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ABSTRACT
Conventional feature-based and model-based gaze estimation meth-
ods have proven to performwell in settingswith controlled illumina-
tion and specialized cameras. In unconstrained real-world settings,
however, such methods are surpassed by recent appearance-based
methods due to difficulties in modeling factors such as illumination
changes and other visual artifacts. We present a novel learning-
based method for eye region landmark localization that enables
conventional methods to be competitive to latest appearance-based
methods. Despite having been trained exclusively on synthetic data,
our method exceeds the state of the art for iris localization and
eye shape registration on real-world imagery. We then use the de-
tected landmarks as input to iterative model-fitting and lightweight
learning-based gaze estimation methods. Our approach outper-
forms existing model-fitting and appearance-based methods in the
context of person-independent and personalized gaze estimation.
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1 INTRODUCTION
Gaze estimation using off-the-shelf cameras, including those in
mobile devices, can assist users with motor-disabilities or enable
crowd-sourced visual saliency estimation without the cost of spe-
cialized hardware [Xu et al. 2015]. Such methods can also improve
user experience in everyday tasks, such as reading [Biedert et al.
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Figure 1: Outputs from our landmark localization method
on four datasets. From left to right: input eye image, eye-
lid landmarks, iris landmarks, eyeball center and radius esti-
mates. Despite having been trained exclusively on synthetic
data, our method applies directly to real-world eye images.

2010; Kunze et al. 2013], or facilitate gaze-based interaction [Ma-
jaranta and Bulling 2014]. However, existing gaze estimation sys-
tems can fail when encountering issues such as low image quality
or challenging illumination conditions. In this work, we provide
a novel perspective on addressing the problem of gaze estimation
from images taken in challenging real-world environments.

Conventional feature-based and model-based gaze estimation
typically rely on accurate detection of eye region landmarks, such
as the iris center or the eye corners. Many previous works have
therefore focused on accurately localizing iris center and eye cor-
ners landmarks [Fuhl et al. 2016a; Li et al. 2005; Timm and Barth
2011; Valenti et al. 2012; Wood and Bulling 2014]. On the recent real-
world MPIIGaze dataset [Zhang et al. 2015], however, appearance-
based methods were shown to significantly outperform model or
feature-based methods such as EyeTab, a state-of-the-art model-
based method [Wood and Bulling 2014]. The latest appearance-
based methods perform particularly well in the person-independent
gaze estimation task and in unconstrained settings in which visual
artifacts, such as motion blur or sensor noise, are prevalent and can-
not be easily removed or modeled [Krafka et al. 2016; Zhang et al.
2015, 2017]. However, appearance based methods are not without
drawbacks. First, training data is notoriously expensive and tedious
to acquire and even if data is available the quality of the labels can
vary. Furthermore, while effective most appearance-based methods
are black-box solutions and understanding why and when they
work can be a challenge. Finally, deep CNN architectures require a
lot of computational power during training and adaptation once
fully converged can be difficult and computationally costly.

https://doi.org/10.1145/3204493.3204545
https://doi.org/10.1145/3204493.3204545
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In this work, we propose a new approach to gaze estimation that
brings together the best of two-worlds. Similar to appearance-based
methods, we leverage deep neural networks for representation
learning. While prior work implicitly learns to extract features that
are useful for the gaze estimation task, we explicitly learn features
that are interpretable. These interpretable features then allow tra-
ditional model-based or feature-based approaches to out-perform
appearance-based methods in cross-dataset and person-specific
gaze estimation. In prior work, features were hand-crafted for gaze
estimation using image processing techniques and model fitting.
Since such approaches make assumptions about the geometry and
shape of eyes, they are sensitive to appearance changes that are
prevalent in unconstrained real-world images. Thus such methods
suffer from the lack of robust detection of important features in
such natural images. We note that the task of eye-region landmark
detection bears similarities to the problem of joint detection in
human hand and full body pose. Thus, we overcome the above
limitation by showing that robust eye-region landmark detectors
can be trained solely on high-quality synthetic eye images, pro-
viding detailed and accurate labels for the location of important
landmarks in the eye region, such as eyelid-sclera border, limbus
regions (iris-sclera border), and eye corners. We then show that
a relatively compact (in terms of model complexity) state-of-the-
art convolutional neural network (CNN) can be trained on such
synthetic data to robustly and accurately estimate eye region land-
marks in real-world images, without ever providing such images
at training time (see Fig. 1). The key advantage of this approach
is that model-based and feature-based gaze estimation methods
can be applied even to eye images for which iris localization and
ellipse fitting can be highly challenging with traditional methods.
We experimentally show that such methods perform much better
with learned eye landmarks than what has been reported in the lit-
erature previously. This allows us to combine the well-studied task
of landmark localization with personalized models or parameters
for accurate eye tracking for individuals in the real-world.

