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Figure 1: We introduce a structured prediction layer (SPL) to the task of 3D human motion modelling. The SP-layer explicitly
decomposes the pose into individual joints and can be interfaced with a variety of baseline architectures. We show that on
H3.6M and a recent, much larger dataset, AMASS, a variety of baseline models benefit when augmented with an SP-layer.

Abstract

Human motion prediction is a challenging and impor-
tant task in many computer vision application domains. Ex-
isting work only implicitly models the spatial structure of
the human skeleton. In this paper, we propose a novel ap-
proach that decomposes the prediction into individual joints
by means of a structured prediction layer that explicitly
models the joint dependencies. This is implemented via a
hierarchy of small-sized neural networks connected analo-
gously to the kinematic chains in the human body as well
as a joint-wise decomposition in the loss function. The pro-
posed layer is agnostic to the underlying network and can
be used with existing architectures for motion modelling.
Prior work typically leverages the H3.6M dataset. We show
that some state-of-the-art techniques do not perform well
when trained and tested on AMASS, a recently released
dataset 14 times the size of H3.6M. Our experiments indi-
cate that the proposed layer increases the performance of
motion forecasting irrespective of the base network, joint-
angle representation, and prediction horizon. We further-
more show that the layer also improves motion predictions
qualitatively. We make code and models publicly available
at https://ait.ethz.ch/projects/2019/spl.

1. Introduction
Modelling of human motion over time has a number of

applications in activity recognition, human computer inter-
action, human detection and tracking, and image-based pose
estimation in the context of robotics or self-driving vehi-
cles. Humans have the ability to forecast the sequence of
poses over short-term horizons with high accuracy and can
imagine probable motion over arbitrary time scales. Despite
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recent progress in data-driven modelling of human motion
[7, 8, 14, 20, 25, 33], this task remains difficult for machines.

The difficulty of the task is manifold. First, human mo-
tion is highly dynamic, non-linear and over time becomes a
stochastic sequential process with a high degree of inherent
uncertainty. Humans leverage strong structural and tempo-
ral priors about continuity and regularity in natural motion.
However, these are hard to model algorithmically due to
i) the inter-dependencies between joints and ii) the influ-
ence of high-level activities on the motion sequences (e.g.,
transition from walking to jumping). In fact many recent
approaches forgo explicit modelling of human motion [14]
in favor of pure data-driven models [8, 20, 25].

Initial Deep Learning-based motion modelling ap-
proaches have focused on recurrent neural networks (RNNs)
[8, 7, 14], using curriculum learning schemes to increase
robustness to temporal drift. Martinez et al. [20] have shown
that a simple running-average provides a surprisingly diffi-
cult to beat baseline in terms of Euler angle error. Follow-
ing this, sequence-to-sequence models trained in an auto-
regressive fashion have been proposed [20], sometimes using
adversarial training to address the drift problem in long-term
predictions [33]. Pavllo et al. [25] study the impact of joint
angle representation and show that a quaternion-based pa-
rameterization improves short-term predictions.

However, it has been observed that quantitative perfor-
mance does not always translate to qualitatively meaningful
predictions [20, 25]. Furthermore, the H3.6M benchmark is
becoming saturated, limiting progress. This leads to the two
main research questions studied in this work: i) How to mea-
sure accuracy of pose predictions in a meaningful way such
that low errors corresponds to good qualitative results and
how to improve this performance? ii) How to exploit spatial
structure of the human skeleton for better predictions?

With respect to i) we note that much of the literature relies
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on the H3.6M [12] dataset and an Euler angle based metric
as performance measure, evaluated on a limited number of
test sequences. While enabling initial exploration of the
task, the dataset is limited in size (roughly 3 hours from 210
sequences) and in diversity of activities and poses, which
contributes to a saturation effect in terms of performance.
In this paper we show that existing techniques do not scale
well when trained on larger and more diverse datasets. To
this end, we leverage the recently released AMASS dataset
[19], itself consisting of multiple smaller motion datasets,
offering many more samples (14x over H3.6M) and a wider
range of activities. To further unpack the performance of mo-
tion modelling techniques, we introduce several evaluation
metrics to the task of human motion prediction.

