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Utilizing Synthetic Data in Supervised Learning for Robust 5-DoF
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Tracking passive magnetic markers plays a vital role in advancing
healthcare and robotics, offering the potential to significantly improve
the precision and efficiency of systems. This technology is key to de-
veloping smarter, more responsive tools and devices, such as enhanced
surgical instruments, precise diagnostic tools, and robots with improved
environmental interaction capabilities. However, traditionally, the tracking
of magnetic markers is computationally expensive due to the requirement
for iterative optimization procedures. Moreover, these methods depend
on the magnetic dipole model for their optimization function, which
can yield imprecise outcomes due to the model’s significant inaccuracies
when dealing with short distances between non-spherical magnet and
sensor. Our paper introduces a novel approach that leverages neural
networks to bypass these limitations, directly inferring the marker’s
position and orientation to accurately determine the magnet’s five degrees
of freedom (5 DoF) in a single step without initial estimation. Although
our method demands an extensive supervised training phase, we mitigate
this by introducing a computationally more efficient method to generate
synthetic, yet realistic data using Finite Element Methods simulations. Our
novel method utilizes the rotational symmetry of axis-symmetric magnetic
markers to transform the 3D simulations into 2D. The benefits of fast and accurate inference significantly outweigh the offline training
preparation. In our evaluation, we use different cylindrical magnets, tracked with a square array of 16 sensors. We perform the
sensors’ reading and position inference on a portable, neural networks-oriented single-board computer, ensuring a compact setup.
We benchmark our prototype against vision-based ground truth data, achieving a mean positional error of 4 mm and an orientation
error of 8 degrees within a 0.2x0.2x0.15 m working volume. These results showcase our prototype’s ability to balance accuracy and
compactness effectively in tracking 5 DoF.

Index Terms—Passive magnet localization, machine learning, position and orientation tracking, permanent magnets.

I. INTRODUCTION

TRACKING the three-dimensional position and orienta-
tion of objects hidden from view is crucial for numerous

applications. For instance, in Human-Computer Interaction
(HCI), where the users’ own body might occlude their hands, it
involves decoding gesture input and delivering force feedback
[1]–[8]. In healthcare, tracking plays a vital role in guiding
medical instruments such as capsules and catheters [9]–[13].
Similarly, in robotics, tracking is used for tasks such as
magnetomicrometry [14] and tracking multi-arm robots [15].
Magnetic tracking enables the precise localization of objects
hidden from view by utilizing magnetic markers. This is
accomplished by measuring the magnetic fields around these
markers with Hall sensors. The widespread interest in this
technology is driven by its ability to permeate through various
materials, including human tissues, without interference.

However, tracking magnetic markers is not a straightfor-
ward task. Existing research distinguishes between active and
passive magnetic markers. Active markers emit a magnetic
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signal through an integrated power source like a battery,
offering a higher signal-to-noise ratio and the advantage of
frequency filtering. However, tracking active emitters requires
either a wired connection to the tracked object or a battery-
powered circuitry [3], [16]. Hashi et al. proposed a solution
to overcome this limitation with semi-passive markers [17].
While the tracked elements were passive, they respond with a
resonant signal when excited by a nearby source. In contrast,
passive magnetic localization is simpler, requiring only the
target to be equipped with a permanent magnet, eliminating
the need for tethered connections or active electronics on the
moving elements [5], [18], [19]. Our work primarily focuses
on passive magnetic localization due to its simplicity and
robustness; however, future work could potentially extend the
ideas presented here to other types of magnetic markers.

To track a magnetic marker we need to map magnetic
signals, measured by one or more Hall sensors, to a marker’s
5-degree-of-freedom (5DoF) position and orientation (rota-
tion). The most straightforward approach involves directly
interpolating the reading intensity within the sensor array.
In [20], [21], this approach was employed to track a stylus
and a gaming object in a two-dimensional plane. In more
complex configurations (e.g., [3], [4], [22]), multiple sensors
with known spatial arrangements created an over-constrained
system of equations, ensuring a unique solution for the mag-
net’s state. These triangulation methods are fast but are not
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robust to sensor noise and limited to positional degrees of
freedom.

A more robust approach, that also infers rotation, involves
minimizing the difference between a theoretical magnetic field
model, based on a magnetic model, and the sensor readings. To
achieve this, several non-linear optimization algorithms have
been proposed [23], [24]. In [19], the authors implemented an
analytical computation of gradients to expedite the optimiza-
tion process. In [25], their algorithm decoupled the marker’s
orientation from its position, enhancing calculation speed and
providing guarantees regarding global minima. Nonetheless,
these iterative approaches come with significant challenges.
Firstly, gradient-descent algorithms are computationally de-
manding, leading to a trade-off between tracking precision and
frequency. Secondly, iterative non-convex optimization can be
susceptible to the non-uniqueness of the solution, potentially
converging to wrong local minima. These challenges make
these methods highly dependent on their initialization.