In summary, the key contributions in our work are: (a) learning
of a robust and accurate landmark detector on synthetic images
only, (b) improvements to iris localisation and eyelid registration
tasks on single eye images in real-world settings, and (c) increased
gaze estimation accuracies in cross-dataset evaluations as well as
with as few as 10 calibration samples for person-specific cases.

2 RELATEDWORK
Our method connects to a wide range of work in gaze estimation.
We provide a brief overview in this section specifically in the context
of gaze estimation using off-the-shelf cameras.

2.1 Feature-based Gaze Estimation
Feature-based gaze estimation uses geometric considerations to
hand-craft feature vectors which map the shape of an eye and other
auxiliary information, such as head pose, to estimate gaze direction.
Huang et al. [2014b] formulate a feature vector from estimated head
pose and distance between 6 landmarks detected on a single eye.

A simple and common approach, as introduced by Sesma et al.
[2012], is the pupil-center-eye-corner vector or PC-EC vector that

has later been adapted and successfully used for estimating hori-
zontal gaze direction on public displays [Zhang et al. 2013, 2014].
The specific claim of Sesma et al. [2012] is that the PC-EC vector
can replace the traditional corneal reflections that are traditionally
used in eye tracking but that cannot be determined without IR
illumination. In addition, methods have been proposed that use
Laplacian of Gaussian [Huang et al. 2017], Histogram of Gaussian
features [Funes-Mora and Odobez 2016; Huang et al. 2017] or Local
Binary Patterns [Huang et al. 2017] among other features.

We show that using rich eye region landmarks detected by our
model, when combined with features such as the PC-EC vector,
significantly improves gaze estimation accuracy.

2.2 Model-based Gaze Estimation
The eyeball can generally be regarded as two intersecting spheres
with deformations. This is exploited in 3D model-based gaze estima-
tion methods in which the center and radius of the eyeball as well
as the angular offset between visual and optical axes are determined
during user calibration procedures [Sun et al. 2015; Wang and Ji
2017; Wood et al. 2016a; Xiong et al. 2014]. The eyeball center can be
determined relative to a facial landmark (such as tip of nose) [Xiong
et al. 2014] or by fitting deformable eye region models [Wang and
Ji 2017; Wood et al. 2016a]. In contrast, 2D model-based methods
can observe the deformation of the circular iris due to perspective
[Wang et al. 2003; Wood and Bulling 2014].

While previous works rely on accurate models of the face or eye
region, our approach uses a neural network to fit an eyeball to an
eye image. This simple approach out-performs all prior works.

2.3 Cross-ratio based Gaze Estimation
In contrast to feature-based and model-based methods, cross-ratio
methods utilise just a few IR illumination sources and the detection
of their corneal reflections to achieve gaze estimation robust to head
pose changes [Yoo et al. 2002]. Recent extensions have improved this
approach further via learning from simulation [Huang et al. 2014a]
and using multiple viewpoints [Arar and Thiran 2017]. While these
methods are promising, additional illumination sources may not be
available on unmodified devices or settings for applications such
as crowd-sourced saliency estimation using commodity devices.

2.4 Appearance-based Gaze Estimation
While appearance-based gaze estimation is a well-established re-
search area [Baluja and Pomerleau 1994; Tan et al. 2002], it has only
recently become possible to benchmark gaze estimation methods
for in-the-wild settings withMPIIGaze [Zhang et al. 2015] and Gaze-
Capture [Krafka et al. 2016] datasets. Unlike early works which
directly use image intensities as features to variants of linear re-
gression [Funes Mora et al. 2014; Lu et al. 2011a,b], random forests
[Sugano et al. 2014], and k-NN [Wood et al. 2016b], recent works
employ complex models such as CNNs [Krafka et al. 2016; Zhang
et al. 2015, 2017, 2018] or GANs [Shrivastava et al. 2017].

Of particular interest are CNN-based approaches that have been
demonstrated to yield high accuracy and have benefited from adopt-
ing novel architectures such as shown in [Zhang et al. 2018] where
a VGG-16 network yielded an improvement of 0.8◦ (6.3◦ → 5.5◦)
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Figure 2: Our architecture estimates eye region landmarks with a stacked-hourglass network trained on synthetic data (Uni-
tyEyes), evaluating directly on real, unconstrained eye images. The landmark coordinates can be used directly for model or
feature-based gaze estimation.

compared to the MnistNet architecture for within-dataset leave-
one-person-out evaluation. On the architectural side, other works
investigated multi-modal training, such as with head pose infor-
mation [Zhang et al. 2015], full-face images [Zhang et al. 2017], or
an additional “face-grid” modality for direct estimation of point of
regard [Krafka et al. 2016]. The use of a lightly modified AlexNet
with face images in [Zhang et al. 2017] and the drastic improve-
ment in accuracy (6.7◦ → 4.8◦, within-dataset) highlight the need
to further study what a CNN learns for the task of gaze estimation.