Our main technical contribution is a novel structured
prediction layer (SPL) that addresses our second research
question. We leverage the compositional structure of the
human skeleton by explicitly decomposing the pose into
individual joints. The SP-layer models the structure of the
human skeleton and hence the spatial dependencies between
joints. This is achieved via a hierarchy of small-sized neural
networks that are connected analogously to the kinematic
chains of the human skeleton. Each node in the graph re-
ceives information about the parent node’s prediction and
thus information is propagated along the kinematic chain.
We furthermore introduce a joint-wise decomposition of the
loss function as part of SPL. The proposed layer is agnostic
to the underlying network and can be used in combination
with most previously proposed architectures.

We show experimentally that introducing this layer to
existing approaches improves performance of the respective
method. The impact is most pronounced on the larger and
more challenging AMASS dataset. This indicates that our
approach is indeed a step towards successfully exploiting
spatial priors in human motion modelling and in turn allows
recurrent models to capture temporal coherency more ef-
fectively. We thoroughly evaluate the SP-layer on H3.6M
and AMASS. On AMASS, for any base model, any met-
ric, and any input representation, it is beneficial to use the
SP-layer. Furthermore, even simple architectures that are
outperformed by a zero-velocity baseline [20] perform com-
petitive if paired with the SP-layer.

In summary, we contribute: i) An in-depth analysis of
state-of-the-art motion modelling methods and their evalu-
ation. ii) A new benchmark and evaluation protocol on the
recent, much larger AMASS dataset. iii) A novel predic-
tion layer, incorporating structural priors. iv) A thorough
evaluation of the SP-layer’s impact on motion modelling in
combination with several base models.

2. Related Work
We briefly review the most related literature on human

motion modelling focusing on Deep Learning for brevity.

Deep recurrent models Early work makes use of spe-
cialized Deep Belief Networks for motion modelling [30],
whereas more recent works leverage recurrent architectures.
For example, Fragkiadaki et al. [7] propose the Encoder-
Recurrent-Decoder (ERD) framework, which maps pose
data into a latent space where it is propagated through time
via an LSTM cell. The prediction at time step t is fed back
as the input for time step t+ 1. This scheme quickly leads
to error accumulation and hence catastrophic drift over time.
To increase robustness, Gaussian noise is added during train-
ing. While alleviating the drift problem, this training scheme
is hard to fine-tune. Quantitative and qualitative evaluations
are performed on the publicly available H3.6M dataset [12],
with a joint angle data representation using the exponential
map (also called angle-axis). The joint-wise Euclidean dis-
tance on the Euler angles is used as the evaluation metric.
Most of the follow-up work adheres to this setting.

Inspired by [7], Du et al. [6] have recently proposed
to combine a three-layer LSTM with bio-mechanical con-
straints encoded into the loss function for pedestrian pose and
gait prediction. Like [6], we also incorporate prior knowl-
edge into our network design, but do so through a particular
design of the output layer rather than enforcing physical con-
straints in the loss function. Similar in spirit to [7], Ghosh et
al. [8] stabilize forecasting for long-term prediction horizons
via application of dropouts on the input layer of a denoising
autoencoder. In this work we focus on short-term predictions,
but also apply dropouts directly on the inputs to account for
noisy predictions of the model at test time. Contrary to [8],
our model can be trained end-to-end.

Martinez et al. [20] employ a sequence-to-sequence ar-
chitecture using a single layer of GRU cells [4]. The model
is trained auto-regressively, using its own predictions dur-
ing training. A residual connection on the decoder leads to
smoother and improved short-term predictions. Martinez
et al. also show that simple running-average baselines are
surprisingly difficult to beat in terms of the Euler angle met-
ric. The currently best performance on H3.6M is reported
by Wang et al. [33]. They also use a sequence-to-sequence
approach trained with an adversarial loss to address the drift-
problem and to create smooth predictions. Highlighting
some of the issues with the previously used L2 loss, [33]
propose a more meaningful geodesic loss.

In this work we show that sequence-to-sequence models,
despite good performance on H3.6M, do not fare as well on
the larger, more diverse AMASS dataset. Although augment-
ing them with our SP-layer boosts their performance, they
are outperformed by a simple RNN that uses the same SP-
layer. To better characterize motion modelling performance
we furthermore introduce several new evaluation metrics.