Furthermore, these methods assume that the magnetic
model, that predicts the theoretical magnetic field, is valid.
All the mentioned methods employ the first term of the multi-
pole series expansion derived from Maxwell’s equations. The
magnetic dipole approximation assumes all magnets to be
spherical, providing the simplest explicit expression for the
magnetic field concerning distance to the source. However,
this approach has significant limitation. For non-spherical
magnets, reliable results are only obtained when the magnets
are far from the sensor [26]. Crucially, in gradient descent
optimization process, a small magnetic field approximation
error can lead to substantial positional discrepancies.

Recently, machine learning (ML) has emerged as a valuable
approach to circumvent the computational burden of iterative
methods. Machine learning, especially Neural Networks (NN),
excels in approximating non-linearities through sequential
multiply-addition operations. Additionally, it doesn’t require
initial estimates, often achieving reliable results with a single
inference. While inference is rapid, creating a large and
representative dataset for training to generalize well to unseen
samples can be a challenging and time-consuming process.

In [11], [27], [28], ML was utilized to predict the locations
of tracked magnets using input from magnetic sensors. The
data for training the neural network was collected in-vivo by
placing magnets at various known locations and gathering
sensor readings. Generally, the data collection process is
lengthy and not scalable to new scenarios and markers. [29]
employed a neural network to track a magnetic marker, though
they trained on synthetic data generated by the dipole model.
While they eliminated the need for iterative gradient-based
solutions, the work did not address the limitations of the
underlying model, retaining inaccuracies for non-spherical or
closely located magnets. Recently, authors in [16] and [30]
demonstrated the use of neural networks trained on synthetic
data to track active markers. Although we share goals with
these works, their results applied exclusively to active emitters
and did not consistently outperform methods based on iterative
optimization.

To address the data limitation challenge, we employ Finite
Element Methods (FEM) to simulate the complete set of
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Fig. 1: Schematic pipeline overview. We use a Multi-Layer
Perceptron (MLP) to output the location and orientation of
the magnet. During the training phase, the MLP outputs
are compared with the ground truth for generating synthetic
readings. During the inference, the input to the MLP is the
sensor data.

Maxwell’s equations (see Fig. 1 for a method overview). FEM
is computationally intensive, particularly when employing a
fine mesh for accurate results. Therefore, it is unsuitable
for real-time modeling. However, FEM can be leveraged to
generate noise-free synthetic datasets for training machine
learning models. In various other fields, the use of FEM-
generated synthetic datasets has successfully trained neu-
ral networks, although not for magnetic tracking. Examples
include mechanical deformations [31], elastoplasticity [32],
material inspection [33], and nano-structures [34]. To further
reduce computation time while increasing dataset size, we
focus on axis-symmetric markers. We enable this approach
by introducing a coordinate transformation algorithm that
capitalizes on our markers’ symmetric properties, converting
FEM-simulation results from 2D to 3D.

To evaluate the efficacy of our system, we evaluate our
method in both simulation and experiments. In simulation
we find that our method outperforms iterative methods, in
terms of accuracy, robustness and computational efficiency.
We also compare our FEM-based approach, to a method
that is trained on magnetic-dipole generated data, where our
method significantly outperforms the baseline. In real-world
experiments we assess various cylindrical magnets with 5
degrees of freedom using a lower-power portable Nvidia Jetson
Nano, where sensing and tracking are performed in parallel.
We achieve an averaged error of 4 mm and an orientation error
of less than 8 degrees, with an interactive rate of 75 Hz when
using 8 sensors.

In summary, our work contributes significantly to the mag-
netic tracking literature in five key ways: i) We propose a
supervised learning approach that enables real-time tracking
of arbitrary axis-symmetric magnets using Neural Networks,
overcoming the computational limitations of previous itera-
tive solutions by approximating the inverse function of the
magnetic field. ii) To address the challenge of data limita-
tion, we leverage Finite Element Methods (FEM) to simulate
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Fig. 2: Coordinate system overview for Alg. 1

Maxwell’s equations, generating noise-free synthetic datasets
for training machine learning models. iii) We introduce a
coordinate transformation algorithm that capitalizes on our
markers’ symmetric properties, converting FEM-simulation
results from 2D to 3D, enabling accurate high-resolution
magnetic field data for training neural networks. iv) Due to
the computational efficiency of our approach, we enable low-
power and portable applications. We demonstrate this by using
a Nvidia Jetson Nano. v) We demonstrate the validity of
our approach with in-silico and real-world evaluations. These
contributions collectively enable more accurate and efficient
magnetic tracking solutions, offering the potential for the
development of truly portable tracking devices.