For the first time, we show that features implicitly learned by
CNNs can be used for personalized gaze estimation using as few
as 10 calibration samples. We also show that our explicitly learned
landmarks features out-perform AlexNet features in this setting.

2.5 Human Pose Estimation and Facial
Landmark Localization

The detection of so-called 2D landmarks from images is a well-
studied topic in computer vision. In particular, there exists a wealth
of research on facial landmark detection and skeletal joint detection
for the task of human pose estimation using deep convolutional
neural networks [Sun et al. 2013; Toshev and Szegedy 2014]. Facial
landmarks and human joint positions can often be occluded but
long-range dependencies and global context (i.e., other body parts)
can make up for lack of local appearance based information. Thus,
recent work has attempted to learn spatial relations between joint
positions [Tompson et al. 2014]. Of particular note is the stacked
hourglass architecture by Newell et al. [2016]. The stacked multi-
scale architecture is simple and has been shown to out-perform
other state-of-the-art methods while having low model complexity
(few number of parameters). Originally developed for pose estima-
tion, the architecture has been successfully adapted to the task of
facial landmark localization in the new Menpo Facial Landmark
Localisation Challenge [Yang et al. 2017; Zafeiriou et al. 2017].

3 OVERVIEW
The goal of our work is to provide a robust and accurate landmark
detector for eye-gaze estimation and related tasks. For this purpose
we leverage a high quality synthetic eye image dataset [Wood et al.
2016b]. Based on recent progress in human pose estimation, we
show how this data can be used to train such a detector and apply
it directly to real images without fine-tuning or domain adaptation.
The extracted landmarks can be directly used in feature-based and
model-based gaze estimation yielding improved accuracy in the
cross-person and person-specific cases. Thus, we bring such feature-
based and model-based approaches back into the forefront of gaze
estimation research in unconstrained settings.

Figure 3: As the model trains, its confidence in localizing
specific iris (above) and limbus region (below) landmarks in-
creases. Shown is an example from the MPIIGaze dataset.

At the core of our eye region landmark localization is a state-of-
the-art CNN architecture, originally designed for the task of human-
pose estimation. The training data used is synthetic, and hence
labels are correct even under heavy occlusion. With appropriate
training data augmentation, a robust model can be trained which
detects equivalent landmarks on eye images captured in-the-wild By
using the rich landmarks-based features in simple learning-based
methods such as SVR, we allow feature-based methods to perform
comparably to appearance-based methods on webcam images. In
addition, the estimation of the eyeball center position and eyeball
radius allows to fit a 3D eyeball model to any eye image, where
camera intrinsic parameters are unknown.

In the next sections, we outline how eye region landmarks are
detected in our approach (Sec. 4), then describe two ways in which
these landmarks can be used for gaze estimation: feature-based
(Sec. 5.1) and model-based (Sec. 5.2) methods.

4 EYE REGION LANDMARK LOCALIZATION
In this section we describe the CNN architecture and training
scheme used for eye region landmark localization.

4.1 Architecture
The hourglass network architecture [Newell et al. 2016] has previ-
ously been applied to human pose estimation, where a key problem
is the occlusion of landmarks due to other body parts. In such cases,
the appearance of a landmark is no longer informative for accurate
localization, and only prior knowledge can be used. The hourglass
architecture tries to capture long-range context by performing re-
peated improvement of proposed solutions at multiple scales, using
so-called “hourglass modules”.

Hourglass modules are similar to auto-encoders in that feature
maps are downscaled via pooling operations, then upscaled using
bilinear interpolation. At every scale level, a residual is calculated
and applied via a skip connection from the corresponding layer on
the other side of the hourglass. Thus when given 64 feature maps,
the network refines them at 4 different image scales, multiple times.
This repeated bottom-up, top-down inference ensures a large effec-
tive receptive field and allows for the encoding of spatial relations
between landmarks, even under occlusion.



ETRA ’18, June 14–17, 2018, Warsaw, Poland Park et al.

In our work we adapt the original architecture to the task of
landmark detection in eye-images (see Fig. 2). While eye images
contain fewer global structuring elements than in pose estimation,
there is still significant spatial context that can be exploited by-
large receptive field models. We take advantage of this property to
detect eyeball center and occluded iris edge landmarks to reasonable
accuracy, sometimes even under total occlusion.

The 64 refined feature maps can be combined via a 1× 1 convolu-
tional layer to produce 18 heatmaps (or confidence maps), each rep-
resenting the estimated location of a particular eye region landmark.
Intermediate supervision is carried out by calculating a pixel-wise
sum of squared differences loss on each predicted heatmap. The
original paper [Newell et al. 2016] demonstrates that using 8 hour-
glass modules with intermediate supervision yields significantly
improved landmark localization accuracy compared to 2-stack or
4-stack models with the same number of model parameters.

