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Fig. 1. Quadrotor camera tools generate trajectories based on user-specified keyframes in time and space. Reasoning about spatio-temporal distances is hard
for users and can lead to visually unappealing results and fluctuating camera velocities. Top row: user-specified keyframes (blue) are positioned in time, such
that the camera first moves too slow and then needs to accelerate drastically to reach the specified end-point. Bottom row: results of our method which
automatically positions keyframes (blue) in time such that the camera moves smoothly over the entire trajectory (illustrative example).

In this paper we first contribute a large scale online study (N = 400) to better
understand aesthetic perception of aerial video. The results indicate that it
is paramount to optimize smoothness of trajectories across all keyframes.
However, for experts timing control remains an essential tool. Satisfying this
dual goal is technically challenging because it requires giving up desirable
properties in the optimization formulation. Second, informed by this study
we propose a method that optimizes positional and temporal reference fit
Jjointly. This allows to generate globally smooth trajectories, while retaining
user control over reference timings. The formulation is posed as a variable,
infinite horizon, contour-following algorithm. Finally, a comparative lab
study indicates that our optimization scheme outperforms the state-of-the-
art in terms of perceived usability and preference of resulting videos. For
novices our method produces smoother and better looking results and also
experts benefit from generated timings.
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1 INTRODUCTION

Camera quadrotors have become a mainstream technology but fine-
grained control of such camera drones for aerial videography is a
high-dimensional and hence difficult task. In response several tools
have been proposed to plan quadrotor shots by defining keyframes
in virtual environments [Gebhardt et al. 2016; Gebhardt and Hilliges
2018; Joubert et al. 2015; Roberts and Hanrahan 2016]. This input is
then used in an optimization algorithm to automatically generate
quadrotor and camera trajectories. Intuitively, smooth camera mo-
tion is an obvious factor impacting the visual quality of a shot. This
intuition alongside expert-feedback [Joubert et al. 2015] and litera-
ture on (aerial) cinematography [Arijon 1976; Audronis 2014; Hen-
nessy 2015] forms the basis for most existing quadrotor tools. These
take a spline representation, connecting user specified keyframes,
and optimize higher derivatives of these splines, such as jerk.

Balasubramanian et al. [2015] define global smoothness as “a
quality related to the continuity or non-intermittency of a move-
ment, independent of its amplitude and duration”. However, because
keyframe timings are kept fixed in current quadrotor camera opti-
mization schemes [Gebhardt et al. 2016; Joubert et al. 2015], or close
to the user input [Roberts and Hanrahan 2016], smooth motion can
only be generated subject to these hard-constraints. This can cause
strong variation of camera velocities across different trajectory seg-
ments and result in visually unpleasant videos.
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Consider popular fly-by-shots, such as the one illustrated in Fig-
ure 1, where an object is filmed first from one direction and then
gradually the camera yaws around it’s own z-axis by 180° as the
quadrotor flies past the object until it is filmed from the opposing
direction. To achieve visually pleasing footage both the quadrotor
motion and the camera’s angular velocity need to be smooth. Users
generally struggle with this or similar problems in which they place
the keyframes in the correct spatial location but too close (or too
far) to each other temporally (see Figure 1, top and [video]). This
is indeed a difficult task because keyframes are specified in 5D (3D
position and camera pitch and yaw) and imagining the resulting
translational and rotational velocities is cognitively demanding.

Although existing work provides UI tools (i.e. progress curves,
timelines) to cope with this problem, it has been shown that users,
especially novices, struggle to create smooth camera motion over
a sequence of keyframes [Gebhardt and Hilliges 2018]. While op-
timizing for global smoothness may address this issue for novices,
an interesting tension arises when looking at experienced users.
Experts explicitly time the visual progression of a shot in order to
achieve desired compositional effects [Joubert et al. 2015] (e.g. ease-
in, ease-out behavior). Our first contribution is a large online study
(N = 424), highlighting this issue, where non-expert designed videos
were rated more favorable when optimized for global smoothness
while expert-designed videos were perceived as more pleasing with
hard-constrained timings. To the best of our knowledge, this is the
first study that provides empirical evidence for global smoothness
indeed being important for the perception of aerial videography:.

Embracing this dichotomy (of smoothness versus timing con-
trol), our second contribution is a trajectory optimization method
that takes smoothness as primary objective and can re-distribute
robot positions and camera angles in space-time. We propose the
first algorithm in the area of quadrotor videography that treats
keyframe timings and positions, and reference velocities as soft-
constraints. This extends the state-of-the-art in that it allows users
to trade off path-following fidelity with temporal fidelity. Such a
formulation poses significant technical difficulties. Prior methods
incorporate keyframe timings as hard-constraints, yielding a qua-
dratic and hence convex optimization formulation (depending on
the dynamical model), allowing for efficient implementation. In con-
trast, we formulated the quadrotor camera trajectory generation
problem as a variable, infinite horizon, contour-following algorithm
applicable to linear and non-linear quadrotor models. Our formula-
tion has to discretize the model at each solver iteration according
to the optimized trajectory end time. Although this formulation
is no-longer convex, it is formulated as well-behaved non-convex
problem and our implementation runs at interactive rates.

Finally, we show the benefit of our method compared to the state-
of-the-art in a lab study in which we compare different variants
of our method with [Gebhardt et al. 2016]. It can be shown that
our method positively effects the usability of quadrotor camera
tools and improves the visual quality of video shots for experts and
non-experts. Both benefit from using an optimized timing initially,
fine-tuning it according to their intention. In addition, the user
study revealed that timing control does not need to be precise but
is rather used to control camera velocity in order to create a certain
compositional effect.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 90. Publication date: August 2018.