II. METHOD

Our contribution revolves around a novel tracking method
through supervised learning, specifically utilizing a Multi-
Layer Perceptron (MLP). Our tracking pipeline consists of
two distinct phases: the training phase involves comparing the
MLP’s output to the position and orientation used to generate
synthetic sensor readings through Finite Element Methods
(FEM), while during the inference phase the sensor readings
are inputted into the MLP to determine the magnetic marker’s
position and orientation (as illustrated in Fig. 1).

In this section, we provide a detailed explanation of our ap-
proach, starting with the creation of a high-resolution synthetic
dataset (Sec. II-A). Subsequently, we detail the architecture
and training process of our neural network (Sec. II-B). Finally,
we outline the hardware setup (Sec. II-C).

A. Synthetic Dataset

Our focus is on axisymmetric magnetic markers, encom-
passing any shape and size of magnets, provided they have
rotational symmetry around their magnetization axis. This
category encompasses cylinders, spheres, and toroids with
arbitrary cross-sections, covering the most commonly used
types of permanent magnets.

Instead of costly 3D simulations, we leverage the symmetry
to conduct just one high-resolution 2D Finite Element Method
(FEM) simulation for each magnet shape. From a single 2D
FEM simulation, we generate synthetic sensor readings for
any location and orientation of the magnet. We achieve the 3D
volume by revolving this 2D cross-section around the magnet’s
principal axis. This approach of creating a synthetic dataset

TABLE I: Summary of Notations.

Variables Description

pC
i Positional vector. For C and i see below.

C ∈ {D,M} Coordinate system on device (D) or magnet (M )

i ∈ {s,m} Positional vector of sensor (S) or magnet (m)

u,v,w
vectors in CD aligned with the axes of the
coordinate system CM

w
Magnetic moment direction in CD , used as
the third axis in CM

B Magnetic flux density

Bj Magnetic flux density detected at sensor j

Bd
j ,

d ∈ {x, y, z}
x, y, or z-directional component of
mangetic flux density detected at sensor j

n number of sensors

Algorithm 1 Synthethic dataset generation

1: Input pD
s

2: pD
d ← pD

m − pD
s ▷ Magnet-sensor vector

3: v← w × pD
d

4: while v = 0 do ▷ If w and pD
d are (anti-)parallel

5: random q
6: v← q×w

7: u← v ×w
8: dw ← pD

d · w
||w|| ▷ the projection of pD

d on w

9: du ←
√
|pD

d |2 − dw2 ▷ the projection of pD
d on u

10: dv ← 0
11: BM ← 2D− FEM(du, dw)

12: M←
[

u
||u||

⊤ v
||v||

⊤ w
||w||

⊤
]⊤

▷ Coordinate transformation matrix
13: BD ← BM ·M

significantly enhances computational efficiency during train-
ing, striking an optimal balance between detailed simulation
and minimal data storage requirements.

We utilize COMSOL Multiphysics to acquire FEM data.
The simulation centers on the magnet and due to the magnets
symmetrical properties we constraint it to a single quadrant.
We reconstruct the 3D magnetic B-field, using 2D FEM gener-
ated data and a sampled point. For generating training data and
evaluating the neural network, we employ the transformation
delineated in Alg. 1 (all variables are explicated in Tab. I)
with coordinate systems, vectors, and scalars illustrated in Fig.
2. This algorithm converts 2D FEM data into 3D synthetic
sensor readings as follows. Initially, it requires the magnet’s
current position and the locations of each sensor, all within a
fixed coordinate system, CD, centered at the array of sensors.
Subsequently, we establish a coordinate system, CM , centered
on the magnet’s current position and orientation. The three
perpendicular axes of CM are along u, v and w in CD. u, v
and w are then normalized to create coordinate transformation
matrix M. The algorithm then use 2D− FEM to extract
the magnetic flux density, BM in CM , with the sensor’s
coordinates in CM as ⟨du, 0, dw⟩, where the second coordinate
is always 0 since we obtain FEM data in 2D. Ultimately, we
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transform BM back into the original global coordinates, CD,
to be used as features for training the MLP.

B. Tracking with Neural Networks
1) Multi-Layer Perceptron
We employ an MLP as our network architecture. The MLP

takes in a 3n-element vector as input, which contains the
(x, y, z) magnetic flux densities B from the n sensors. Its
output is a 6-element tuple, comprising the magnet’s posi-
tion, p = [pxm, pym, pzm], and orientation, o = [oxm, oym, ozm].
Therefore, we define the MLP as a non-linear mapping from
the sensor readings to the tracking variables:

F : R3n → R6;F(Bx
1 , B

y
1 , . . . , B

z
n) = [p,o] (1)

It is important to note that, although we have a 5-Degree-of-
Freedom (DoF) output, three in p and two in o, we represent
the orientation vector in Cartesian coordinates. This approach
helps avoid numerical discontinuity, particularly when the
azimuth angle transitions from 359◦ to 0◦. Our MLP architec-
ture, depicted in Fig. 1, consists of a 3-layer perceptron with
2048 units per layer, excluding the input and output layers.
We use ReLU as the activation functions.