In our work we use only 3 hourglass modules (with 1 residual
module per stage), training on eye images and annotations provided
by UnityEyes. Though this model consists of less than 1 million
model parameters, it is sufficient to demonstrate our approach and
allows for a real-time implementation (∼ 20Hz). We use single
eye images (150 × 90) as input and generate 18 heatmaps (75 ×
45): 8 in the limbus region, 8 on the iris edge, 1 at the iris center,
and 1 at the eyeball center. Fig. 2 shows our pipeline at inference
time, where the network produces 18 heatmaps which are further
processed via a soft-argmax layer [Honari et al. 2018] to find sub-
pixel landmark coordinates. These coordinates are then passed on
to gaze estimation methods detailed in the following sections.

We find that by applying training data augmentation, a robust
model can be learned even when training purely on synthetic eye
images. UnityEyes is effectively infinite in size and was designed to
exhibit good variations in iris colour, eye region shape, head pose
and illumination conditions. Though the appearance variations
do not include visual artifacts common in webcam images nor
common eye decorations such as eyeglasses or make-up, we later
show that our model applies directly to real-world imagery in the
tasks of iris localization, eyelid registration, and gaze estimation.
The application of our model to an image from MPIIGaze is shown
in Fig. 3 where it can be seen that heatmaps become more accurate
and confident as training progresses.

4.2 Learning
We now detail the training and data augmentation procedures.

4.2.1 Loss Functions. The network performs the task of predict-
ing heatmaps, one per eye region landmark. The heatmaps encode
the per-pixel confidence on a specific landmark’s location. As such,
the highest confidence value is at the pixel nearest to the actual
landmark, with confidence quickly dropping off with distance and
most of the map containing values set to 0. We place 2-dimensional
Gaussians centered at the sub-pixel landmark positions such that
the peak value is 1. The neural network then minimizes the l2
distance between the predicted and ground-truth heatmaps per
landmark via the following loss term:

Lheatmaps = α
18∑
i=1

∑
p

���
���h̃i (p) − hi (p)

���
���
2
2 , (1)

(a) Min. data augmentation (b) Max. data augmentation
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(c) Model-based gaze estimation error on MPIIGaze.

Figure 4: Example UnityEyes input images with minimum
(a) and maximum (b) data augmentation. The 18 individual
heatmaps are combined into one for visualization purposes.
(c) shows that increased data augmentation yields higher
gaze estimation accuracy on real-world images.

where h(p) is the confidence at pixel p and h̃ is a heatmap predicted
by the network. We empirically set the weight coefficient α = 1.

For our model-based method, we additionally predict an eyeball
radius value r̃uv . This is done by first appending a soft-argmax
layer [Honari et al. 2018] to calculate landmark coordinates from
heatmaps, then further appending 3 linear fully-connected layers
with 100 neurons each (with batch normalization [Ioffe and Szegedy
2015] and ReLU activation) and one final regression layer with 1
neuron. The loss term for the eyeball radius output is:

Lradius = β | |r̃uv − ruv | |
2
2 , (2)

where we set β = 10−7 and use ground-truth radius ruv .

4.2.2 Training Data Augmentation. We found that employing
strong data augmentation during training improves the perfor-
mance of the model in the context of gaze estimation. We apply the
following augmentations (range in brackets are scaling coefficients
of value sampled fromN (0, 1)): translation (2–10 px), rotation (0.1–
2.0 rad), intensity (0.5–20.0), blur (0.1–1.0 std. dev. on 7×7 Gaussian
filter), scale (1.01–1.1), downscale-then-upscale (1x–5x), and addi-
tion of lines (0–2) for artificial occlusions. We do not perform any
image flipping during training but simply assure that the inner eye
corner is on the left side of the input image at test time.

Our final training scheme applies curriculum learning, increasing
noise as training progresses [Bengio et al. 2009]. To make this easier
to control, we implement a difficulty-measure which ranges from
0 to 1. We begin training with difficulty 0 and linearly increase
difficulty until 106 training steps have passed. Thereafter, difficulty
is kept at 1. Sample input images are shown in Fig. 4.

We further verify the utility of strong and extensive data aug-
mentation by performing cross-dataset gaze estimation on MPI-
IGaze with manual eye corner annotations, using our model-fitting
method (see Sec. 5.2). Fig. 4c shows a significant decrease in gaze
estimation error with higher amounts of training data augmenta-
tion (after 1M training steps with batch size of 32). We also observe
that with more training steps, a model trained with weaker data
augmentation can perform similarly to that trained with stronger
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Figure 5: The eyeball is modeled as two intersecting spheres.
Our iterative fitting is performed by predicting and match-
ing the 8 iris edge landmarks and iris center landmark.

augmentation. Thus data augmentation not only improves the ro-
bustness of the model but speeds up training.