2 RELATED WORK

Camera Control in Virtual Environments: Camera placement [Lino
and Christie 2012], path planning [Li and Cheng 2008; Yeh et al. 2011]
and automated cinematography [Lino et al. 2011] have been studied
extensively in virtual environments (VE), for a survey see [Christie
et al. 2008]. These works share our goal of assisting users in the
creation of camera motion (e.g., [Drucker and Zeltzer 1994; Lino and
Christie 2015]). Nevertheless, it is important to consider that VEs
are not limited by real-world physics and robot constraints, hence
may yield trajectories that can not be flown by a quadrotor.

Character Animation: In character animation, a variety of meth-
ods exist which are capable of trading-off positional and temporal
reference fit to optimize for smoother character motion. In [Liu
et al. 2006], the authors specify constraints in warped time and then
optimize the mapping between warped and actual time according
to their objective function. For an original motion, [McCann et al.
2006] find the convex hull of all physically valid motions attainable
via re-timing. Plausible new motions are then found by performing
gradient descent and penalizing distance between possible solutions
and the feasible hull. Like [Liu et al. 2006], our formulation is based
on a time-free parameterization of a reference path. In contrast to
the character animation methods, we adjust timings by optimizing
the progress of the quadrotor camera on the reference according to
a objective favoring smoothness. Unlike [McCann et al. 2006] our
formulation does not require nested optimization.

Trajectory Generation: Trajectory generation for dynamical sys-
tems is a well studied problem in computer graphics [Geijtenbeek
and Pronost 2012] and robotics [Betts 2009]. Approaches that encode
the system dynamics as equality constraints to solve for the control
inputs along a motion trajectory are referred to as spacetime con-
straints in graphics [Witkin and Kass 1988] and direct collocation
in robotics [Betts 2009]. Used out-of-the box such approaches can
lead to slow convergence time especially with long time horizons
(cf. [Roberts and Hanrahan 2016]).

With the commoditization of quadrotors, the generation of drone
trajectories shifted into the focus of research. Exploiting the differen-
tial flatness of quadrotors in the output space, [Mellinger and Kumar
2011] generated physically feasible minimal snap trajectories. Sev-
eral methods exist for the generation of trajectories for aggressive
quadrotor flight [Bry et al. 2015; Mellinger et al. 2012]. Tradition-
ally, these methods convert a sequence of input positions into a
time-dependent reference and based on a dynamical model gener-
ate a trajectory which follows this reference. For [Bry et al. 2015;
Mellinger and Kumar 2011], time optimization is done in a cascaded
manner where an approximated gradient descent for keyframe tim-
ings is calculated based on the original optimization problem. These
formulations suffer from very long runtimes as the original problem
needs to be called once for each keyframe to calculate the gradient
approximation. In contrast, our method optimizes keyframe timings
and trajectory jointly reducing optimization runtime and allowing
to trade-off temporal and positional fit. In [Mellinger et al. 2012],
sequentially composed controllers are used to optimize the timing of
a trajectory such that physical limits are not violated given desired
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feed-forward terms. Our work does not only ensure physical fea-
sibility but is also capable of generating trajectories with different
dynamics (smooth and more aggressive) for the same spatial input.

Computational Support of Aerial Videography: A number of tools
for the planning of aerial videography exists. Commercially avail-
able applications and consumer-grade drones often place waypoints
on a 2D map [APM 2016; DJI 2016; Technology 2016] or allow
to interactively control the quadrotor’s camera as it tracks a pre-
determined path [3D Robotics 2015]. These tools generally do not
provide means to ensure feasibility of the resulting plans and do
not consider aesthetic or usability objectives in the video compo-
sition task. The planning of physically feasible quadrotor camera
trajectories has recently received a lot of attention. Such tools allow
for planning of aerial shots in 3D virtual environments [Gebhardt
et al. 2016; Gebhardt and Hilliges 2018; Joubert et al. 2015; Roberts
and Hanrahan 2016] and employ optimization to ensure that both
aesthetic objectives and robot modeling constraints are considered.

In [Joubert et al. 2015] and [Gebhardt et al. 2016], users spec-
ify keyframes in time and space. These are incorporated as hard-
constraints into an objective function. Solving for the trajectory only
optimizes camera dynamics and positions. This causes the genera-
tion of locally smooth camera motion (between keyframes) but can
lead to varying velocities across keyframes. Joubert et al. [2015] de-
tect violations of the robot model constraints. However, correcting
these violations is offloaded to the user. In contrast, by generating
timings or incorporating them as soft-constraints our optimization
returns the closest feasible fit of the user-specified inputs, subject to
our robot model, and generates globally smooth quadrotor camera
trajectories. [Gebhardt and Hilliges 2018] re-optimizes keyframe
timings in a cascaded optimization scheme. Here an approximated
gradient on the keyframe times produced by the optimization for-
mulation of [Gebhardt et al. 2016] is calculated and used to improve
visual smoothness. However, this approach is relatively slow and
the paper reports that users therefore did not make significant use
of it in the evaluation. In contrast, our method runs at interactive
rates optimizing trajectories of different duration within seconds
(avg. 2.4 s). Roberts and Hanrahan [2016] take physically infeasible
trajectories and compute the closest possible feasible trajectory by
re-timing the trajectories subject to a non-linear quadrotor model.
In contrast, we prevent trajectories from becoming infeasible at
optimization time. Although the method of [Roberts and Hanrahan
2016] theoretically can be used to adjust timings based on a jerk
minimization objective, our method can also trade-off the positional
fit of a reference path in order to achieve even smoother motion.