2) Pre-processing
Crucially, the dipole model (Eq. 2) indicates that the mag-

netic field decreases with the cube of the distance (1/r3),
where r represents the distance between the source and the
sensors, and m denotes the dipole moment.

B(pm) =
µ0

4π

[
3r(m · r)

r5
− m

r3

]
, (2)

We have empirically determined that system training fails to
converge when using magnetic readings directly as inputs. This
issue may arise because the input values change dramatically,
by several orders of magnitude, as the magnet moves from
near a sensor (approximately 10−2 Tesla) to the boundary of
the working volume (around 10−6 Tesla), consistent with the
predictions of the dipole model where |B| ∝ 1/r3.

To address this challenge we re-scale the input signals by
taking their cubic root, f(B) = 3

√
B ∝ 1/r. The alteration

in distribution is visible in Fig. 3, where the values of 3
√
B is

distributed on a wider range and more balanced. In general,
an MLP benefits from having inputs that are more uniformly
spread across the same order of magnitude.

3) Training
We train our neural networks using randomly sampled data

within a cubic volume measuring 0.2×0.2×0.15m3, where the
sensor array covers the bottom face. The magnets’ orientations
are sampled as points on a unit sphere and paired with their
locations to serve as training labels, as outlined in Alg. 1.

For our loss function, we employ a weighted sum of the
positional and orientational differences:

L = ∥ptrue − ppred∥2 + η∥ otrue

∥otrue∥
− opred

∥opred∥
∥2 (3)

Our goal is to minimize both the positional and orientational
discrepancies between the predictions and ground truth. We
introduce the weight η to balance the differing scales of
orientation and position error terms. After parameter tuning,
we set η = 10−5 as the standard in all experiments.
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Fig. 3: Histogram of input values before and after adding
feature-engineering function.

Fig. 4: Hall sensor array in a 4x4 grid. The center-to-center
distance is 52mm. The array is connected to a Jetson Nano for
the complete inference pipeline. The inset shows a rigid-tree
to collect Optitrack groundtruth.

C. Implementation

1) Software
We implement the MLP in python with PyTorch. We use

Adam [35] with an initial learning rate γ = 10−4. We train
for 40 epochs, and the learning rate decays by 0.98 after each
epoch in training. We generate 106 random points per epoch
to train the model with a batch size of 256. Using Alg. 1
we generate the training data independently and identically
distributed. Data generation and training of the MLP takes
∼ 1 hour on a standard desktop.

2) Hardware
Our hardware’s foundation consists of 16 triaxial magne-

tometers (MLX90393, Melexis). These sensors feature a linear
range up to 0.05 Tesla, aligning well with the magnetic fields
we anticipate from our test magnets at close range. These
sensors can achieve a data output rate of 716.9 Hz.

Moreover, we calibrate our system using the ellipsoid-fitting
method referenced in [36]. The arrangement of the 16 sensors
follows a 4 x 4 grid pattern, maintaining a 52 mm interval
between the centers of adjacent sensors, as depicted in Fig. 4.

To maintain minimal instrumentation and facilitate portable
applications, such as prosthetics, we have implemented the
tracking inference on an AI-oriented single-board computer
(Jetson Nano, NVIDIA). This device weighs only 138 grams
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Fig. 5: In the iterative method, the magnet is initialized at
pinit with magnet momentum direction aligned with vector
oinit, while the true position and direction are ptrue and otrue.
The initial offset is then poffset = |pinit − ptrue|, θoffset =
cos−1[oinit · otrue/(|oinit| · |otrue|)]. Similarly, we can also
compute the init. positions given the true (sampled positions)
and an offset. Substituting pinit and oinit with poptimized and
ooptimized, we can also get the error ep and eθ.

and also supports direct sensor readings using the I2C com-
munication protocol. The minimum time required to read 16
sensors sequentially is approximately 24 milliseconds.

III. IN-SILICO EVALUATION

In this section, we compare the performance of our neu-
ral network-based tracking method with that of an iterative,
gradient-descent-based technique. This comparison utilizes
simulated sensor readings, allowing us to control experi-
mental variables such as the initialization of the iterative,
optimization-based algorithm. We first introduce how we sam-
ple data points in order to evaluate both methods. Then we
compare our method versus the iterative baseline in terms of
accuracy as function of initialization, as well as computational
time. Finally, we compare our method trained on FEM data
versus trained on data generated with the dipole model.