4.2.3 Further Details. We use the ADAM optimizer [Kingma
and Ba 2014], with a learning rate of 5 × 10−4, batch size of 16,
l2-regularization coefficient of 10−4, and ReLU activation. Our ref-
erence model was trained for 6.8M steps on an Nvidia 1080 Ti GPU.
During test time, we use statistics computed per-batch for batch
normalization, instead of using the population statistics computed
during training, from synthetic data.

5 GAZE ESTIMATION
In this section we discuss how we make use of our eye region
landmarks in feature-based and model-based gaze estimation.

5.1 Feature-based gaze estimation
To create our features, we first consider the inner and outer eye
corners, c1 and c2 respectively. We normalize all detected landmark
coordinates by the eye width c2 − c1, and center the coordinate
system on c1. In addition, we provide a 2D gaze prior by subtracting
eyeball center (uc , vc ) from iris center (ui0, vi0). Despite being
a crude estimate, this prior improves performance significantly
where very low number of training samples are available (such as
in person-specific calibration). Our final feature vector is formed of
17 normalized coordinates (8 from limbus, 8 from iris edge, 1 from
iris center) and a 2D gaze direction prior, resulting in 36 features.

The 36 landmarks-based features are then used to train a support
vector regressor (SVR) which directly estimates a gaze direction in
3D, (θ ,ϕ) representing eyeball pitch and yaw respectively. The SVR
can be trained to be person-independent with a large number of
images from different people, or from a small set of person-specific
images for personalized gaze estimation. Where possible, we per-
form leave-one-out cross validation to determine hyper parameters.

5.2 Model-based gaze estimation
As done commonly for remote gaze estimation [Sun et al. 2015;
Wood et al. 2015], we use a simple model of the human eyeball,
depicting it as one large sphere and a smaller intersecting sphere
to represent the corneal bulge (Fig. 5a). Let us denote the predicted 8
iris edge landmarks in a given eye image as (ui1,vi1) , . . . , (ui8, vi8).
In addition, we detect 1 landmark for the eyeball center (uc , vc )
and another for the iris center (ui0, vi0). Furthermore we estimate

the eyeball radius in pixels, ruv . Knowing the eyeball and iris center
coordinates and eyeball radius in pixels makes it possible to fit a
3D model without access to any camera intrinsic parameters, and
thus without the need for camera calibration.

As we assume no known camera parameters, our coordinates
can only be unprojected into 3D space in pixel units. Thus, the
radius remains rxy = ruv in 3D space and (xc , yc ) = (uc , vc ). If
we assume a gaze direction (θ , ϕ), we can now write the iris center
coordinates as:

ui0 = xi0 = xc − rxy cosθ sinϕ
vi0 = yi0 = yc + rxy sinθ

(3)

To write similar expressions for the 8 iris edge landmarks, we must
jointly estimate angular iris radius δ and an angular offset γ which
is equivalent to eye roll. This offset between template and actual
eye roll or iris rotation is shown in Fig. 5b. With the new variables
we can now write for the j-th iris edge landmark (with j = 1 . . . 8):

ui j = xi j = xc − rxy cosθ ′j sinϕ
′
j

vi j = yi j = yc + rxy sinθ ′j
(4)

where,

θ ′j = θ + δ sin
(π
4
j + γ
)

ϕ ′j = ϕ + δ cos
(π
4
j + γ
) (5)

For model-based gaze estimation, θ , ϕ, γ , and δ are unknown
whereas other variables are provided by the eye region landmark
localization step of our system. We solve this problem using an iter-
ative optimization method such as the conjugate gradient method
where the minimized loss function is represented as:∑

0≤j≤8

(
ui j − u

′
i j

)2
+
(
vi j −v

′
i j

)2
(6)

where
(
u ′i j , v

′
i j

)
is the estimated pixel coordinates of the j-th iris

landmark at each iteration.
To adapt this model to a specific person, we calculate person-

specific parameters based on calibration samples. Gaze correction
can be applied with

(
θ̃ , ϕ̃
)
=
(
θ + ∆θ̃ , ϕ + ∆ϕ̃

)
where

(
∆θ̃ , ∆ϕ̃

)
is

the person-specific angular offset between optical and visual axes.

6 EVALUATIONS
We now provide comprehensive evaluations of our method. Since
our method can output many more eye landmarks, there is no di-
rectly comparable baselines from previous works. Therefore, we
first evaluate how well our method can estimate eye-shape by as-
sessing eyelid registration performance, and then address the prob-
lem of iris center localization on remote eye images. Finally, we per-
form various gaze estimation evaluations where we: (a) evaluate the
accuracy of our model-fitting approach, (b) evaluate cross-dataset
performance of our model-based and feature-based methods against
an appearance-basedmethod, and (c) compare feature-based, model-
based, and appearance-based approaches for the case of training a
gaze estimation model on few calibration samples.

