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Figure 1. We propose MoGA, a method to genereate high-fidelity Gaussian avatars from a single image. Left: A challenging in-the-wild
example. Middle: Unlike previous methods that struggle with such cases (Fig. 4), MoGA enables 3D-consistent full-body novel view
synthesis and detailed geometry extraction. Right: Our reconstructed Gaussian avatar supports animation without any post-processing.

Abstract
We present MoGA, a novel method to reconstruct high-

fidelity 3D Gaussian avatars from a single-view image. The
main challenge lies in inferring unseen appearance and ge-
ometric details while ensuring 3D consistency and realism.
Most previous methods rely on 2D diffusion models to syn-
thesize unseen views; however, these generated views are
sparse and inconsistent, resulting in unrealistic 3D artifacts
and blurred appearance. To address these limitations, we
leverage a generative avatar model, that can generate di-
verse 3D avatars by sampling deformed Gaussians from a
learned prior distribution. Due to the limited amount of
3D training data such a 3D model alone cannot capture all
image details of unseen identities. Consequently, we inte-
grate it as a prior, ensuring 3D consistency by projecting
input images into its latent space and enforcing additional
3D appearance and geometric constraints. Our novel ap-
proach formulates Gaussian avatar creation as a model in-
version process by fitting the generative avatar to synthetic
views from 2D diffusion models. The generative avatar pro-
vides a meaningful initialization for model fitting, enforces
3D regularization, and helps in refining pose estimation.
Experiments show that our method surpasses state-of-the-
art techniques and generalizes well to real-world scenarios.
Our Gaussian avatars are also inherently animatable.

*Equal contribution

1. Introduction

Animatable and realistic avatar creation enables many ap-
plications in AR/VR, movies, and the gaming industry. It
is hard to scale up this process since previous traditional
approaches [22] require expensive multi-view systems and
highly-specialized expertise to craft the avatar. To make
digital avatars widely available and consumer-friendly, it
is essential to develop methods for creating an avatar from
in-the-wild images. However, this problem is very chal-
lenging due to the ill-posed nature of the monocular set-
ting, which causes ambiguities in the appearance, depth,
and body poses.

Embracing the challenging problem, previous meth-
ods [41, 42, 52] learn a large network to predict explicit
or implicit 3D representations from 2D pixel-aligned fea-
tures. These methods are trained on small-scale datasets
due to the limited amount of available 3D data; this greatly
restricts their generalization to diverse human poses and
clothing styles. More recently, to enable more powerful
generalization ability, some methods [14, 26, 53, 59] lever-
age a multi-view diffusion model to hallucinate back and
side views. Despite impressive performance, most existing
multi-view diffusion models can only generate very sparse
views with high resolution due to memory constraints dur-
ing training [23]. The sparsity of generated views leads to
artifacts in self-occluded regions or unobserved side views.
Furthermore, since such methods rely heavily on 2D priors



from 2D diffusion, the generated multi-view imagery often
lacks 3D consistency [27, 38], which results in blurry ap-
pearance in 3D. To prevent the reconstruction of unnatural
bodies, some methods [8, 14, 20, 26, 59] leverage paramet-
ric body models like SMPL [29] as full-body priors. Al-
though this helps avoid abnormal shapes, it is restricted
by the fixed topology and minimally-clothed SMPL body
shape and cannot provide a 3D appearance prior.

To address these limitations, we propose a novel method,
MoGA (Moncular Gaussian Avatar), that reconstructs a
high-fidelity 3D Gaussian avatar from a single-view image
(Fig. 1). At its core, our approach leverages a generative
3D avatar model as a powerful human body prior. Unlike
the SMPL body prior, our model captures not only detailed
geometry but also realistic human appearance, including
hair and clothing, using deformed Gaussians. We harness
multi-view diffusion to infer unseen views while ensuring
3D consistency and realism. This is achieved by projecting
the synthetic images back to the learned latent space of the
generative avatar and applying additional constraints. The
creation of the Gaussian avatar is then formulated by fitting
the generative avatar to these generated views. During this
process, our generative avatar model plays a pivotal role in
three ways: (i) Initialization: Sampling from the learned
avatar prior enables a meaningful initialization of geometry
and appearance for fitting, helping avoid local minima in
few-shot reconstruction. (ii) Regularization: Rather than
relying solely on inconsistent synthetic images, the avatar
prior enforces strong 3D constraints, ensuring view consis-
tency and preventing unrealistic artifacts. (iii) Pose Op-
timization: This avatar prior enables us to refine human
and camera poses through an effective photometric render-
ing loss, improving alignment accuracy and reconstruction
fidelity over baselines.

