Besides, we can easily export ARKit camera poses
from Record3D and use it as an initialization in case of failed reconstruction due
to duplicate structures.

4 Additional Experiment Results

4.1 Evaluation Deatils

For fair comparison over human reconstructions, we use HSR-processed data
as the input for SelfRecon [10] and Vid2Avatar [9] instead of using their own
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preprocessing pipelines. As a result, the reconstruction difference from different
methods solely comes from the design choices of different algorithms. For quan-
titative evaluation on novel view synthesis, we leave out one frame from every
10 frames. For foreground comparison, we set non-human pixels to white ac-
cording to ground truth masks and then report metrics on it following previous
works [9, 10]. As for the metrics on geometry reconstruction, we perform ICP
between reconstructed meshes and ground truth meshes. This is because raw
reconstructed meshes are not well-aligned with the ground truth meshes.

To validate our design choices, we perform a quantitative evaluation on a
subset of synthetic sequences. The result is shown in Tab. 1. We will discuss
individual columns in the following subsections.

PSNR ↑ SSIM ↑ LPIPS ↓ IoU ↑ Normal ↑ Depth↓

Full 27.56 0.9379 0.0608 0.9637 0.9678 0.1003

- Shape-aware Sampling 27.25 0.9349 0.0629 0.9619 0.9653 0.1097
- Global Coord. 14.13 0.7347 0.3736 0.9467 0.7946 0.9718
- Depth Loss 27.11 0.9309 0.0745 0.9625 0.9614 0.1340
- Normal Loss 25.66 0.9361 0.0655 0.9623 0.8839 0.1748
Table 1: Quantitative ablation results on SHSD. We demonstrate the importance
of the proposed components through metrics on novel view synthesis and geometry.

4.2 Occlusion

Our method handles the human-scene occlusion naturally via the SDF-based
compositional volume rendering and the reconstructed surfaces. To further clar-
ify this process, we include an illustration in the second row of Fig. 7. Given
the reconstructed foreground objects (occluders) and humans, our inverse CDF
sampling encourages a dense ray sample distribution close to the respective sur-
faces (Fig. 7 (e)). This approach ensures a clear separation, leading to a correct
volume integration with accurate color rendering.

Using a globally consistent coordinate system rather than a human-centric
coordinate system is necessary for the reconstruction of the scene, thus correctly
modeling occlusion. We provide evidence in Fig. 7 (c) that without a globally
consistent coordinate system, the 3D human cannot be fully recovered even
using geometric cues. Cross-view photometric consistency provided by a global
coordinate system is essential for 3D scene reconstruction.

Similarly, without the proposed shape-aware sampling, human samples might
scatter across the scene due to the limitation of inverse CDF sampling. As a
result, we do not have enough samples around the actual human surface, leading
to truncated human bodies as shown in Fig. 7 (d).

4.3 Mask Loss

We ablate the proposed mask loss and qualitatively demonstrate its effectiveness
in Fig. 8. Initial SMPL estimations are often inaccurate especially when some
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part of the human body is occluded, as shown in the second column in Fig. 8.
In contrast, 2D human segmentation is more robust and accurate. Therefore,
we employ such mask supervision to help refine large pose errors that other 2D
rendering losses have trouble with. As a result, we refine the human pose and
learn a better human-scene decomposition as shown in the last two columns in
Fig. 8.

4.4 Contacts with other scene elements.

Our method can handle interactions with any element within the scene, including
chairs and tables, through our general formulation of implicit scene modeling and
the interpenetration loss. We provide a detailed examination of a scenario where
a human subject is sitting on a chair in Fig. 9. Such contacts between the upper
leg and the chair are invisible in the input image, but our interpenetration loss
and scene modelling lead to a plausible and penetration-free reconstruction.

4.5 Human Reconstruction Quality

We show more comparison on human reconstruction quality in Fig. 10. Compared
to Vid2Avatar, our method is more robust to initial pose error as shown in the
third, fourth, and sixth rows in Fig. 10. Compared to SelfRecon which requires
human masks as input and cannot recover from wrong masks, our method sep-
arates foreground and background more clearly and has much better rendering
quality and geometry reconstruction. Moreover, both SelfRecon and Vid2Avatar
assume there is no occluder in front of the human body. Therefore, they cannot
handle occlusion at all. As shown in the fifth row in Fig. 10, Vid2Avatar learns
the wrong texture on the human body and SelfRecon completely distorts the
lower part of the human body.

4.6 Holistic Reconstruction Quality

Fig. 11 shows the geometry reconstruction of different methods on four real se-
quences. Our result demonstrates superior quality for both foreground humans
and background scenes compared to PPR and Total-Recon. It is worth noting
that TotalRecon requires LIDAR depth as input, while still producing worse re-
construction compared to ours. Moreover, the reconstruction from our method
preserves the correct spatial relationship between humans and scenes due to our
explicit enforcement of physical constraints. In contrast, PPR only fits a ground
plane and performs physical simulation on the ground plane, and TotalRecon
does not take human-scene interaction into account. As a result, complex inter-
actions like touching the wall (2nd row) and lying on the bed (4th row) are not
correctly modeled by the baseline methods.

5 Limitations and Negative Societal Impact

Limitations. Our framework is limited to reconstructing a single person from
the video. To reconstruct multiple persons in the scene, it is straightforward
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to apply multiple human fields in our framework. However, it is challenging
to accurately estimate the poses of multiple humans, especially under close in-
teraction. In the current framework, we also assume that the scene is static. To
make the method applicable for general dynamic scenes, such as videos involving
human-object interactions, is another interesting direction. This requires accu-
rate estimation of hand poses and object poses, which is hard as we only have
low-resolution observations of the human hands and the corresponding objects.
We leave these two extensions as future works.

Negative Societal Impact. HSR facilitates the conversion of humans and
scenes into digital forms through a single RGB video, offering vast possibilities
for the film industry, augmented and virtual reality, and telepresence applica-
tions. Our technique produces a digital human avatar that can be animated
to adopt previously unseen poses. However, there exists a potential for misuse,
such as the creation of deep-fakes. Addressing these concerns is paramount be-
fore integrating digital human avatars into products. Our intention is to foster
applications of this technology that benefit society. Although it is impossible
to completely eliminate the risk of malicious use, we believe that conducting
research with maximum transparency—by openly discussing technical details,
and sharing code and data—is the best approach. This openness is not only eth-
ical but also instrumental in developing countermeasures against misuse, thus
mitigating the risks associated with dubious applications.
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Fig. 6: Sample ground truth images from SHSD. From top to bottom: RGB, normals,
depths, and masks.
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Fig. 7: Illustration for occlusion handling and ablation results.

Fig. 8: Effectiveness of mask loss. Robust and accurate 2D masks can help correct
large initial pose estimation errors.

Fig. 9: Human-Chair contacts. The red dashed lines indicate the human mesh outlines.
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Fig. 10: Qualitative results on human reconstruction and rendering. Our
method shows better human-scene decomposition and robustness to pose error and
strong occlusion compared to baselines.
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Fig. 11: Qualitative results on holistic reconstruction. Our method has much
better foreground and background reconstruction compared to baselines. As a result, we
correctly model the human-scene contact while baselines have severe interpenetration.
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