Sampling Method: For the in-silico evaluation, we ran-
domly sample magnet positions and orientations and compute
the corresponding magnetic flux densities. We either use the
magnetic dipole model Eq. 2 to sample from or use FEM-
generated data. On one hand, using dipole-model-generated
data ensures that the characteristics of the synthetic signals
matches the internal physical model used in the optimization
method. On the other hand, the FEM-generated data is more
realistic. We initialize the optimization method by offsetting
the sampled position and orientation. Offsetting the position
and orientation means we initializate the iterative methods with
the ground truth plus the offset (see Fig. 5). We expect that the
a larger offset results in a worse performance for the iterative
methods.. We configure the iterative algorithm to stop upon
reaching the maximum number of iterations. This process is
similar to a real-world application, where we would initialize
with the last known position and the newly measured magnetic
flux densities, and we have a limited computational budget.

TABLE II: Accuracy results for the iterative method after 50
Iterations. For comparison, we include results obtained via our
MLP tracking on the same evaluation data. Our method is not
an iterative approach, and does not rely on an initialization.
Percentage is with regard to the size of the sensor array
(200mm).

ep in mm eθ in degrees
median

(%)
3rdquart.

(%)
median 3rdquart.

Iter. Optimization
Initial
ep in

mm

Initial
eθ in

de-
grees

80 10 0.65 (0.3) 11.90 (6.0) 1.17 9.98
80 30 2.06 (1.0) 16.91 (8.5) 4.49 29.76
80 90 35.12 (17.6) 86.65 (43.3) 86.00 90.00
80 180 86.27 (43.1) 147.30 (73.7) 179.75 179.99
30 45 0.53 (0.3) 8.50 (4.3) 1.04 28.33
60 45 2.96 (1.5) 22.38 (11.2) 5.78 44.40
90 45 5.82 (2.9) 33.88 (16.9) 12.85 44.82

120 45 10.37 (5.2) 65.97 (33.0) 25.20 45.03
all 26.80 (13.4) 95.24 (47.6) 29.96 91.34

MLP (ours)
n of sensors used

4 1.93 (1.0) 2.88 (1.4) 4.96 7.78
8 1.62 (0.8) 2.25 (1.1) 4.28 6.54

12 1.42 (0.7) 1.89 (0.9) 3.38 5.11
16 1.40 (0.7) 1.87 (0.9) 3.34 5.06

A. Influence of initialization on the optimization methods

In our simulation study, we conducted a comparison be-
tween our method and an optimization-based technique by
analyzing 400 data points, sampled as outlined above. For
the optimization process, we utilized PyTorch, configuring the
magnet’s position and orientation as adjustable parameters.
This setup leveraged automatic differentiation for efficient
computation, following the approach detailed in [37]. The
optimization algorithm was L-BFGS, a quasi-Newton method.
L-BFGS optimizes step size through a line search mechanism
[38]. For the optimization-based approach we employed the
magnetic dipole model as our internal physical model, inte-
grating it as our loss function in a manner consistent with
[19]. Our results are presented in two parts: firstly, we assess
the accuracy of our method compared to the optimization
baseline for various initialization errors; secondly, we compare
the tracking performance of our method trained on FEM data
versus data generated by the dipole model.

a) Accuracy: The full results of our optimization method
are detailed in Fig. 6, showcasing the tracking errors relative to
the maximum iteration count across different initialization of
position (Fig. 6.a) and orientation (Fig. 6.b). Similar results are
shown for the angular error (Fig. 7) For a detailed analysis, we
have also provided statistical analysis of the tracking outcomes
after 50 iterations in Tab. II. Note that our MLP method is a
single inference step, and does not require multiple iterations
or an initialization.

Since the non-converging cases in optimization method
yield a long tail in error distribution, the average errors of
optimization methods are not representative of the perfor-
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Fig. 6: Positional errors of the iterative method in simulation for different number of iterations. (a) We vary the initial orientation
mismatch, keeping a fixed distance of 80 mm to the truth. (b) We vary the initial positional mismatch, keeping a fixed orientation
difference of 45◦. As our method does not rely on iterations or initialization, it is a single value. The standard deviation of
our method is too small to show in the graph.
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Fig. 7: Angular errors of the iterative method in simulation for different number of iterations. (a) We vary the initial orientation
mismatch, keeping a fixed distance of 80 mm to the truth. (b) We vary the initial positional mismatch, keeping a fixed orientation
difference of 45◦. While the median angular errors are decreasing in general the difference between the 1st quartile and 3rd
quartile are increasing with the number of iterations, especially for scenarios with large initial offsets. This might be due to
an increased probability to converge to local minima. We observe that the positional error shows a faster convergence than
the angular counterpart, showing that even after 50 iterations, some trajectories might have not converged yet. As our method
does not rely on iterations or initialization, it is a single value. The standard deviation of our method is too small to show in
the graph.