More specifically, we represent human bodies and cloth-
ing in canonical space using 2D Gaussian Splatting [19], an-
chored to a parametric body template [35], and integrate it
with an efficient deformation module [11]. To enable gener-
ation, we model every human subject via a per-subject latent
code and a shared decoder to interpret the latent code into
Gaussian features. This generative avatar prior is learned
through a single-stage pipeline [7] that jointly optimizes
the latent code, the shared decoder, and a latent diffusion
model in the latent space. At test time, we first employ
image-guided sampling [7] to obtain a meaningful latent
code. Given this initialization, we perform model inversion
to compute the latent code for a novel target identity while
freezing the decoder and learned diffusion model. During
this process, the diffusion model serves as a constraint in
the latent space via a score distillation sampling loss [37].
Throughout the fitting procedure, both the avatar model and
camera/human pose parameters are optimized in an alter-
nating manner to correct abnormal poses.

We experimentally demonstrate that our method signif-
icantly outperforms previous state-of-the-art methods both
quantitatively and qualitatively (Table 1 and Fig. 3). The re-
sulting Gaussian avatar has better 3D consistency and real-
ism (Fig. 3), and adapts better to model complex structures
like hair (Fig. 5). In summary, we contribute:
• An optimization-based model fitting framework to recon-

struct a Gaussian avatar from a single image, by fitting a
3D generative avatar to synthetic images generated by 2D
multi-view diffusion.

• A generative 3D Gaussian avatar prior that enables recon-
structing a deformed Gaussian avatar from sparse and in-
consistent generated images, by providing crucial support
for meaningful initialization, regularization, and pose re-
finement during model fitting.

• Generalization to in-the-wild outdoor images with chal-
lenging pose and clothing. The resulting avatar can be
animated without post-processing.

Code and models are available at https://zj-dong.github.io/
MoGA/.

2. Related Work
2.1. Single-view Human Reconstruction
Creating realistic avatars from a single RGB image is a
challenging problem. PIFu [41] pioneered a data-driven
pipeline to learn a mapping from 2D pixel-aligned features
to 3D implicit functions. More recent work builds upon this
idea and improves the geometry by leveraging normal guid-
ance and parametric human body models [3, 27, 28, 42, 52].
However, given only a frontal view, these methods struggle
to reconstruct realistic full-body texture because of the un-
observed back side. More recently, methods use 2D dif-
fusion models to hallucinate the back view and incorpo-
rate this into the reconstruction pipeline [14, 59]. How-
ever, with only two observations, these methods suffer from
strong artifacts in side-views. Several methods go further
by leveraging a modified multi-view diffusion process to
generate more views, improving rendering quality and ge-
ometry [26, 53, 59]. Unfortunately, 2D diffusion often pro-
duces synthetic images that are inconsistent in 3D. To ad-
dress this, PSHuman [26] and SIFU [59] leverage SMPL
[29, 35] as a 3D template to regularize the reconstruction.
However, since SMPL does not provide an appearance prior
and only has a minimally clothed body shape, the methods
struggle when the clothing and hair differ from the SMPL
body topology. Human3Diffusion [53] uses a 3D diffusion
model to guide sampling of a multi-view diffusion model,
but is limited by the low resolution of the diffusion model.
In contrast to the prior work, we combine an expressive gen-
erative 3D avatar model with synthetic 2D images generated
from a multi-view diffusion model, achieving better recon-
struction quality and robustness to self-occlusion.