Structured Prediction Jain et al. [14] propose to explic-
itly model structural information by automatically converting



an st-graph into an RNN (S-RNN). The skeleton is divided
into 5 major clusters, whose interactions are then manually
encoded into an st-graph. Our model is also structure-aware.
However, our approach does not require a coarse subdivision
of joints and does not require manual definition of st-graphs.
Moreover, our layer is agnostic to the underlying network
and can be interfaced with most existing architectures.

Bütepage et al. [2] propose to encode poses with a hierar-
chy of dense layers following the kinematic chain starting
from the end-effectors (dubbed H-TE), which is similar to
our SP-layer. In contrast to this work, H-TE operates on the
input rather than the output, and has only been demonstrated
with non-recurrent networks when using 3D positions to
parameterize the poses.

Structure-aware network architectures have also been
used in 3D pose estimation from images [16, 29, 21, 17, 31].
[17] and [31] both learn a structured latent space. [21] ex-
ploit structure only implicitly by encoding the poses into
distance matrices which then serve as inputs and outputs
of the network. [16] and [29] are closest to our work as
they explicitly modify the network to account for skeletal
structure, either via the loss function [29], or using a se-
quence of LSTM cells for each joint in the skeleton [16].
[16] introduces many new layers into the architecture and
needs hyper-parameter tuning to be most effective. In con-
trast, our proposed SP-layer is simple to implement and train.
We show that it improves performance of several baseline
architectures out-of-the-box.

Parameterizations Most work parameterizes joint angles
as exponential maps relative to each joint’s parent. Pavllo et
al. [25] show results competitive with the state of the art us-
ing quaternions. Their model, QuaterNet, consists of 2 layers
of GRU cells and similar to [20] uses a skip connection. The
use of quaternions allows for integration of a differentiable
forward kinematics layer, facilitating loss computation in
the form of Euclidean distance of 3D joint positions. For
short-term predictions, QuaterNet directly optimizes for the
Euler-angle based metric as introduced by [7]. We show
that QuaterNet also benefits from augmentation with our SP-
layer, indicating that SPL is independent of the underlying
joint angle representation.

Bütepage et al. [2, 3] and Holden et al. [10] convert the
data directly to 3D joint positions. These works do not use
recurrent structures, which necessitates the extraction of
fixed-size, temporal windows for training. [2] and [10] focus
on learning of latent representations, which are shown to be
helpful for various tasks, such as denoising, forecasting, or
motion generation along a given trajectory [9]. [3] extends
[2] by applying a conditional variational autoencoder (VAE)
to the task of online motion prediction in human-robot inter-
actions. We use the positional representation of human poses
to compute an informative metric of the prediction quality.

However, for learning we use joint angles since they encode
symmetries better and are inherently bone-length invariant.

3. Method
The goal of our work is to provide a general solution

to the problem of human motion modelling. To this end
we are motivated by the observation that human motion is
strongly regulated by the spatial structure of the skeleton.
However, integrating this structure into deep neural network
architectures has so far not yielded better performance than
architectures that only model temporal dependencies explic-
itly. In this section we outline a novel structured prediction
layer (SPL) that explicitly captures the spatial connectivity.
The layer is designed to be agnostic to the underlying net-
work. We empirically show in Sec. 5 and 6 that it improves
the performance of a variety of existing models irrespective
of the dataset or the data representation used.

3.1. Problem Formulation

A motion sample can be considered as a sequenceX =
{x1 . . .xT } where a frame xt ∈ RN at time-step t denotes
the N -dimensional body pose. N depends on the number
of joints in the skeleton, K, and the size M of the per-joint
representation (angle-axis, rotation matrices, quaternions, or
3D positions), i.e. N = K ·M .

Due to their temporal nature, motion sequences are often
modelled with auto-regressive approaches. Such models
factorize the joint probability of a motion sequence as a
product of conditionals as follows:

pθ(X) =

T∏
t=1

pθ(xt | x1:t−1) (1)

where the joint distribution is parameterized by θ. At each
time step t, the next pose is predicted given the past poses.