mance. Instead, we evaluate the results with the median value
of errors. Our approach showed improved performance with
a median positional error of ep = 1.40mm and a median
orientation error of eθ = 3.34◦, significantly outperforming the
baseline’s median positional error of ep = 26.80mm and ori-
entation error of eθ = 29.96◦ under nearly all test conditions.
As expected, the accuracy of the optimization based approach
improved with more iterations. This trend was also observed
in relation to the quality of the initialization; more accurate
initial conditions led to more precise optimization outcomes.
However, our method was only surpassed in scenarios with
the highest number of iterations (50) and the optimal initial
conditions, specifically at 80 mm of initial positional error and
10◦ of initial orientation error, along with 30 mm of initial

positional error and 45◦ of initial orientation error.
Decreasing the number of iterations led to a decrease in

performance. With ten iterations, the median positional error
rose above 200 mm in certain instances, especially when the
initial orientation significantly deviated from the target. We
observed that even with initial orientations closely aligned to
the target (with an offset of 45◦), the resulting positional errors
on par with scenarios with a large initialization offset.

b) Running Time: Our Multilayer Perceptron (MLP)
model delivers outcomes after a single inference step, which
includes feature engineering, along with additions and mul-
tiplications within its hidden layers. On the other hand,
optimization-based approaches necessitate the calculation of
second-order gradients relative to the estimated positions at
every iteration, proceeding until convergence is achieved or
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Fig. 8: Inference time comparison between MLP and L-BFGS
implementations for a different number of iterations. Iterative
methods are strongly dependent on initialization and it takes
between 20 and 50 iterations (i.e. > 10 ms) to achieve results
similar to those given by a single MLP inference (0.8 ms).

the maximum number of iterations achieved. We evaluated
the speed differences between these two methodologies. To
ensure a fair comparison, we executed both methods on the
same hardware, specifically a laptop powered by an Intel i7-
7500U CPU.

Fig. 8 illustrates the comparison between the total pro-
cessing time of our data-driven MLP approach and the
optimization-based method across various maximum iteration
counts. A single inference operation for 5-degree-of-freedom
(DoF) tracking using the MLP is completed in just 0.8
milliseconds (ms), this time frame includes the feature en-
gineering stage. In contrast, the L-BFGS optimization process
demands approximately 1 ms per iteration. As shown in Fig. 6,
achieving satisfactory outcomes with the optimization method
often requires dozens of iterations, depending on how well the
process is initialized. Consequently, the optimization approach
can take tens of milliseconds to converge. Thus, it is evident
that our method surpasses the iterative optimization baseline
in terms of speed.

B. Neural Networks trained with FEM vs Dipole Model

Previous works train neural networks on data generated
with the approximated analytical model [29], [39]. In contrast,
we propose using FEM to generate a dataset and take full
advantage of the powerful representation of Neural Networks
for non-linear systems. To ensure a fair comparison, we
distinguish two scenarios for training the MLP: i) using FEM
data, and ii) using the magnetic dipole model directly, which
is similar with the model used in the optimization method.

Our evaluation encompasses six different magnet shapes,
similar to those in our practical experiments (Sec. IV). Includ-
ing, a variety of shapes from cylinders to disks, all magnetized
along their principal axis, and we also assess performance on
a spherical magnet, where the dipole model theoretically pro-
vides an exact solution. For each magnet shape, we generated
a dataset consisting of 1000 samples.

Fig. 9a presents a comparison of the accuracy between
MLPs trained on two synthetic datasets: one created from FEM
simulations, as explained in Sec. II-A, and the other based on
the magnetic dipole approximation (Eq. 2). Additionally, Fig.
9b illustrates the angular error measurements. Both FEM and

dipole trained methods perform well in terms of the rotational
error (c.f. Fig. 7). Overall this is an indication that our FEM-
based approach generalizes well across all shapes.

To ensure the validity of our data analysis, we first con-
ducted a Shapiro-Wilk test to confirm the normal distribution
of our data. Subsequently, we applied a Student’s T-Test to
identify significant differences between MLPs trained with
dipole- and FEM-generated datasets.

The results clearly demonstrate that our FEM-based ap-
proach significantly outperforms the dipole model-based base-
line in positional accuracy for cylindrical and disk magnets
across all tests (with all p < .005), while showing no
significant difference for the spherical magnet (p = 0.95).
These results are as expected, since there is no difference
between the dipole model and the FEM data for a sphere. We
observed greater differences in the results as the shape of the
magnet distances itself from the sphere, thereby, reinforcing
our hypothesis of the superiority of our method for magnets
not shaped like spheres.

IV. EXPERIMENTAL EVALUATION

We compare the results of our MLP tracking method to
experimental ground truth data collected with OptiTrack. We
not only evaluate positional and orientation accuracy, but
also evaluate the computational performance on a lightweight
portable computer; enabling application such as prosthetics.
We experiment with different numbers of Hall sensors in our
system (4, 8, 12, or 16), to evaluate the computational speed
versus accuracy trade-off.

A. Experimental Setup

We equipped the permanent magnet with OptiTrack markers
for precise tracking, illustrated in the inset of Fig. 4. The
setup also features ten OptiTrack cameras, and the cylindrical
magnets utilized are identical to those described in Section
Sec. III-B for simulation purposes.