2.2. 3D Avatar Generation

Several methods [1, 11, 16, 32] leverage 3D-aware GANs
[5, 6, 44] to generate 3D humans from 2D image col-
lections. The main idea is to leverage 3D human mod-
els [29, 35] to learn a 3D human GAN with an adver-
sarial loss. Several techniques are then developed to im-
prove geometric quality [11], the face region [11, 16], de-
formation [11] and efficiency [1]. Despite impressive re-
sults, these methods are all trained with 2D image dis-
criminators that are unable to reason about cross-view re-
lationships [7], making it challenging to exploit multi-view
data. Recent 3D diffusion models [7, 15, 46, 48] show bet-
ter generation capabilities due to their more expressive and
high-dimensional latent space. Leveraging this, recent work
[9, 18, 58] parameterizes the human via primitives [9] or a
structured latent code [18] and learns a diffusion model in
the latent space for unconditional generation. By leverag-
ing multi-view data, these methods acheive 3D consistency
in appearance generation. Unlike these methods we lever-
age a 3D generative avatar model for single-view avatar re-
construction. Although reconstruction from single images
is possible through GAN inversion [6], the quality is lim-
ited by the expressiveness of the latent space, making it
hard to apply to in-the-wild images. Rodin [50] and its ex-
tensions [57] employ an image-conditioned diffusion model
for few-shot face reconstruction. These are trained on syn-
thetic images and struggle to generalize to the real-world.
We address the more challenging problem of reconstruct-
ing full-body avatars with diverse poses and clothing styles
from in-the-wild images.

2.3. Gaussian Avatar

Representations for 3D avatars include 3D meshes [2, 29,
35], implicit functions [10, 12, 21, 30, 36, 51], and point
clouds [49, 62]. Recently, 3D Gaussian Splatting [19, 24]
has gained attention due to its high rendering quality and
efficiency. Many methods [17, 31, 39, 56, 60] learn 3D
Gaussian avatars from monocular videos. Despite strong
performance, these methods typically fail when the number
of observations becomes sparse. GPS-Gaussian [61] pro-
poses a generalizable multi-view human Gaussian model
with high-quality rendering, but it needs relatively dense
views (16) and accurate camera poses. Concurrent meth-
ods [8, 33] leverage a pre-trained transformer to predict the
3D Gaussians from a single-view image, but struggle to re-
construct details and tend to generate artifacts on faces. In
contrast, our method achieves a more detailed and realistic
Gaussian avatar from only a single-view image. A detailed
comparison with [8, 33] is not possible since the models or
code have not been released at the time of writing.

3. Method

Given a single-view image, our goal is to reconstruct a high
fidelity 3D Gaussian avatar. To address this ill-posed prob-
lem, our key idea is to leverage a generative 3D avatar
model as a human prior and fit this generative model to
synthetic images generated by multi-view diffusion. An
overview of our method is shown in Fig. 2.

We first introduce an efficient and articulation-aware 3D
human generator (Section 3.1 and Fig. 2(a)), which gen-
erates the appearance and shape in canonical space and
leverages a deformation module to deform these into posed
space. To learn this generator, we utilize a single-stage
training pipeline [7] that jointly optimizes a Gaussian auto-
decoder and a latent diffusion model.

At test time, we fit the learned generative avatar model to
6 synthetic images generated using a pre-trained multi-view
diffusion model (Section 3.2 and Fig. 2(b)). We show that
the learned generative prior improves the performance by
providing a good initialization and regularization for fitting
to handle the inconsistency between synthetic views. Dur-
ing the fitting process, we optimize both the avatar model
and the camera/human pose parameters alternately to cor-
rect abnormal poses.

3.1. Generative Avatar Prior Training
3.1.1. Canonical Gaussian Representation
To achieve high quality reconstruction of both appearance
and geometry, we employ 2D Gaussian splatting [19] to
represent the appearance and geometry of the avatar gener-
ated in the canonical space. Motivated by GGHead [25] and
Relightable Gaussian Codec Avatars [43], we parameterize
2D Gaussians G on a UV map U of a template mesh [35].
Here, each Gaussian primitive Gk is parameterized by five
attributes: an opacity σk ∈ R, a Gaussian center µk ∈ R3,
RGB color ck ∈ R3 for simplicity, a scale vector sk ∈ R2

for 2D Gaussian Splatting, and a rotation matrix Rk repre-
sented by the axis angle vector rk ∈ R3. Finally, based on
the UV mapping, we can represent the Gaussian attributes
G with a 2D UV map U ∈ R256×256×12.