While this auto-regressive setting explicitly models the
temporal dependencies, the spatial structure is treated only
implicitly. In other words, given a pose vector xt, the model
must predict the whole pose vector xt+1 at the next time step.
This assumes that joints are independent from each other
given a particular context (i.e., a neural representation of
the past frames). However, the human body is composed of
hierarchical joints and the kinematic chain introduces spatial
dependencies between them.

3.2. Structured Prediction Layer

To address this shortcoming, we propose a novel struc-
tured prediction layer (SPL). This is formed by decomposing
the model prediction into individual joints. This decompo-
sition is guided by the spatial prior of the human kinematic
chain, depicted in Fig. 2. Formally, xt ∈ RN is a concatena-
tion of K joints x(k)

t ∈ RM :

xt = [x
(hip)
t ,x

(spine)
t . . . x

(lwrist)
t ,x

(lhand)
t ]



Figure 2: SPL overview. Given the context ht of past
frames, joint predictions x̂(k)

t are made hierarchically by
following the kinematic chain defined by the underlying
skeleton. Only a subset of joints is visualized for clarity.

To interface with existing architectures, the SP-layer takes
a context representation ht as input. Here, ht is assumed to
summarize the motion sequence until time t. Without loss
of generality, we assume this to be a hidden RNN state or its
projection. While existing work typically leverages several
dense layers to predict the N -dimensional pose vector xt
from ht, our SP-layer predicts each joint individually with
separate smaller networks:

pθ(xt) =

K∏
k=1

pθ(x
(k)
t | parent(x(k)

t ),ht) (2)

where parent(x(k)
t ) extracts the parent of the k-th joint. Im-

portantly, the full body pose xt is predicted by following the
skeletal hierarchy in Fig. 2 as follows:

pθ(xt) = pθ(x
(hip)
t | ht)pθ(x(spine)

t | x(hip)
t ,ht) · · · (3)

In this formulation each joint receives information about its
own configuration and that of the immediate parent both ex-
plicitly, through the conditioning on the parent joint’s predic-
tion, and implicitly via the context ht. The joint probability
of Eq. 1 is further factorized in the spatial domain:

pθ(X) =

T∏
t=1

K∏
k=1

pθ(x
(k)
t | parent(x(k)

t ),ht) (4)

The benefit of this structured prediction approach is two-
fold. First, the proposed factorization allows for integration
of a structural prior in the form of a hierarchical architec-
ture where each joint is modelled by a different network.
This allows the model to learn dedicated representations per
joint and hence saves model capacity. Second, analogous
to message passing, each parent propagates its prediction to
the child joints, allowing for more precise local predictions
because the joint has access to the information it depends on
(i.e., the parent’s prediction).

In our experiments (cf. Sec. 5 and 6) we show that this
layer improves the prediction performance of a diverse set

Figure 3: Difference between dense and SP-layer with 2
joints. When all dashed weights are zero, a dense hidden
layer is equivalent to a SP-layer that ignores the hierarchy. In
a dense layer, the hidden unit uk is connected to all joints via
w1,k and w2,k. Hence, the gradient ∂L/∂uk is affected by
both joints, whereas in SPL only w2,k contributes by design.

of underlying architectures across many settings and metrics.
One potential reason for why this is the case can be found
in the resulting network structure and its implications on
network training. Fig. 3 compares our structured approach
with the traditional one-shot prediction using a dense layer.
Because the per-joint decomposition leads to many small
separate networks, we can think of an SP-layer as a dense
layer where some connections have been set to zero explic-
itly by leveraging domain knowledge. This decomposition
changes the gradients w.r.t. the units in the hidden layer,
which are now only affected by the gradients coming from
the joint hierarchy that they model. In the traditional setting,
the error computed as an average over all joints can easily be
distributed over all network weights in an arbitrary fashion.

3.3. Per-joint Loss

We additionally propose to perform a similar decomposi-
tion in the objective function that leads to further improve-
ments. The training objective is often a metric in Euclidean
space between ground-truth poses xt and predictions x̂t:

L(X, X̂) =
1

T ·N

T∑
t=1

f(xt, x̂t) (5)

where f is a loss function such as an `p norm. The loss f is
calculated on the entire pose vector and averaged across the
temporal and spatial domain. In our work, we use a slightly
modified version that preserves joint integrity:

L(X, X̂) =

T∑
t=1

K∑
k=1

f(x
(k)
t , x̂

(k)
t ) (6)

where the loss f is first calculated on every joint and then
summed up to calculate the loss for the entire motion se-
quence. In this work we use the MSE for f , but the formula-
tion allows for an easy adaptation of domain-specific losses
such as the geodesic distance proposed by [33].