Recently, several works address the generation of quadrotor cam-
era trajectories in real-time to record dynamic scenes. [Galvane et al.
2016; Joubert et al. 2016] plan camera motion in a lower dimensional
subspace to attain real-time performance. Using a Model Predictive
Controller (MPC), [Naegeli et al. 2017] optimizes cinematographic
constraints, such as visibility and position on the screen, subject to
robot constraints for a single quadrotor. [Négeli et al. 2017] extends
this work for multiple drones and allows actor-driven tracking on
a geometric path. Focusing on dynamic scenes, this work does not
cover the global planning aspects of aerial videography.

Online Path Planning: Approaches that address trajectory opti-
mization and path following have been proposed in the control
theory literature. They allow for optimal reference following given
real world influences. Methods like MPC [Faulwasser et al. 2009]
optimize the reference path and the actuator inputs simultaneously
based on the system state. MPC has been successfully use for the real-
time generation of quadrotor trajectories [Mueller and D’Andrea
2013]. Nevertheless, [Aguiar et al. 2008] show that the tracking error
for following timed-trajectories can be larger than for following a
geometric path only. Motivated by this observation Model Predictive
Contouring Control (MPCC) [Lam et al. 2013] has been proposed to
follow a time-free reference, optimizing system control inputs for
time-optimal progress. MPCC approaches have been successfully
applied in industrial contouring [Lam et al. 2013] and RC racing
[Liniger et al. 2014]. Recently, [Nageli et al. 2017] extended the
MPCC-framework to allow for real-time path following in 3D space
with quadrotors. We propose a trajectory generation method that
is conceptually related to MPCC formulations in that it optimizes
timings for a quadrotor camera trajectory based on a time-optimal
path-following objective. Our formulation treats keyframes, user
specified reference timings and velocities as well as smoothness
across the entire trajectory jointly in a soft-constrained formulation
and allows users to produce aesthetically more pleasing videos.

3 METHOD

We propose a new method to generate globally smooth quadrotor
camera trajectories. Our aim is to allow even novice users to design
complex shots without having to explicitly reason about 5D spatio-
temporal distances. Our central hypothesis is that smoothness across
the entire trajectory matters and hence is the main objective of our
optimization formulation. We first introduce the model of the system
dynamics in Section 3.1 and discuss our optimization formulation
in Section 3.2-3.5. See Appendix A for a table of notations.

3.1 Dynamical Model

We use the approximated quadrotor camera model of [Gebhardt et al.
2016]. This discrete first-order dynamical system is incorporated as
equality constraint into our optimization problem:

Xi+1 = AX; + Buj + ¢, Umin < Ui < Umax,

x; =r, Vg, Vg, Pg» T ‘/}q»lﬁg"/ﬁ'g’f’ anwg’qﬁg»r’ ‘/’q"ﬁgv¢g]T’ (1)
u; = [F, My, , My, . Mg 1",

where x; € R* are the quadrotor camera states and u; € R are the
inputs to the system at stage i. Furthermore, r € R is the position of
the quadrotor, l//q is the quadrotor’s yaw angle and 1//9 and g{)g are the
yaw and pitch angles of the camera gimbal. The matrix A € R24¥24
propagates the state x forward, the matrix B € R?4*¢ defines the
effect of the input u on the state and the vector g € R?* that of
gravity for one time-step. F is the the force acting on the quadrotor,
My, is the torque along its z-axis and My, . My, are torques acting
on pitch and yaw of the gimbal.

Please note that our formulation is agnostic to the dynamical
model of the quadrotor. We verified this by incorporating the non-
linear model of [Nageli et al. 2017]. Qualitatively this does not impact
results, yet the computational cost increases (see Figure 5).
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3.2 Variable Horizon

In space-time optimization, the horizon length is defined by dividing
the timing of the last keyframe by the discretization step At. How-
ever, one key idea in our formulation is that we treat trajectories, at
least initially, as time free. In particular, our method does not take
timed keyframes as input and therefore traditional approaches to
determining the horizon length are not applicable.

Taking inspiration from MPC literature [Michalska and Mayne
1993], we make the length of the horizon an optimization variable
itself by adding the trajectory end time T into the state space of our
model (x = [x, T]T € R?® with % = 0). This has implications for
the dynamical model. At each iteration of the solver we adjust the
discretization step At = % Here N is the number of stages in the
horizon spanning the entire trajectory. The forward propagation
matrices A and B are also recalculated based on the current At.

3.3 Reference Tracking Metric

We require a time-free parameterization of the reference to opti-
mize the timing of keyframes. We use a chord length parameterized,
piecewise cubic polynomial spline in hermite form (PCHIP) to in-
terpolate the user-defined keyframes [Fritsch and Carlson 1980].
The resulting chord length parameter 6 describes progress on the
spatial reference path defined as f;(6) = [rg(8), ¥4(0), $4(8)] € R.
To prevent sudden changes of the progress parameter, we add 0
into our model and formulate its dynamics with the following linear
discrete system equation:

0;+1 =CO; + Dv;, 0 £ v; < Umax, (2)
where ©; = [6;, 6;] is the state and v; is the input of 0 at step i and
C € R?*2 D e R2X1 are the discrete system matrices. Intuitively, v;

approximates the quadrotor’s acceleration as 6 is an approximation
of the trajectory length.

Fig. 2. The position (x,y,z) and orientation (yaw, pitch) over time are a
function of path progress f7(0). Inset: to advance along the path we optimize
for smooth progress 6 via minimization of lag €/ and contour €€ error.