To better leverage the template body prior, we model the
Gaussian center µk, the scale vector sk, and the rotation rk
as a residual from the canonical SMPL-X body [35]:

µk = µ̂k + δµk

sk = ŝk · δsk
rk = r̂k · δrk.

(1)

Here, µ̂k, ŝk, and r̂k are the initial center, scale, and rota-
tion of the Gaussian primitives, which are obtained from the
SMPL-X mesh; for more details, see Sup. Mat. Finally, we
predict the offset value δµk, δsk, δrk to represent Gaussian
attributes.



Figure 2. Method Overview. Generative Avatar Prior Learning: Our 3D human generator creates the appearance and geometry in
canonical space represented by 3D Gaussians and leverages an efficient deformation module to deform these into posed space for Gaussian
rasterization. To learn this generative avatar model from a 3D human dataset, we utilize a single-stage training pipeline that jointly
optimizes a Gaussian auto-decoder (including a per-subject latent code and a shared decoder) and a latent diffusion model. Model Fitting:
At test time, we fit the learned generative avatar to synthetic images generated from a pretrained multi-view diffusion model. During this
process, we first initialize the latent code by image-guided sampling and perform model inversion to compute the latent code while freezing
the decoder and learned diffusion model. Both the avatar model and camera/human pose parameters are optimized in an alternating manner
to correct abnormal poses.

To make our model generalize to various people, we
learn a shared auto-decoder across all the training people.
For each identity, we model each person by a small com-
pressed latent code Xi ∈ R64×64×32 and then decode the
latent code to final UV map Ui using the shared CNN de-
coder. More details of the decoder can be found in Sup. Mat.

3.1.2. Deformer
To enable animation and learn from posed images, we use a
deformer to transform the avatar G from the canonical space
into posed space. For each Gaussian primitive Gk, the de-
formed Gaussian center and rotation matrix µ′

k and R′
k are

computed as:

µ′
k = Tµk, R

′
k = TRk, where T =

nb∑
i=1

wiBi. (2)

Here nb is the number of joints, Bi is the bone transfor-
mation matrix for joint i ∈ {1, ..., nb}, and wi is the skin-

ning weight, which determines the influence of the motion
of each joint on µk. Following AG3D [11], the skinning
weight is represented as a low-resolution voxel grid. More
details can be found in Sup. Mat.

3.1.3. Rendering
After we obtain the deformed Gaussian attributes, we per-
form 2D Gaussian splatting as in [19]. For each pixel
x = (x, y), the pixel color is obtained by:

c(x) =
N∑
i=1

ciGi(x)σi
i−1∏
j=1

(1− σjGj(x)) (3)

where ci is the color of the i-th projected 2D Gaussian prim-
itive sorted by depth. To render normal maps, we replace
the color ci with the normal of the Gaussian primitives.
σi represents the opacity values. G(x) is the evaluated 2D
Gaussian value. More details of the evaluation of G(x) can
be seen in [19].



3.1.4. Generative Avatar Training
Fig. 2(a) illustrates the training process of this genera-
tive avatar model. We leverage the latent diffusion model
(LDM) [40] to learn the generative prior in the latent space.
Following SSDNeRF [7], we adopt a single-stage training
pipeline to jointly optimize our auto-decoder and LDM. The
training objective is:

L = λrendLrend({Xi}, ψ) + λdiffLdiff({Xi}, ϕ). (4)

HereXi is the latent feature code andψ and ϕ denote the pa-
rameters of the decoder and denoising U-Net respectively.
λ∗ are the loss weights. Lrend and Ldiff are the training ob-
jectives for the rendering and diffusion process. Compared
to two-stage training [46, 50], the resulting learned latent
space is smoother due to end-to-end optimization of the dif-
fusion and decoder weights. The rendering loss is:

Lrend({Xi}, ψ) = λl2Ll2 + λvggLvgg + λregLreg. (5)

Ll2 is the L2 reconstruction loss between rendering and ob-
servations. Unlike [7], we compute the reconstruction loss
on both RGB and normal images to improve the geometry
quality. Lvgg is a perceptual loss based on the difference be-
tween the feature maps obtained from [47] and the rendered
image. We define Lreg = ∥δµk∥ to prevent the predicted
offset from being too large.