In our experiments, we manipulate the magnet above the
sensor grid, allowing for free movement and tilting, while
ensuring optimal visibility of the optical markers to the cam-
eras. This movement is executed at a pace similar to joystick
gaming, providing a dynamic test environment. To address
any discrepancies in timing between the magnetic and optical
tracking systems, we implement a calibration process that
involves adjusting a time-offset variable within the magnetic
signal data. This adjustment aims to minimize tracking errors.
Furthermore, we utilize Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) interpolation [40], to reconcile any dis-
crepancies in sampling frequencies between the two systems.
This approach ensures the synchronization and accuracy of our
tracking data across both modalities.

B. Results

a) Accuracy: Fig. 10 presents a comparison of a single
trajectory as tracked by both our MLP method and the
OptiTrack system, aligned within the same time frame. This
specific trajectory involves a magnet with dimensions of 10mm
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Fig. 9: Comparison of a) positional errors and b) angular errors for MLP neural networks when trained with FEM- or dipole
model-generated datasets.

in diameter and 20mm in height. Throughout the tracking
period, the deviation between the two trajectories remained
below the 4mm threshold for more than half of the duration,
with the largest discrepancies occurring during rapid maneu-
vers but not exceeding 10mm. It’s important to note that the
discontinuities observed in the OptiTrack trajectories can be
attributed to partial occlusion of the infrared markers.

We show (Fig. 11) the positional error as a function of
distance from the center of the sensor array, demonstrating
the robustness of our tracking method even at extended ranges.
Furthermore we see that the rotation error is stable for all dis-
tances, once again highlighting the robustness of our method.

In Fig. 12, we detail the tracking performance statistics
for five different cylindrical magnets and number of sensors.
Consistent with expectations, the use of a greater number
of sensors results in reduced tracking errors for all magnets
tested. With the entire array of 16 sensors activated, the
average errors in both position and orientation typically fall
below 4mm and 8◦ respectively, with the exception of the
pole-shaped magnet (with dimensions of 5mm in diameter and
25mm in height).

b) Computational Time: Finally, we evaluated the re-
sponsiveness of our tracking method by comparing the per-
formance of inferences executed on the CPU versus the GPU
of the Jetson Nano. It’s crucial to highlight that sensor data
collection was consistently handled by the CPU through the
I2C communication protocol, taking an average time of 1.75
ms for each sensor read.

When focusing on the inference aspect, running the process
on the CPU took approximately 28 ms, and this duration
remained fairly consistent regardless of increases in the input
feature size (i.e., number of sensors). On the other hand,
executing the inference on the GPU showed a variation in
processing times, starting at 10 ms with a setup of 4 sensors
and extending up to 15ms when using the full array of 16
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Fig. 11: (a) Positional tracking errors versus distance between
the magnet position and the center of the sensor array. (b) Ori-
entational tracking errors versus distance between the magnet
position and the center of the sensor array.

sensors. This variation underscores the GPU’s ability to effi-
ciently manage larger datasets, albeit with a modest increase in
processing time as the number of sensors—and consequently,
the dimensionality of the input data—grows.
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Fig. 12: Experimental positional and orientation errors ob-
tained with MLP tracking, for different numbers of input
sensor and magnet shapes.

V. APPLICATION EXAMPLE

To show applicability of our approach we implemented it
on a novel haptic in- and output device (Fig. 13) [5]. This
implementation consists of eighth Hall sensor configured in a
circle on two different level-planes. The positions and angles
are tracked directly on the Jetson Nano. The latency is below
40ms and the tracking frequency reaches up to 83Hz, which is
more than sufficient for most interactive applications. We refer
to the supplementary material for a video of the demonstration.

VI. DISCUSSION

In Sec. III-A, we identified a known limitation of iterative
methods: tracking accuracy heavily depends on the initial
estimation, particularly the magnet’s initial orientation. The
optimization often becomes trapped in a local minimum if
the initial orientation estimate significantly deviates from the
actual value.

However, as Fig. 6 demonstrates, with a reasonably accurate
initial orientation (mismatch less than 45◦), the convergence
is less susceptible to other perturbations. The results after 50
iteration steps, as seen in Tab. II, reveal that the third quartile
errors are as significant as the initialization errors. This finding
suggests that the optimization method might not reach the
global minimum even after 50 epochs.

In contrast, tracking with neural networks is independent
of initialization. Tab. II shows that the MLP can surpass the
optimization-based method in all cases except those with the
most accurate initial estimations and the maximum number
of iterations. Furthermore, both the third quartile positional

Fig. 13: A user using a permanent magnet as input device for
a haptic system [5]. It is easy to imagine this magnet being
embedded in an otherwise passive tool. The sphere on the
device houses an haptic electromagnetic actuator.

and orientation errors are consistently within acceptable limits
when using MLP, underscoring its stability.