With this extension of the dynamic model in place, we now formu-
late an objective to minimize the error between the desired quadro-
tor position r;(6) and the current quadrotor position r. With respect
to the time optimization we want the quadrotor to follow ry;(0;)
as closely as possible in time (no lag) but allow deviations from its
contour for smoother motion. This distinction is not possible when
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minimizing the 2-norm distance to the reference point. For this rea-
son, we differentiate between a lag e! and a contour error €€ similar
to MPCC approaches (e.g., [Lam et al. 2013]). We approximate the
true error from the spline by using the 3D-space approximation of
lag &' and a contour error ¢ of [Négeli et al. 2017] (see Figure 2,
inset). The approximated lag error is defined as,

é'(6.ri) =e'n 3)
where e = r (0) — r; is the relative vector between desired and

actual positions and n = ”;Z—Eg;l‘ is the normalized tangent vector

of ry(0) at 0. The resulting contour error approximation is given

by:

&(0,11) = lle - é'(@,ro)nl|. @
Both error terms are then inserted into the cost term,
Al T NI
oo [dO] e
C (95 rl) éc(e) Q éc(e) ’ (5)

where Q is a diagonal positive definite weight matrix. Minimizing
¢ will move the quadrotor along the user defined spatial reference.

Our experiments have shown that distinguishing between lag
and contour error is important for the temporal aspects of the opti-
mization. Trajectories generated by minimizing ||e||?, depending on
the weighting of the term, either lag behind the temporal reference
or cannot trade-off positional fit for smoother motion. With appro-
priate weights for lag and contour error this behavior is avoided.

To give users fine grained control over the target framing we
follow user-specified viewing angles in an analogous fashion. To
attain the camera yaw and pitch we minimize the 2-norm discrep-
ancy between desired and actual orientation of the quadrotor and
camera gimbal. Given by the following cost terms:

Y (0.9, ¥, = I¥a(0) = Wg,i + Yg, I (6)
c?(0,4g.0) = 11$4(0) = pg.ill%, ™

where Vg i, g, i, ¢g,i are the current yaw and pitch angles. Further-
more, we preprocess every keyframe by adding a multiple of 27
to yaw and pitch such that the absolute distance to the respective
angle of the previous keyframe has the smallest value.

3.4 Smooth Progress

For the camera to smoothly follow the path, we need to ensure that
0 progresses. By specifying an initial 6y and demanding 6 to reach
the end of the trajectory in the terminal state 0, the progress of
0 can be forced with an implicit cost term. We simply penalize the
trajectory end time by minimizing the state space variable T,

"(T)=T. (8)

Minimizing the end-time can be interpreted as optimizing trajecto-
ries to be as short as possible temporally (while respecting smooth-
ness and limits of the robot model). This forces € to make progress
such that the terminal state 6y is reached within time T7.

To ensure that the generated motion for the quadrotor is smooth,
we introduce a cost term on the model’s jerk states,

J(E, Ygs Vg, bg) = lliill%, ©)

!This also prevents solutions of infinitely long trajectories in time where adding steps
with u; = 0 is free wrt. to Eq. (9)).
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where j; = [¥, l/;'q, lﬁg qﬁ"g]T is jerk and angular jerk. We minimize jerk
since it provides a commonly used metric to quantify smoothness
[Hogan 1984] and is known to be a decisive factor for the aesthetic
perception of motion [Bronner and Shippen 2015]. This cost term
again implicitly effects 6 by only allowing it to progress such that
the quadrotor motion following the reference path f;(6) is smooth
according to (9). This is illustrated in Figure 2, left. The blue dot (6;)
progresses on the reference path such that the generated motion of
the quadrotor following f;(6;) is smooth.

To still be able to specify the temporal length of a video shot with
this formulation, we define the cost term,

(N, A) = [|ten — TII%, (10)

where we minimize the 2-norm discrepancy between the trajectory
end time T and a user-specified video length t;,.,,. In case a trajectory
is optimized for Eq. (10), the weight for Eq. (8) is set to zero.

3.5 Optimization Problem

We construct our overall objective function by linearly combin-
ing the cost terms from Eq. (5), (6), (7), (8), (9), (10) and a 2-norm
minimization of v. The final cost is:

Ji = wpcP(0i,1;) + W¢C¢(9i,l//q,i,!//g,i) + W¢C¢(9iv¢g,i) (11)
+wic (8. Jig. Vg $g) + Wenac®"(T) + wienc!* (N, At) + wo [0l |2,
where the scalar weight parameters wp, Wy, Wg, Wj, Wends Wien, Wo >

0 are adjusted for a good trade-off between positional fit and smooth-
ness. The final optimization problem is then:

x,u,0,v

N
minimize Z Ji (12)
i=0

subject to x¢ = ko (initial state)
Q)=0

Oy =L

Xi+1 = Ax; +Bu; +g¢
041 =CO; + Dy;

Xmin < Xi < Xmax,

(initial progress)
(terminal progress)
(dynamical model)

(progress model)

(state bounds)
Umin < W; < Umax, (input limits)
0<0; <Onax

0 < v; < Vmax

(progress bounds)
(progress input limits),

where J; is quadratic in x, u, v and linear in ©. When flying a
generated trajectory we follow the optimized positional trajectory
r with a standard LQR-controller and use velocity and accelerations
states of x as feed-forward terms.

4 IMPLEMENTATION

We implemented the above optimization problem with MATLAB and
solve it with the FORCES Pro software [Domahidi and Jerez 2017]
which generates fast solver code, exploiting the special structure in
the non-linear program. We set the horizon length of our problem to
be N = 60. The solver requires a continuous path parametrization.
To attain a description of the reference spline across the piecewise
sections of the PCHIP spline, we need to locally approximate it.
Therefore, we implemented an iterative programming scheme able

to generate trajectories at interactive rates. For further details on the
IP-scheme and the empirically derived weights of the optimization
problem, we refer the interested reader to Appendix B.