To train the diffusion model, similar to [7], we compute
Ldiff as:

Ldiff ({Xi}, ϕ) = E
i,t,ϵ

[
1

2
w(t)

∥∥∥X̂i −Xi

∥∥∥2] (6)

where X̂i is the denoised latent code with time step t ∼
U(0, T ), w(t) is an empirical time-dependent weighting
function, and ϵ is the added noise. More details can be
found in Sup. Mat.

3.2. Model Fitting
Equipped with the learned generative avatar prior, we recon-
struct a personalized avatar by fitting the generative model
to synthetic views generated from multi-view diffusion.

3.2.1. Multi-view Hallucination and Pose Estimation
Since a single image is not enough for Gaussian recon-
struction, we leverage a pre-trained multi-view diffusion
model [26] to hallucinate 6 synthetic human images from
a single image. After obtaining synthetic views, similar to
[45], we leverage a human pose estimator to obtain the ini-
tial SMPL-X parameters. More details of preprocessing can
be found in Sup. Mat.

3.2.2. Rendering Objective
To optimize the latent feature map, we define the rendering
loss L′

rend during inference as:

L′
rend({Xi}, ψ) =λl2Ll2 + λvggLvgg + λregLreg

+ λncLnc + λdLd.
(7)

Here we use the same equation as in Eq. (4) to calculate the
L2 reconstruction loss Ll2 and perceptual loss Lvgg between
predicted images (normals) and generated synthetic images
(normals). To improve the geometry of the avatar, we addi-
tionally add the normal consistency loss Lnc and the depth
distortion loss Ld from [19]. More details can be found in
the Sup. Mat.

3.2.3. Prior-guided Optimization
Since the multi-view diffusion model generates sparse and
inconsistent images, solely relying on the rendering loss
makes the result blurry and unrealistic. Here, we tackle the
problem by leveraging our pretrained generative avatar prior
as a powerful human prior of 3D appearance and geometry.
More concretely, this prior mainly contributes to three as-
pects including:

Initialization. Random initialization of the latent code
can sometimes cause the optimization to converge to a bad
local minimum. To solve this problem, we leverage our
learned generative model to provide a good starting point
for model fitting. To make our model generalizable to un-
seen test images, we follow [7] to use image-guided sam-
pling. More specifically, for a noisy code X(t) at ev-
ery denoising step t, we additionally compute an approx-
imated rendering gradient g based on testing rendering loss
L′

rend(X
(t)) and add it to the denoised output X̂(t) as an

image-guided correction. More details of this computation
can be found in Sup. Mat.

Regularization. Image-guided sampling provides a good
initialization, but still cannot reconstruct all the details of
test images. To solve this, we refine the sampled latent code
by solving :

min
X

λrendL′
rend(X) + λ′diffLdiff(X). (8)

Here we optimize the diffusion loss defined in Eq. (6)
jointly with the rendering loss, while freezing the weights
of the diffusion and decoder models. Unlike [37], the diffu-
sion model trained in UV feature space serves as a prior to
regularize and inpaint the noisy and incomplete latent code
during optimization.

Pose Optimization. The generated synthetic images from
multi-view diffusion models are inconsistent, and this re-
sults in inaccurate camera and body pose estimation. In-
stead of using noisy 2D joint estimates [4, 34], we optimize
pose parameters via a more effective photometric loss:

Lpose = λl2Ll2 + λvggLvgg + λmaskLmask (9)

where we combine a mask loss Lmask with predefined L2
loss Ll2 and a perceptual loss. Here we optimize both SMPL



Figure 3. Qualitative comparison to SotA methods on CustomHuman. Our method achieves better image and shape quality, enables
3D consistency in side views, and avoids unrealistic reconstruction due to self-occlusion.

parameters and camera poses by back-propagation. We op-
timize the latent code, camera and human poses in an alter-
nating manner to avoid falling into locally suboptimal re-
sults. More details can be found in Sup. Mat.