For our evaluations of gaze estimation error, we select the EYE-
DIAP [Funes Mora et al. 2014], MPIIGaze [Zhang et al. 2015], UT
Multiview [Sugano et al. 2014] and Columbia Gaze [Smith et al.
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2013] datasets. These datasets are often used to evaluate gaze esti-
mation methods from remote camera imagery. For the EYEDIAP
dataset, we evaluate on VGA images with static head pose for
fair comparison with similar evaluations from [Wang and Ji 2017].
Please note that we do not discard the challenging floating target se-
quences from EYEDIAP. For MPIIGaze, we use manually annotated
eye corners to produce segmented eye images to ensure that we
can detect eye region landmarks within image bounds. The input
eye image dimensions to the hourglass network are 150× 90, unless
stated otherwise. Specific challenges represented in the selected
datasets include far distance from camera to eye (EYEDIAP), low
image quality (MPIIGaze, UT Multiview), and high variations in
head poses (UT Multiview) or gaze directions (EYEDIAP).

6.1 Eyelid Registration
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Figure 6: Eyelid registration performance compared against
Wood et al. [2015]. Success rate is thresholded on euclidean
distance error normalized by interocular distance.

The method proposed by Wood et al. [2015] is the current state-
of-the-art for eyelid registration on challenging remote eye images
collected in real-world environments. We first perform eyelid reg-
istration on the subset of the 300-W dataset [Sagonas et al. 2013]
as was tested in [Wood et al. 2015]. The eyelid registration error
for a single eye is defined as the mean Euclidean distance to the
annotated eyelid, normalized by interocular distance. The ground-
truth eyelid annotation is generated from the 6 annotated eyelid
landmarks and interocular distance is approximated by the distance
between the outer corners of the left and right eyes. Fig. 6 shows
our results in comparison to the previous constrained local neural
field (CLNF) approach where it can be seen that our method is more
accurate and robust. This clearly demonstrates the advantage of
the proposed CNN-based eye landmark localization method.

6.2 Iris Localization
Fuhl et al. [2016a] show that pupil detection algorithms developed
for the head-mounted case can excel at iris center localization on
eye images captured by remotely located cameras. In such scenarios,
no glint (from active illumination) can be perceived, and the pupil
is often indistinguishable from iris regions. ElSe [Fuhl et al. 2016b]
is reported to perform best on BioID, GI4E [Villanueva et al. 2013],
and a newly captured dataset exhibiting challenging head poses.

We compare our method, ElSe, and ExCuSe [Fuhl et al. 2015] on
the mentioned datasets and report our results in Fig. 7. Input eye
images are created based on eye corner annotations such that the
input resolution for our method is 150×90 and for ExCuSe and ElSe
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Figure 7: Iris localization success rate thresholded on eu-
clidean distance error normalized by horizontal eye width.
We compare our method with the state-of-the-art ExCuSe
and ElSe algorithmswhich performwell onwebcam images.

are 384 × 288 (as done in [Fuhl et al. 2016a]). The figure reports iris
localization success rates determined based on distance thresholds
to ground-truth, normalized by horizontal eye width. It can be seen
that our method consistently out-performs the two state-of-the-art
methods across the whole threshold range for all three datasets.

6.3 Model-Based Gaze Estimation

Table 1: Mean angular error for ourmodel-fit approach com-
pared with state-of-the-art.

Columbia EYEDIAP⋆
[Xiong et al. 2014] 9.7 21.3
[Wood et al. 2016a] 8.9 21.5
[Wang and Ji 2017] 7.1 17.3
Ours 7.1 11.9

⋆ VGA images (V), static head pose (S).

Our model-fitting algorithm assumes no knowledge about cam-
era intrinsic parameters or accurate 3D models of the face or eye
region of specific persons. It rather relies on an estimation of eye-
ball center, iris center landmarks, and eyeball radius. We compare
our model-fitting approach with the other state-of-the-art methods
on both Columbia Gaze and EYEDIAP datasets, using 20 images
from each person for calibration. For testing on EYEDIAP, we use
all available frames to provide a comprehensive evaluation. It can
be seen from Tab. 1 that while our results are similar to Wang and
Ji [2017] for the Columbia Gaze dataset, we achieve significant im-
provements on EYEDIAP. Considering that the VGA images from
the EYEDIAP dataset are very low-resolution and of low quality,
our results further demonstrate the robustness of our approach. In
contrast to previous model-fitting approaches which use full face or
eye region images as input, we solve the more challenging problem
of model-based gaze estimation from single eye images. In this case
eye rotation is ambiguous, in that it is not easily possible to define
an “up” direction based on the eye shape of an unseen person.