5 TECHNICAL EVALUATION

To evaluate the efficacy of our method in creating smooth camera
motion even on problematic (for hard-constrained methods) inputs,
we designed a challenging shot and generated two trajectories, one
with [Gebhardt et al. 2016] and the other one with our method.

Figure 3 plots the resulting positions in x, y, z and the correspond-
ing camera angles. Our method adjusts the timing of the original
keyframes (k-k4) to attain smoother motion over time. This is visi-
ble when comparing the x-dimension of ours and [Gebhardt et al.
2016]. The need to trade-off timing and spatial location is illustrated
by the orientation plot (Figure 3, bottom). The keyframes ky, k3
have been moved very close to each other which would cause ex-
cessive yaw velocities since the quadrotor would need to perform a
180° turn. Since our method trades-off the positional fit it generates
smooth motion also for the camera orientation.

We also conducted a qualitative comparison by recording differ-
ent videos with the same consumer grade drone. The quadrotor
followed trajectories generated with our method and with [Geb-
hardt et al. 2016] using the same input. Figure 4 shows resulting
video frames and jerk profiles (also see [video]). Although the tim-
ing of keyframes was improved for smoothness, our method still
generates trajectories with lower magnitudes of positional jerk and
less variation in angular jerk.

To assess quantitatively that our method generates smoother
camera motion, we compare the averaged squared jerk per horizon
stage of user-designed trajectories generated with our method, with
[Joubert et al. 2015] and with [Gebhardt et al. 2016]. Figure 5 shows

— X — y — 2z — yaw — pitch

28: k, |[Geb. et al. 2016] |k, | ' k3/"»—fk4' ]
m a0l y 1 1
20| |
0> 1 1 1 1 I 1 1 ]
150 —9 2 4 3 8 10 12 14  16s
100} ko bk, ks ky |
50} 1
o O B
=50} ]
-100f — 1

_150 L 1 L L L L L
0 2 4 6 8 10 12 14 16s

oo [ Faour] o[ ]
m 40| = R
20} / .
0
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150 . . : . . : : :
100} k¢ o kob | ks k4

50
o 0
-50

-100
-150

T T T T
TR R
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Fig. 3. Position (x,y,z in m) and orientation (yaw, pitch in o) over time (in
s) for the same user-specified keyframes (k1-k4) for [Gebhardt et al. 2016]
(top) and our method (bottom).
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Fig. 4. Qualitative comparison of video frames as well as jerk (in Sﬂ3) and angular jerk (in S—°3) profiles of two trajectories generated with [Gebhardt et al. 2016]

(top row) and our method (bottom row).

lower jerk and angular jerk values for our optimization scheme
compared to both baseline methods, across all trajectories.

Finally, we evaluate the optimization runtime of our method.
Therefore, we generated trajectories from the studies of [Gebhardt
and Hilliges 2018; Joubert et al. 2015] using the approximated linear
quadrotor model of Sec. 3.1 and the non-linear model of [Négeli
et al. 2017]. We measured runtime on a standard desktop machine
(Intel Core i7 4GHz CPU, Forces Pro NLP-solver). The computation
time for the trajectories are shown in Figure 5. In average, it took
2.41 s (SD = 2.50 s) to generate a trajectory with the linear model
and 14.79 s (SD = 15.50 s) with the non-linear model.

6 PERCEPTUAL STUDY

Our technical evaluation shows that the proposed method generates
smoother trajectories. However, it has not been validated that the
trajectories generated with our method result in aesthetically more
pleasing video. To this end, we conduct an online survey compar-
ing videos which follow user-specified timings, generated with the
methods of [Gebhardt et al. 2016; Joubert et al. 2015], with videos
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Fig. 5. Left: comparing avg. squared jerk (in ':—32) and angular jerk (in :—i) per
horizon stage of different trajectories for our method, [Gebhardt et al. 2016]
and [Joubert et al. 2015] (note that latter uses a different model). Right: our
method’s optimization runtime for different trajectories is plotted against
their temporal length (both in sec). We differentiate between using a linear
and a non-linear quadrotor model for trajectory generation.
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generated by our method. Therefore, we compare user-designed
trajectories from prior work [Gebhardt and Hilliges 2018; Joubert
et al. 2015]. For each question we take the user-specified keyframes
of the original trajectory and generated a time-optimized trajectory
of the same temporal duration (via Equation 10) using our method.
We then render videos for the original and time-optimized trajectory
using Google Earth (based on GPS-coordinates and camera angles).
The two resulting videos are placed side-by-side, randomly assigned
to the left or right, and participants state which video they prefer on
a forced alternative choice 5-point Likert scale. The five responses
are: "shot on the left side looks much more pleasing”, "shot on the
left side looks more pleasing”, "both the same", "shot on the right
side looks more pleasing”, and "shot on the right side looks much
more pleasing". Each participant had to compare 14 videos.

6.1 Results

In total, 424 participants answered the online survey. Assuming
equidistant intervals, we mapped survey responses onto a scale from
-2 to 2, where negative values mean that the original, timed video is
aesthetically more pleasing, 0 indicates no difference and a positive
value indicates a more aesthetically pleasing time-optimized video.
In order to attain interval data, our samples are build by taking
the mean of the Likert-type results of the expert and non-expert
designed videos per participant. Visual inspection of residual plots
did not reveal any obvious deviations from normality.