4. Experiments

In our experiments, we first compare our method to state-
of-the-art (SotA) baselines on two public datasets and then
test the generalization capability of our method on in-the-
wild images. In addition, we provide an ablation study to
investigate the importance of each component in our model.
Datasets. We evaluate our proposed method on THuman2
[55] and CustomHumans [13]. To test the generalization
ability, we also collect some in-the-wild images from the In-
ternet for qualitative comparison. For details see Sup. Mat.
Metrics. Following previous methods [14, 26], we eval-
uate appearance using peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), and perceptual similarity
(LPIPS). For geometry comparison, we compute Chamfer
Distance (CD), Point to Surface (P2S) distance, and normal
consistency (NC). For details see Sup. Mat.
Baselines. We conduct experiments on current state-of-
the-art methods for single-view human reconstruction, in-
cluding Human3Diffusion [54], SIFU [59], SiTH [14], and
a concurrent method, PSHuman [26]. More details about
baselines can be found in Sup. Mat.

4.1. Comparison to SotA.

Table 1 summarizes our quantitative comparisons. Since
Human3Diffusion [54] only supports low-resolution render-
ing, we mainly compare it qualitatively in Fig. 3. Table 1
shows that our method largely outperforms other baselines
in appearance, especially in PSNR. As shown in Fig. 3, our
method generates overall sharper images with more details.
Our method also reconstructs better geometry both quanti-
tatively and qualitatively with better local geometric detail.
Here, we discuss the main reason for the improvements:

Side views. The improvements of appearance and geome-
try are particularly pronounced for side views. This is be-
cause most baselines rely on 2D multi-view diffusion mod-
els to hallucinate side views, which are not 3D consistent. In
contrast, our learned generative avatar model provides ad-
ditional appearance and geometry constraints on multi-view
consistency, yielding better results.

Self-occlusion. With a single input view, self-occlusion in-
evitably happens in the arm and hand regions due to the
articulated nature of the human body as illustrated in Fig. 3.
In the first example, despite the use of the SMPL body prior,
all previous methods fail to accurately reconstruct the left
hand and arm. This is because these baselines tend to over-
fit to the input view, leading to incomplete reconstructions
in occluded regions. In contrast, our method effectively re-
constructs occluded arms and hands by leveraging the 3D



Figure 4. Qualitative comparison to SotA methods on in-the-wild images: Ours outperforms baselines on in-the-wild images by
generating more plausible back/side views, reconstructing finer details such as fingers and hats, and avoids artifacts due to self-occlusion.

Figure 5. Qualitative comparison to PSHuman on fine-sclae
structures. Our method reconstructs complex topologies, like a
ponytail, that deviate from the body topology.

appearance prior from our model. In the second example,
the baselines exhibit artifacts on the clothing due to color
misalignment from the arm, which is exacerbated by self-
occlusion and depth ambiguity. Instead, our method recon-
structs both the arm and clothing, despite the occlusion.
Topology changes. Figure 5 compares our method with the
concurrent PSHuman [26] on two more challenging sub-
jects. Due to fixed topology of the template mesh, PSHu-
man fails to model areas between the arm and face, as well
as the ponytail. These artifacts are present in other SMPL-
based methods [59]. In contrast, our method reconstructs
3D Gaussians and this flexible representation allows it to
reconstruct more complex structures.

4.2. In-the-wild Performance
Figure 6(a) shows qualitative results on in-the-wild images.
MoGA generalizes to loose clothing and challenging poses.
The reconstructed Gaussian avatar can be posed or animated
(Fig. 6(b)), because it is based on SMPL-X. Figure 4 com-
pares results of SotA methods on in-the-wild images. Both

Figure 6. Qualitative results on in-the-wild images. (a) From
an in-the-wild image with challenging poses and clothing, our
method reconstructs a high-quality Gaussian avatar, that enables
realistic novel view synthesis and detailed geometry reconstruc-
tion. (b) The resulting avatar can be animated with SMPL-X poses.