6.4 Feature-Based Gaze Estimation
In Sec. 5.1, we argued for using all landmark coordinates and an
iris-center-eyeball-center vector for feature-based gaze estimation.
Tab. 2 shows an evaluation of different input features when train-
ing an SVR with 20 person-specific samples. In each case, the co-
ordinates or vectors are normalized by eye width, defined as the
Euclidean distance between the detected eye corners. It can be seen
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Table 2: Mean gaze estimation error of different feature rep-
resentations in SVR training when using 20 calibration sam-
ples. Ours refers to eyelid and iris landmarks as well as an
iris-center-eyeball-center vector.

Features EYEDIAP MPIIGaze+ UT Columbia
Pupil Center 8.4 5.3 17.2 8.0
PC-EC vectors 8.0 4.9 13.0 7.7
Iris landmarks 8.3 5.0 17.8 7.5
Eyelid+Iris landmarks 7.4 4.6 12.4 6.5
Ours 7.5 4.6 11.5 6.2

that naïve features, such as pupil center or iris landmark coordi-
nates, do not result in good gaze estimation performance. It is only
when both eyelid and iris landmarks are used that feature-based
gaze estimation can improve significantly, in particular for the UT
Multiview dataset that contains large variability in head pose and
gaze direction. Performance is further improved by adding our gaze
direction prior based on our eyeball center estimations. For subse-
quent evaluations, we select eight iris edge landmarks, eight eyelid
landmarks, one iris center landmark, and one iris-center-eyeball-
center vector as features for training our feature-based method.

6.5 Cross-Dataset Gaze Estimation

Table 3: Cross-dataset evaluation of gaze estimation error
when trained on UT Multiview (150k entries).

EYEDIAP MPIIGaze+ Columbia
AlexNet 37.1 12.5 12.0
SVRLandmarks 23.3 10.7 10.0
model-fit 26.6 8.3 8.7

For applications in public display settings [Sugano et al. 2016;
Zhang et al. 2013, 2014], it is particularly interesting to evaluate
the person-independence of a proposed gaze estimation method.
We therefore evaluate our model-based and feature-based methods
alongside an appearance-based method (AlexNet) for the case of
training on the UT Multiview, and testing on EYEDIAP, MPIIGaze,
and Columbia Gaze datasets. Tab. 3 shows that both of our proposed
methods out-perform an AlexNet baseline. Our evaluations on
MPIIGaze+ in particular are competitive against the reported result
of 9.8◦ [Zhang et al. 2018] using a VGG-16 based architecture. Our
model-fit approach achieves the lowest ever reported error of 8.3◦
for the case of training on UT Multiview and testing on MPIIGaze+.

The task of landmark localization, when done accurately, allows
for dataset-specific biases and artifacts to be abstracted away, leav-
ing a pure representation of eye shape. The findings here indicate
that learning explicit, interpretable features helps in significantly im-
proving accuracy over the naïve appearance-based baseline which
learns implicit features which may or may not represent eye shape
or gaze direction due to the lack of explicit constraints during train-
ing. This is especially true for cross-dataset evaluations but also
applies in general for person-independent gaze estimation.

Please also note the comparative model complexities of the ap-
proaches. While AlexNet consists of over 80 million trainable model
parameters, our network is formed of less than 1 million parameters.

6.6 Personalized Gaze Estimation
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Figure 8: Mean angular error for personalized gaze estima-
tion where we compare our model-based and feature-based
approaches against an appearance-based approach.

While appearance-based gaze estimation has recently demon-
strated progress towards person-independent gaze estimation in un-
constrained settings, it is an open question whether an appearance-
based approached can easily adapt to individual people (i.e., provide
better than average performance on a specific user).

One advantage of our approach is that we introduce an eye region
landmark localization method that does not require any calibration.
The detected landmarks can be directly used to train a simple re-
gression method that in turn is amenable to personalization via few
calibration samples. It has been demonstrated that such calibration
samples can be collected using a conventional grid of 9-points and
that this can be further boosted by recording short video clips [Lu
et al. 2011a]. In this evaluation, we explore personalization in this
sense for our model-based and feature-based methods.

For a fair comparison to appearance-based methods, we train an
AlexNet that directly regresses gaze direction using training data
augmentation and UnityEyes images. We then take the output of
the 7th layer and train an SVR (SVRFC7) on the 4, 096-dimensional
feature vector. Thus we directly compare the utility of our explicit,
low-dimensional feature representation versus an implicit, high-
dimensional feature representation. Note that this is a fair com-
parison since the last fully connected layer of the AlexNet directly
sits under the regression layer during training, hence the learned
representation is optimized for the task of gaze estimation.