4. Human Motion Modelling

We now evaluate our SP-layer on the task of human mo-
tion modelling. We perform our experiments on two datasets
and three different underlying architectures which use three
different data representations. In the following we explain
the datasets and models in more detail.

4.1. Datasets

For ease of comparison to the state of the art we first
report results from the H3.6M dataset. We follow the same
experiment protocol used in [14, 20].

Given the small size of H3.6M and the reported variance
of test results [25], we propose to use the recently introduced
AMASS dataset [19] for the motion modelling task. We
downloaded the dataset from [11] as the data from [19] has
not yet been released at the time of this writing. AMASS
is composed of publicly available databases, e.g. the CMU
Mocap database [5] or HumanEva [26] and uses the SMPL
model [18] to represent motion sequences. The dataset con-
tains 8′593 sequences, which comprise a total of 9′084′918
frames sampled at 60 Hz. This is roughly equivalent to 42
hours of recording, making AMASS about 14 times bigger
than H3.6M (632′894 frames at 50 Hz).

We split the AMASS dataset into training, validation and
test splits consisting of roughly 90%, 5% and 5% of the
samples, respectively. Similar to the H3.6M protocol, the
input sequences are 2 seconds (120 frames) and the target
sequences are 400-ms (24 frames) long. The H3.6M bench-
marks use a total of 120 test samples across 15 categories.
This is a relatively small test set and it has been reported to
cause high variance [24]. In our H3.6M experiments we use
this setting to ensure fair comparison. However, on AMASS
we use every frame in the test split by shifting a 2-second
window over the motion sequences, which extracts 3′304
test samples. H3.6M and AMASS model the human skeleton
with 21 and 15 major joints, respectively. We implement
separate SP-layers corresponding to the underlying skeleton.

4.2. Models

The modular nature of our SP-layer allows for flexi-
ble deployment with a diverse set of base models. In our
experiments, we test the layer with the following three
representative architectures proposed in the literature. To
ease experimentation with SPL and other base architec-
tures, we make all code and pre-trained models available at
https://ait.ethz.ch/projects/2019/spl.
Seq2seq is a model proposed by Martinez et al. [20], con-
sisting of a single layer of GRU cells. It contains a residual
connection between the inputs and predictions. Input poses
are represented as exponential maps.
QuaterNet uses a quaternion representation instead [24,
25]. The model augments RNNs with quaternion based

normalization and regularization operations. Similarly, the
residual connection from inputs to outputs is implemented
via the quaternion product. In our experiments, we replace
the final linear output layer with our SP-layer and keep the
remaining setup intact.
RNN uses a single layer recurrent network to calculate the
context ht, which we feed to our SP-layer. In contrast to
the Seq2seq and QuaterNet settings, we represent poses via
rotation matrices. To account for the error accumulation
problem at test time [7, 8, 14], we apply dropout directly on
the inputs. This architecture is similar to the ERD [7] but is
additionally augmented with the residual connection of [20].

In the SP-layer, each joint is modelled with only one small
hidden layer (64 or 128 units) followed by a ReLU activation
and a linear projection to the joint prediction x̂(k)

t ∈ RM .
We experiment with different hierarchical configurations
in SPL (cf. Sec. 6.3) where following the true kinematic
chain performed best. Some models benefit from inputting
all parent joints in the kinematic chain compared to using
only the immediate parent. Note that we changed existing
Seq2seq and QuaterNet models only as much as required to
integrate them with SPL. To ensure a fair comparison we
fine-tune hyper-parameters like learning rate, batch size and
hidden layer units. See appendix Sec. 8.1 for details.

5. Evaluation on H3.6M Dataset
In our first set of comparisons we baseline the proposed

SP-layer on the H3.6M dataset using the Euler angle metric
as is common practice in the literature.