SiTH and SIFU struggle to produce reasonable reconstruc-
tions, often generating blurry back views and unrealistic ap-
pearance. PSHuman works better, but fails to capture fine
details such as fingers and hats, while also introducing ar-
tifacts on clothing. In contrast, by leveraging the learned



Method THuman2.1 CustomHuman

PSNR↑ SSIM↑ LPIPS↓ CD↓ P2S↓ NC↑ PSNR↑ SSIM↑ LPIPS↓ CD↓ P2S↓ NC↑

SIFU[59] 17.5271 0.9219 0.1019 2.6220 2.4450 0.787 16.0198 0.9056 0.1146 2.3717 2.2206 0.809
SiTH [14] 19.4020 0.9344 0.0796 2.2370 1.8459 0.808 17.7986 0.9211 0.0921 2.9142 2.0426 0.788
PSHuman [26] 19.9595 0.9350 0.0778 1.4128 1.2320 0.837 18.6704 0.9223 0.0850 1.9197 1.4695 0.828
Ours 24.0926 0.9455 0.0732 1.3608 1.2226 0.850 23.4383 0.9351 0.0791 1.8086 1.4821 0.834

Table 1. Quantitative comparison with SotA Methods on Thuman2.1 and CustomHuman. Our method outperforms other baselines
by a large margin on appearance and also demonstrates a clear improvement in geometry.

generative avatar prior, our MoGA model faithfully recon-
structs Gaussian avatars in this challenging setting.

4.3. Ablation Study
Since the generative avatar prior is the key to our method,
we focus on ablations that evaluate its effectiveness. An
analysis of pose optimization, unconditional generation,
and robustness to the number of views appears in Sup. Mat.
All experiments are conducted on the CustomHuman
Dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓

w/o Initialization 22.6996 0.9278 0.0891
w/o Avatar Prior 22.5838 0.9288 0.0863
Full Model 23.4383 0.9351 0.0791

Table 2. Ablation. We compare our method with ablated baselines
in which we remove the generative avatar prior for initialization
and regularization.

Effect of initialization. Our generative avatar plays a cru-
cial role in initializing the fitting process. We compare our
method against ablated versions where the latent code is ini-
tialized randomly. As shown in Table 2, MoGA improves
all appearance metrics. Furthermore, qualitative results in
Fig. 7 demonstrate that, without proper initialization, the re-
constructed appearance becomes blurry, particularly in the
face region. This degradation occurs because the optimiza-
tion process converges to a poor local minimum. In con-
trast, our method produces sharper and more accurate fa-
cial reconstructions, highlighting the importance of a well-
initialized latent code.
Effect of generative avatar prior. To evaluate the effect of
the generative avatar prior, we create an ablated version of
our method that directly optimizes SMPL-anchored Gaus-
sians without using the learned decoder and latent diffusion
model. Table 2 shows that the generative avatar prior is im-
portant. In the first example of Fig. 8, removing the genera-
tive avatar prior results in a blurry side view and introduces
a visible white crack between the front and back. This ar-
tifact arises due to the 3D inconsistency of images gener-

Figure 7. Ablation of Initialization. The good initialization pro-
vided by our generative avatar model enhances appearance quality,
reducing blurriness and producing a more detailed face

Figure 8. Ablation of generative avatar prior. The generative
avatar model serves as an important 3D regularization to ensure
3D consistency and inpaint missing regions.

ated by the multi-view diffusion model. In contrast, our
method enforces better 3D consistency. The second exam-
ple in Fig. 8 highlights another issue without our model.
The ablated baseline tends to produce artifacts in occluded
regions. In comparison, incorporating the generative prior
enables our model to inpaint the missing areas effectively,
resulting in a more natural and complete appearance.

5. Conclusion
In this paper, we propose MoGA, a novel approach for
reconstructing Gaussian avatars from a monocular image.
Unlike previous methods that rely solely on multi-view dif-
fusion, we integrate a 3D generative avatar model as a
complementary prior, ensuring 3D consistency by project-
ing images into its latent space and enforcing both 3D ap-
pearance and geometry constraints. We formulate Gaussian
avatar creation as model inversion by fitting the generative
avatar model to synthetic images from 2D diffusion mod-
els. Our method sets a new state-of-the-art in reconstruction
quality and 3D consistency, generalizing well to in-the-wild
images while producing animatable avatars without post-
processing. Limitations and discussions appear in Sup. Mat.
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