Evaluating all responses of the survey, we try to attain a mean
which compensates random participant effects. Therefore, we con-
struct a linear mixed model using the participant as random inter-
cept, the video as fixed intercept and specify a contrast such that
the additionally introduced fixed-effect intercept represents the ad-
justed mean of the data. This overall mean has a positive value with
a high confidence (see Figure 6). A type IIl ANOVA showed that
there is a significant difference between zero (no effect) and the
adjusted mean (F(1,856) = 515.4,p < 0.001). Unpacking this result
further, we distinguish between videos that have been designed by
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non-expert users (data from [Gebhardt and Hilliges 2018]) and expert
users (i.e. cinematographers, data from [Joubert et al. 2015]). Ana-
lyzing the results for significance, we perform a one sample t-test
on the averaged Likert ratings for expert- and non-expert-designed
videos. The effect of both conditions and their confidence intervals
are shown in Figure 6. While they are significant for both conditions
(expert: t(423),p < 0.001; non-expert: t(423), p < 0.001), the effect is
positive and amplified for non-expert designed videos and negative
for expert designed videos.

All —-
Non-Experts —
Experts

03 0201 0 01 02 03 04 05 06 07

Fig. 6. Mean and 95% confidence interval of the effect of optimization
scheme on the preference of all, non-expert designed and expert designed
videos. Positive values indicate a preference for videos generated with our
method. Negative values indicate that videos generated with the methods
of [Gebhardt et al. 2016; Joubert et al. 2015] are preferred.

6.2 Discussion

The perceptual study provides strong evidence that our method has
a positive effect on the aesthetic perception of aerial videos. Fur-
thermore, it has shown that this effect is even stronger for videos
by non-experts. This supports our hypothesis that non-experts bene-
fit from generating trajectories according to global smoothness as
main criteria. Looking at expert created videos the picture is differ-
ent. These videos were rated as more pleasant when generated with
methods which respect user-specified timings. This can be explained
by the fact that experts explicitly leverage shot timings to create
particular compositional effects. Optimizing for global smoothness
removes this intention from the result. However, the significant
positive effect of our method on all responses and a larger effect
size for the positive effect of non-expert- compared to the negative
effect of expert designed videos indicate that smooth motion is a
more important factor for the aesthetic perception of aerial videos
than timing. This suggests that users, especially experts, could ben-
efit from a problem formulation which allows for soft-constrained
instead of hard-constrained timings. In this way, users could still
employ shot timings to create compositional effects, while the opti-
mization scheme generates trajectories trading-off user-specified
timings and global smoothness.

Based on these results, we formulate three requirements for
quadrotor camera generation schemes: 1) smoothness should be
the primary objective of quadrotor camera trajectory generation,
2) methods should auto generate or adjust keyframe timings to
better support non-experts, 3) while providing tools for experts
to specify soft-constrained timings. The proposed method already
full-fills requirement 1) and 2). In the next section, we propose how
our method can be extended such that all requirements are met.

7 METHOD EXTENSIONS

Recognizing the need to provide both global smoothness and explicit
user control over camera timings, we present two method extensions

to control camera motion: an approach based on "classic" keyframe
timings and a further approach based on velocity profiles.

7.1 Keyframe Timings

We augment our objective function with an additional term for
soft-constraint keyframe timings. The original formulation does not
allow for the setting of timing references based on horizon stages:
due to the variable horizon we lack a fixed mapping between time
and stage. To be able to map timings with the spatial reference,
we use the §-parameterization of the reference spline. Reference
timings hence need to be specified strictly monotonically increasing
in 0. Based on the reference timings and the corresponding 8-values
we interpolate a spline through these points, which results in tim-
ing reference function t;(0) which can be followed analogously to
spatial references by minimizing the cost,

¢t (0,1, At) = |[t4(0) — (i + A)| |2, (13)

where i is the current stage of the horizon and At is the current
discretization of the model. We add this cost into (11) and assign a
weight to specify its importance w;. By setting the value of w; to a
very large number, quasi hard-constrained keyframes are attainable.

7.2 Reference Velocities

The above extension enables mimicry of timing control in prior
methods. However, the actual purpose of specifying camera timings
in a video is to control or change camera velocity to achieve a
desired effect (recall the fly-by example). Since determining the
timing of the shot explicitly is difficult, we propose a way for users
to directly specify camera velocities. We extend the formulation of
our method to accept reference velocities as input. Again, we use
the 0-parameterization to assign velocities to the reference spline f;.
To minimize the difference between the velocity of the quadrotor
and the user-specified velocity profile v;(6), we specify the cost,

c¥(0,i,At) = [|vg(0) — i n||?, (14)

where we project the current velocity of the quadrotor r; on the
normalized tangent vector of the positional reference function n.
We add this cost term and a weight wy, to (11).

8 USER STUDY

To understand whether our final method has the potential to im-
prove the usability of quadrotor camera tools, whether soft-constrained
timing methods produce videos of similar perceived aesthetics then
hard-constrained timing methods and whether experts can benefit
from our method, we conduct an additional user study. In this study,
we compare different variants of our method with the method of
[Gebhardt et al. 2016] as representative for quadrotor camera opti-
mization schemes which use hard-constrained keyframe timings.

8.1 Experimental Design

User Interface: In our experiment we used the tool of [Gebhardt
and Hilliges 2018] and extended the UI with a toolbar. This toolbar
contains a slider to specify w) (see Equation 11) and depending
on the condition, a progress curve or a velocity profile. A progress
curve allows for the editing of the relative progress on a trajectory
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Fig. 7. Boxplots for the results of the user study (T1 on upper row, T2 on lower row). The investigated conditions are auto (a.), velocity (v.), soft-timed (s.-t.), and
timed (t.). Task execution time is depicted in minutes. Aesthetics, smoothness and task load are shown in the respective scales of the questionnaire items. Time
updates and number of generations are counts. In case the data of a measure is normally distributed the mean is displayed (red box).

over time (see Figure 8, a). A velocity profile enables editing of the
camera speed over the progress on the trajectory (see Figure 8, b).