Remarkably, we were able to directly apply the models
trained with simulations in experimental tests without adjust-
ing any hyperparameters. However, we observe a simulation-
to-real gap where performance declines when training on
synthetic data and evaluating on real data. This is likely
due to sensor and background noise, or because our real-
world magnetic markers are not perfect. For future work, we
consider incorporating background and sensor noise during
neural network training, akin to approaches used in other
magnetic tracking systems [41], [42]. Furthermore, we can
fine-tune on real-world data. Finally, future work could include
investigating additional inputs to the neural network that
describe the properties of the realworld magnet (such as a
magnetization scalar). These adaptations will likely diminish
the simulation-to-reality gap, enhancing the accuracy of the
MLP method.

In Sec. III-B, we examined the impact of utilizing training
datasets generated either through FEM or the magnetic dipole
model. As anticipated, models trained with the dipole method
showed performance more closely aligned with FEM-trained
models when the magnet’s shape was closer to or exactly a
sphere. For cylindrical magnets, models trained with FEM
simulations improved tracking accuracy by 0.2 mm to 1.2
mm. However, we also noted that the tracking performance
of the MLP degraded as the magnet shapes deviated further
from a spherical form (see Fig. 12). The bigger errors in
pole-shaped magnet might be because of the relatively small
magnetic momentum. The volume of the magnet is smaller, so
the magnetic field around it is weaker. Consider the same level
of noise for sensors, the signal-noise-ratio (SNR) for the pole-
shaped magnet is smaller and leads to worse performance.

We observed that the total time for one-shot inference in
MLP was comparable to each iteration of the many required
by iterative methods. Notably, the MLP can be activated
sporadically on demand, without the need to continuously
track and lock the target to ensure correct convergence within
a few iteration steps. We also demonstrated the feasibility
of implementing an MLP tracking algorithm on a portable,
energy-constrained device, such as the Jetson Nano. We found
that the inference time using the GPU was about the same as
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reading 8 sensors via the I2C protocol on the CPU. Thus,
the sensor reading process currently limits the refresh rate of
our prototype. Alternative protocols like SPI could potentially
alleviate this bottleneck.

A limitation of data-driven methods is the requirement to
retrain the neural network for each new condition, such as
different numbers and placements of sensors or changes in
the magnet’s shape. Although our training process, including
data generation, takes only about 1 hour, this requirement
could hinder applications that necessitate online optimization
of sensor location. The training process could be facilitated
with certain trade-off on data variety by storing and reusing
generated data points in each epoch of training, rather than
generating new data. Other promising directions for future
research include employing neural networks to track multi-
ple magnets, using neural network predictions to initialize
optimization-based methods, and exploring the use of recurrent
neural networks to enhance temporal consistency.

VII. CONCLUSION

In this paper, we demonstrated the accuracy and efficiency
of using neural networks to predict the location and orientation
of magnets directly. We combined 2D FEM-simulated data
with a coordinate transformation algorithm to generate syn-
thetic training data on demand for any type of axis-symmetric
magnet. The tracking performance of neural networks was
stable and did not experience the convergence issues often seen
in optimization-based tracking methods. Our experiments also
showed that it is feasible to move the tracking algorithms to
energy-restricted devices, thereby enabling portable interactive
magnetic applications.
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[36] T. Pylvänäinen, “Automatic and adaptive calibration of 3d field sensors,”
Applied Mathematical Modelling, vol. 32, no. 4, pp. 575–587, 2008.

[37] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” Journal of
machine learning research, vol. 18, 2018.

[38] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp. 503–528, 1989.

[39] S. Song, B. Li, W. Qiao, C. Hu, H. Ren, H. Yu, Q. Zhang, M. Q.-H.
Meng, and G. Xu, “6-d magnetic localization and orientation method
for an annular magnet based on a closed-form analytical model,” IEEE
Transactions on Magnetics, vol. 50, no. 9, pp. 1–11, 2014.

[40] K. Brodlie and S. Butt, “Preserving convexity using piecewise cubic
interpolation,” Computers & Graphics, vol. 15, no. 1, pp. 15–23, 1991.

[41] G. Shao, Y. Tang, L. Tang, Q. Dai, and Y.-X. Guo, “A novel passive
magnetic localization wearable system for wireless capsule endoscopy,”
IEEE Sensors Journal, vol. 19, no. 9, pp. 3462–3472, 2019.

[42] Q. Li, Z. Shi, Z. Li, H. Fan, G. Zhang, and T. Li, “Magnetic object
positioning based on second-order magnetic gradient tensor system,”
IEEE Sensors Journal, vol. 21, no. 16, pp. 18 237–18 248, 2021.

Mengfan Wu received his B.E. degree in Telecommunication from Tongji
University, Shanghai, China in 2018 and the M.S. degree in Electrical
Engineering and Information Technology from ETH Zürich, Switzerland
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