5.1. Metrics

Euler angles Let w = θa denote a rotation of angle θ
around the unit axis a ∈ R3. w is the angle-axis (or ex-
ponential map) representation of a single joint angle. The
Euler angles are extracted fromw by first converting it into a
rotation matrixR = exp(w) using Rodrigues’ formula and
then computing the angles α = (αx, αy, αz) following [27].
This assumes thatR follows the z-y-x order. Furthermore, as
noted by [27], there exist always two solutions for α, from
which [14] picks the one that leads to the least amount of
rotation. The Euler angle metric for time step t is then

Leul(t) =
1

|Xtest|
∑

xt∈Xtest

√∑
k

(α
(k)
t − α̂

(k)
t )2 (7)

where α(k)
t are the predicted Euler angles of joint k at time

t. Xtest is defined by [14] and comprises of 120 sequences.

5.2. Results

Tab. 1 summarizes the relative performances of models
with and without the SP-layer on the H3.6M dataset and
compares them to the state of the art. The publicly available
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Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
LSTM-3LR [7] 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23
SRNN [14] 0.81 0.94 1.16 1.30 0.97 1.14 1.35 1.46 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93
Zero-Velocity [20] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04
AGED [33] 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83
Seq2seq-sampling-sup [20] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
Seq2seq-sampling-sup-SPL 0.23 0.37 0.53 0.61 0.20 0.32 0.52 0.67 0.26 0.48 0.92 0.90 0.29 0.63 0.90 0.99
Seq2seq-sampling [20] 0.27 0.47 0.70 0.78 0.25 0.43 0.71 0.87 0.33 0.61 1.04 1.19 0.31 0.69 1.03 1.12
Seq2seq-sampling-SPL 0.23 0.38 0.58 0.67 0.20 0.32 0.52 0.66 0.26 0.48 0.92 0.90 0.30 0.64 0.91 0.99
QuaterNet [25] 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93
QuaterNet-SPL 0.22 0.35 0.54 0.61 0.20 0.33 0.55 0.68 0.25 0.47 0.91 0.88 0.26 0.59 0.84 0.91
RNN 0.30 0.48 0.78 0.89 0.23 0.36 0.57 0.72 0.26 0.49 0.97 0.95 0.31 0.67 0.95 1.03
RNN-SPL 0.26 0.40 0.67 0.78 0.21 0.34 0.55 0.69 0.26 0.48 0.96 0.94 0.30 0.66 0.95 1.05

Table 1: H3.6M results for the commonly used walking, eating, smoking, and discussion activities across different prediction
horizons. Values correspond to the Euler angle metric measured at the given time. “Seq2seq-sampling” and “Seq2seq-
sampling-sup” models correspond to “Residual unsup. (MA)” and “Residual sup. (MA)” models in [20], respectively. Note
the relative performance improvement for each base model when augmented with our SP-layer.

Seq2seq [20] and QuaterNet [25] models are augmented with
our SP-layer, but we otherwise follow the original training
and evaluation protocols of the respective baseline model.

Using the SP-layer improves the Seq2seq performance
significantly and achieves state-of-the-art performance in
the walking category. Similarly, SPL yields the best perfor-
mance with QuaterNet in short-term smoking and discussion
motions and marginally outperforms the vanilla QuaterNet
in most categories or is comparative to it. While our SP-
layer also boosts the performance of the RNN model in
walking, eating and smoking motion categories, performance
remains similar for discussion.

We follow the same evaluation setting as in previous work
for direct comparability. It is noteworthy to mention that the
evaluation metrics reported on H3.6M exhibit high variance
due to the small number of test samples [24] and low errors
do not always correspond to good qualitative results [20].

6. AMASS: A New Benchmark
In this section we evaluate the baseline methods and

our SP-layer on the large-scale AMASS dataset, detailed
in Sec. 4.1. The diversity and large amount of motion sam-
ples in AMASS increase both the task’s complexity and the
reliability of results due to a larger test set. In addition to
proposing a new evaluation setting for motion modelling we
suggest usage of a more versatile set of metrics for the task.

6.1. Metrics

So far, motion prediction has been benchmarked on
H3.6M using the Euclidean distance between target and
predicted Euler angles [14, 20, 25, 33]. Numbers are usually
reported per action at certain time steps averaged over 8 sam-

ples [14]. Unfortunately, Euler angles have twelve different
conventions (not counting the fact that each of these can be
defined using intrinsic or extrinsic rotations), which makes
the practical implementation of this metric error-prone.