Experimental conditions: We investigate four different conditions:
1) In timed, participants work with the optimization method of [Geb-
hardt et al. 2016] and a progress curve (see Figure 8, a). 2) Soft-timed
uses our optimizer and the progress curve. Participants can decide
whether they want to specify keyframe timings (see Equation 13)
or use the auto-generated timings. 3) In auto participants work
with our optimization and the keyframe timings it provides. They
can choose to fix the end time of a trajectory (see Equation 10).
4) Velocity uses our method and a velocity profile (see Figure 8,
b). Participants can decide whether they want to specify camera
velocity (see Equation 13) or use the auto-generated speed.

Tasks: The study comprises two tasks: 1) Participants were asked
to design a free-form video of a building in a virtual environment
(T1). We asked participants to keep the spatial trajectory as similar as
possible across conditions whereas the dynamics of camera motion
were allowed to differ. They performed the task in the conditions
timed, soft-timed and auto. 2) Participants were asked to faithfully
reproduce an aerial video shot with varying camera velocity (T2).
Participants should try to reproduce camera path and dynamics of
the reference video. This task was performed with the conditions
timed, soft-timed and velocity to investigate the level of control
over timing afforded by the different conditions. We use a within-
subjects design and counterbalance order of conditions within a
task to compensate for learning effects.

Procedure: Participants were introduced to the system and the
four conditions and were given time to practice using the tool in a

(a) - (b)

Fig. 8. Progress curve (a) and velocity profile (b).
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tutorial taks. Participants then solved T1 and T2 in the respective
conditions. Tasks were completed when participants reported to
be satisfied with the designed shot (T1) or the similarity to the
reference (T2). For each task and condition participants completed
the NASA-TLX and a questionnaire on levels of satisfaction with the
result. Finally, a short exit interview was conducted. A session took
on average approximately 70 min (introduction ~ 9 min, tutorial ~
7 min, T1 ~ 22 min, T2 =~ 23 min).

Participants: We recruited 12 participants (5 female, 7 male). We
purposely included 3 experts: an avid hobby quadrotor videogra-
pher, a professional videographer, experimenting with quadrotor
videography in his free-time, and a professional quadrotor videog-
rapher. The remaining participants reported no experience in aerial
or normal photo- or videography.

8.2 Results

We analyze the effect of the conditions on the usability of the tool
and the aesthetics of the resulting videos. For significance testing,
we ran a one-way ANOVA if the normality assumption holds and a
Kruskal-Wallis test when it is violated. Analyzing the data of experts
and non-experts separately, we found no significant differences in
results and thus will not differentiate between them in this section.

Usability. To asses the effect of our method on the usability of
the tool, we asked participants to fill out NASA-TLX and collected
interaction logs (e.g. task execution time). In T1, auto has the low-
est median in terms of task load, followed by soft-timed and timed
(see Figure 7). This ranking remains the same for all interaction
logging measures of T1 (see task execution time (TET), time updates
and number of generations). Although there is no significant ef-
fect of conditions in T1 on task load (F(2,33) = 1.78,p = 0.18),
the other measures do differ significantly (task execution time:
H(2) = 7.38,p < 0.03; time updates: H(2) = 10.45,p < 0.01;
number of generations: H(2) = 13.93,p < 0.01). Pairwise com-
parison indicates that for TET and time updates auto is signifi-
cantly different to timed (TET: p < 0.01; time updates: p < 0.01).
For number of generations, auto and soft-timed significantly dif-
fer to timed (auto-timed: p < 0.01, soft-timed-timed: p < 0.05).
Other differences are not significant. Auto automatically generates
timings and thereby camera velocities. This explains the condi-
tion’s first rank in terms of task load and interaction logs as it
simplifies the task drastically. For T2, velocity and soft-timed yield
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a lower task load compared to timed, indicating a slight advantage
of our method in terms of usability (differences are not significant:
H(2) = 1.73,p = 0.42). This ranking is confirmed by interaction
logs where sofi-timed and velocity perform similar and are followed
by timed. The number of generations between conditions differs
statistically significantly (H(2) = 8.04,p < 0.02). A pairwise com-
parison indicates that velocity and soft-timed significantly differ
from timed (velocity-timed: p < 0.03; soft-timed-timed: p < 0.01).
Other differences are not significant (TET: H(2) = 2.49,p = 0.29;
time updates: F(2,33) = 1.16,p = 0.33).

Aesthetics. We are also interested in participants’ perceived dif-
ference in aesthetics of the generated videos. We asked participants
in both tasks to assess the visual quality of the video they designed
on a scale ranging from 1 (not at all pleasing) to 7 (very pleasing, see
Figure 7). Although differences are not significant (aesthetics in T1:
H(2) = 4.694,p = 0.096; aesthetics in T2: H(2) = 3.589,p = 0.166),
the variants of our method are perceived to produce aesthetically
more pleasing videos in both tasks. For T1, we also asked users to
rate the smoothness of videos on a scale from 1 (non-smooth) to 7
(very smooth). Figure 7 summarizes the results which do not differ
significantly between conditions (H(2) = 1.828,p = 0.401).