For MPIIGaze, we select 3, 000 samples per person as done in
[Zhang et al. 2018] while for EYEDIAP and UT Multiview, we select
1, 000 samples per person. We sample our calibration entries from
these sets and use the remaining entries for evaluation. For sampling
calibration entries, we perform a variance-maximizing sampling
based on ground-truth gaze pitch and yaw angles.
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Figure 9: Sample frame from our demo application. Dis-
played on the top-left are the segmented eye images used
as input to our landmark localization. Gaze direction is esti-
mated using a SVR and visualized as arrows (emphasized).

Our results in Fig. 8 show that the model-fitting approach only
benefits initially and only marginally from calibration. We note
that our calibration procedure for this case is simple and only esti-
mates the offset between visual and optical axes. However, for both
SVRFC7 and SVRLandmarks , we see significant improvements in
accuracy with increasing calibration samples. When comparing
SVRLandmarks and SVRFC7, it can be seen that our landmarks-
based method performs better across the whole range and accura-
cies only converge to similar values after more than 100 calibration
samples. In particular in the case when there are only a low number
of calibration samples ours provides significant accuracy gains. This
suggests that personalized gaze estimation is indeed feasible with
our feature-based method. Furthermore, even with as few samples
as 20, our method improves significantly with 16.4% over the state-
of-the-art person-independent gaze estimation error as reported
in [Zhang et al. 2018] (5.5◦ → 4.6◦). Finally, SVRLandmarks shows
improvements of up to 2◦ in terms of gaze estimation error com-
pared to SVRFC7 on EYEDIAP and UT Multiview which exhibit
large variations in gaze direction and head pose respectively.

6.7 Real-time Implementation
To provide an initial qualitative evaluation on how well our method
works we implement a real-time proof-of-concept system. The
application begins by grabbing a 1280 × 720 RGB frame from a
Creative Senz3Dwebcam (where depth information is not used). We
use dlib [King 2009] for face detection and a 5-point facial landmark
detection. Two eye images are segmented using the detected eye
corners, then each are used as input to our eye landmark localization
model. The estimated iris and eyelid landmarks are visualized by
blue and yellow outlines respectively in the top-left corner of Fig. 9.
We then use a SVR trained on MPIIGaze and UT Multiview datasets
to provide an estimation of gaze direction for each eye individually.
The unoptimized system runs at up to 26Hz on a desktop PC (Intel
i7-4770 and Nvidia GeForce 1080Ti). In the accompanying video1,
we demonstrate robustness to challenging illumination conditions,
occlusion due to eyeglasses, large head pose changes, as well as
noise and blur due to the large distance between camera and person.

1https://youtu.be/cLUHKYfZN5s

7 CONCLUSIONS AND FUTUREWORK
Summary. In this paper we introduced a new approach to gaze

estimation from webcam images in unconstrained settings. We
showed that eye region landmarks around the iris and eyelid edges
can be found in real, unconstrained images using a model trained
exclusively on synthetic input. Furthermore, the same neural net-
work can fit an eyeball to the eye image, yielding improvements in
gaze estimation. We demonstrate that our method improves upon
the state-of-the art in a number of tasks including eyelid registra-
tion and iris localization, in cross-dataset (person-independent) and
personalized gaze estimation. We show that both our model-based
and feature-based methods out-perform an AlexNet baseline which
has significantly more model parameters. We also show that the
compact model can be used for robust real-time gaze estimation.
For the case of personalization we show that our landmarks-based
SVR prevails especially in the case of few calibration samples.

Directions for future work. In our work, we provided initial in-
sights on how explicitly learned landmark-based features can out-
perform implicitly learned features in certain cases. However, more
research is necessary to understand which representation yields
the most accurate and robust gaze estimation method. We showed
that our neural network is capable of detecting irises and eyelids to
a higher accuracy than prior work. However, direct evaluation of
eye region landmark localization on current real-world datasets is
challenging due to the absence of high-quality labels. We experi-
mentally showed encouraging performance gains for feature-based
and model-based methods when leveraging our learned landmarks-
based representation such as in the most challenging cross-dataset
evaluation, contradicting previous comparisons [Zhang et al. 2018].
This implies that more research into feature-based and model-based
methods could further improve gaze-estimation when coupled with
powerful feature representations.

One particularly interesting result presented here is the capa-
bility to personalize deep-learning based gaze estimation methods,
with our explicit landmark-based feature performing very well for
low number of calibration samples. In future work this insight could
be coupled with an appropriate online calibration procedure to pro-
duce highly accurate gaze estimates even in situations where only
a user-facing camera is available and under difficult environmental
conditions. However, much future research is necessary to fully
understand the best ways of garnering and utilizing calibration
samples while improving gaze estimation accuracy significantly.
The hope is that our work will eventually enable conducting experi-
ments at large scale by leveraging the commonly available cameras
on devices such as smartphones, tablets, and laptops only.
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