For a more precise analysis we introduce additional met-
rics from related pose estimation areas [28, 32, 34]. In order
to increase the robustness we furthermore suggest to i) sum
until time step t rather than report the metric at time step
t, ii) use more test samples covering a larger portion of the
test data set and iii) evaluate the models with complemen-
tary metrics. Note that we do not train the models on these
metrics; they only serve as evaluation criteria at test time.

Joint angle difference To circumvent the potential source
of error in the Euler angle metric, we propose using another
angle-based metric following [11, 32]. This metric computes
the angle of the rotation required to align the predicted joint
with the target joint. Unlike Leul, this metric is independent
of how rotations are parameterized. It is furthermore similar
to the geodesic loss proposed by [33]. Let R̂ be the predicted
joint angle for a given joint, parameterized as a rotation
matrix, and the respective target rotationR. The difference
in rotation can be computed as R̃ = R̂RT , from which we
construct the metric at time step t as follows:

Langle(t) =
1

|Xtest|
∑

xt∈Xtest

1

K

∑
k

∥∥∥log (R̃(k)

t

)∥∥∥
2

(8)

where R̃
(k)

t is the rotation matrix of joint k at time t. In
contrast toLeul we compute the loss on global joint angles by
first unrolling the kinematic chain before computing Langle.



Euler Joint Angle Positional PCK (AUC)
milliseconds 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
Zero-Velocity [20] 1.91 5.93 11.36 17.78 0.37 1.22 2.44 3.94 0.14 0.48 0.96 1.54 0.86 0.83 0.84 0.82
Seq2seq [20]* 1.52 5.14 10.66 17.84 0.27 0.99 2.19 3.85 0.11 0.39 0.87 1.53 0.91 0.86 0.86 0.82
Seq2seq-PJL 1.46 5.28 11.46 19.78 0.24 0.95 2.16 3.87 0.09 0.35 0.80 1.41 0.91 0.87 0.87 0.83
Seq2seq-SPL 1.57 5.00 10.01 16.43 0.27 0.94 2.01 3.45 0.10 0.36 0.79 1.36 0.91 0.87 0.87 0.84
Seq2seq-sampling [20]* 2.01 5.99 11.22 17.33 0.37 1.17 2.27 3.59 0.14 0.45 0.88 1.39 0.86 0.84 0.85 0.83
Seq2seq-sampling-PJL 1.71 5.15 9.71 15.15 0.32 1.00 1.97 3.14 0.12 0.39 0.77 1.23 0.88 0.86 0.87 0.85
Seq2seq-sampling-SPL 1.71 5.13 9.60 14.86 0.31 0.97 1.91 3.04 0.12 0.38 0.74 1.18 0.89 0.86 0.88 0.85
Seq2seq-dropout 1.54 4.98 9.94 16.13 0.27 0.95 2.00 3.39 0.10 0.37 0.79 1.34 0.91 0.87 0.87 0.84
Seq2seq-dropout-PJL 1.26 4.41 9.24 15.46 0.23 0.84 1.82 3.13 0.09 0.33 0.71 1.21 0.92 0.88 0.88 0.85
Seq2seq-dropout-SPL 1.26 4.26 8.67 14.23 0.23 0.81 1.74 2.96 0.09 0.32 0.68 1.16 0.92 0.89 0.89 0.86
QuaterNet [25]* 1.49 4.70 9.16 14.54 0.26 0.89 1.83 3.00 0.10 0.34 0.71 1.18 0.90 0.87 0.88 0.85
QuaterNet-SPL 1.34 4.25 8.39 13.43 0.25 0.83 1.71 2.83 0.09 0.32 0.67 1.10 0.91 0.88 0.89 0.86
RNN 1.69 5.23 10.18 16.29 0.31 1.05 2.17 3.62 0.12 0.41 0.85 1.43 0.89 0.85 0.86 0.83
RNN-SPL 1.33 4.13 8.03 12.84 0.22 0.73 1.51 2.51 0.08 0.28 0.57 0.96 0.93 0.90 0.90 0.88

Table 2: AMASS results of the base models with and without the proposed SP-layer. We report normalized area-under-the-
curve (AUC) for PCK values (higher is better, maximum is 1). For the remaining metrics, lower is better. “Seq2seq” and
“Seq2seq-dropout” are trained by using ground-truth inputs. "-dropout" applies 0.1 dropout on the inputs. “*” indicates our
evaluation of this model. "-PJL" stands for our proposed per-joint loss on the vanilla model, showing a significant improvement
already. Note that models with SPL perform better except on short-term predictions for “Seq2seq” model.