8.3 Discussion

Despite the small sample size of our experiment, the results indicate
a positive effect of our method on both, the perceived aesthetics
of results and the usability of the tool. Auto caused the lowest task
load among conditions and participants where satisfied with the
generated results. Although soft-timed and timed allow to specify
the timing of a shot in the same manor (using the progress-curve or
the timeline), sofi-timed performed better than timed in terms of task
load (T2) and aesthetics (T1 and T2). We think that this preference
can be explained by two factors. First, participants in soft-timed
generally used a workflow in which they initially take generated
timings and then adjust keyframe times to create a desired visual.
This workflow was implemented by experts but also by non-experts
(if they used keyframe timings at all). Second, in sofi-timed keyframe
timings are specified as soft-constraints, allowing the optimizer to
trade-off the temporal fit for a smoother trajectory. This makes
soft-timed more forgiving than timed wrt to the space-time-ratio
in-between keyframes, reducing adjustments participants had to do
in order to solve a task in this condition (see time/velocity updates
and no. of generations in Figure 7). In addition, soft-constrained
timings allow the optimizer to still generate feasible trajectories
even if the underlying user input would not yield a feasible result

The preference for soft-constrained keyframe timings is also an
indication for our general assumption that timing control is not
used to precisely specify the time a camera should be at a certain
position. Instead users employ timing to specify the velocity of the
camera along the path. This is also suggested by looking at the
results of the velocity condition. In T2, it performed similar to soft-
timed and better than timed for task load and aesthetics, indicating
that specifying camera dynamics via a velocity profile is an intuitive
alternative for providing keyframe timings.

9 CONCLUSION

In this paper, we addressed the dichotomy of smoothness and tim-
ing control in current quadrotor camera tools. According to design
requirements in literature [Joubert et al. 2015] their optimizers in-
corporate keyframes timing as hard constraints, providing precise
timing control. A recent study [Gebhardt and Hilliges 2018] has
shown that this causes users to struggle when specifying smooth
camera motion over an entire trajectory. The current optimization
formulations needs to have matching distances between the 5 di-
mensions of a keyframe (position, yaw and pitch of camera angle)
with its temporal position. This poses a particular hard interaction
problem for users, especially novices. In this paper, we propose
a method which generates smooth quadrotor camera trajectories
by taking keyframes only specified in space and optimizing their
timings. We formulated this non-linear problem as a variable hori-
zon trajectory optimization scheme which is capable of temporally
optimizing positional references.

In a large-scale online survey we compared videos generated with
our method to videos generated with [Gebhardt et al. 2016] and
[Joubert et al. 2015]. The results indicate a general preference for
videos generated according to a global smoothness objective, but
also highlight that videos of experts are aesthetically more pleasing
when provided timing control. Based on these insights, we extend
our method such that users can specify keyframe timings as soft-
constraints but still globally smooth trajectories are attained. In
addition, we allow users to specify camera reference velocities set
as soft-constraints in the optimization.

We test the efficacy and usability of our optimization in a com-
parative user study (baseline is [Gebhardt et al. 2016]). The results
indicate that our method positively effects the usability of quadro-
tor camera tools and improves the visual quality of video shots for
experts and non-experts. Both benefit from using an optimized tim-
ing initially and having the possibility of fine-tuning it according
to their intention. In addition, the user study revealed that timing
control does not need to be precise but is rather used to control
camera velocity in order to create a desired compositional effect.
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A NOTATION

For completeness and reproducibility of our method we provide a
summary of the notation used in the paper in Table 1.

Symbol Description

r,I, I, T Quadrotor position, velocity, acceleration and jerk
Vg lﬁq, lﬁq, 1,//q Quad. yaw and angular velocity/acceleration/jerk
Vg, Y, Vg, ¥g | Gimbal yaw and angular velocity/acceleration/jerk
Pg. 459, ¢g ngg Gimbal pitch and angular velocity/acceleration/jerk
X, u Quadrotor states and inputs

A B System matrices of quadrotor

g Gravity

T Trajectory end time

N Horizon length

0 Progress parameter

£,(0) Reference spline (R>)

rqg(0) Positional reference (R3)

¥4(0) Pitch reference

$q(0) Yaw reference

t4(0) Time reference

vg(0) Velocity reference

0,v Progress state and input

C,D System matrices of progress

el ec Approximate lag and contour error

Table 1. Summary of notation used in the body of the paper

B IMPLEMENTATION DETAILS

In this section, we provide details on the weights we use in the objec-
tive function, the iterative programming scheme we implemented
to attain a continuous path parametrization and its performance.

B.1 Optimization Weights

The values for the weights of the objective function we used in the
user study and the online survey are listed in Table 2.

Value
Weight (layed on) || Online survey | User study
wp (position) 1 [0.1, 10] (user-specified)
O (lag, contour err.) || diag(2, 1) diag(2,1)
wy (yaw) 1 [0.1,10] (user-specified)
wy (pitch) 1 [0.1,10] (user-specified)
wj (jerk) 10 100, 10 (if wg, wy, > 0)
wr (end-time) 0 1, 0 (if wy, wepg > 0)
Wend (lengthint.) |1 1
w; (timing) 0 100
wy (velocity) 0 100

Table 2. Values for weights used in Equation 11.

B.2 lIterative Programming Scheme

The solver requires a continuous path parametrization. To attain a
description of the reference spline even in-between the piecewise
sections of the PCHIP-spline, we need to locally approximate it.
Therefore, we implement an iterative programming scheme where
we compute a quadratic approximation of the reference spline
around the 0;-value of each stage in the horizon. This process is
described in Figure 9. In the first iteration of the scheme we ini-
tialize all 6; to zero and fit the entire reference trajectory (black
spline) with a single quadratic approximation (blue spline). By solv-
ing the optimization problem of Equation 12, the progression of
0-values will be decided based on the quadratic approximation (yel-
low dots). For the next iterations, we always take the value of 0;
from the last run of the solver, project it on the reference spline
(green dots) and fit a local quadratic approximation (red splines).
Based on these fits the progress of 0-values again is optimized. We
stop the optimization when the difference of the #-values for all
stages in-between iterations is smaller than a pre-defined threshold,

O1ast — Ocurrent < 6.

Fig. 9. lllustration of the iterative programming scheme, showing the refer-
ence path (black) as well as the quadratic approximations of the first (blue)
and second (red) iteration with their respective 0-values (yellow, green).
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