Positional Following Pavllo et al.’s [25] suggestion, we
introduce a positional metric. This metric simply performs
forward kinematics on xt and x̂t to obtain 3D joint positions
pt and p̂t, respectively. It then computes the Euclidean
distance per joint. We normalize the skeleton bones such
that the right thigh bone has unit length.

Lpos(t) =
1

|Xtest|
∑

xt∈Xtest

1

K

∑
k

∥∥∥p(k)t − p̂
(k)
t

∥∥∥
2

(9)

PCK In cases where large errors occur, the value of Lpos
can be misleading. Hence, following the 3D (hand) pose
estimation literature [13, 22, 28, 34], we introduce PCK by
computing the percentage of predicted joints lying within a
spherical threshold ρ around the target joint position, i.e.

PCK(xt, x̂t, ρ) =
1

K

∑
k

I
[∥∥∥p(k)t − p̂

(k)
t

∥∥∥
2
≤ ρ
]

Lpck(t, ρ) =
1

|Xtest|
∑

xt∈Xtest

PCK(xt, x̂t, ρ) (10)

where I[·] returns 1 if its input is true, and 0 otherwise. Note
that for PCK we do not sum, but average, until time step t.

6.2. Results

Tab. 2 summarizes the performance of the three model
variants, each with and without the SP-layer. We trained
the base models with minimal modifications, i.e. design,
training objective and regularizations are kept intact. We use

angle-axis, quaternion and rotation matrix representations
for Seq2seq, QuaterNet, and RNN models, respectively. To
make a fair comparison, we run hyper-parameter search on
the batch size, cell type, learning rate and hidden layer size.

Unlike on H3.6M, LSTM cells consistently outperform
GRUs on AMASS for the Seq2seq and RNN models. Dif-
ferent from [20], we also train the Seq2seq model by apply-
ing dropout on the inputs similar to our RNN architecture.
QuaterNet gives its best performance with GRU cells while
some fine-tuning for the teacher forcing ratio is necessary.

In all settings, the Seq2seq models fail to give competi-
tive performance on this large-scale task and are sometimes
outperformed by the zero-velocity baseline proposed by Mar-
tinez et al. [20]. QuaterNet shows a strong performance and
is in fact the closest vanilla model to the SPL variants. How-
ever, our SP-layer still improves the QuaterNet results further.
The contribution of the SP-layer is best observable on the

Figure 4: PCK curves of the best Seq2seq variant and
QuaterNet with and without SPL on AMASS for 400 ms
predictions. More results are shown in appendix Sec. 8.3.



Figure 5: Qualitative Comparison on AMASS. We use a 2-second seed sequence and predict the next 1 second (60 frames).
The last pose of the seed and the first pose of the prediction sequences are consecutive frames. Note that there is no transition
problem. Top: Ground-truth sequence. Middle: Output of the vanilla RNN which quickly deteriorates. Bottom: The same
RNN model augmented with our SP-layer. It produces accurate short-term predictions as well as natural long-term motion.

RNN model. With the help of a larger dataset, the proposed
RNN-SPL achieves the best results under different metrics
and prediction horizons. Fig. 4 compares two baseline meth-
ods for 400 millisecond predictions with their corresponding
SPL extension for different choices of the threshold ρ. The
RNN-SPL consistently outperforms other methods. More
results are shown in the appendix Sec. 8.3.

Please also note the complementary effect of the proposed
metrics in Tab. 2. The Seq2seq-dropout-SPL model at 100
ms shows a significant improvement (1.26) w.r.t. the Euler
angle metric, and in fact achieves the best result across all
models. However, this is no longer the case when we look at
the proposed metrics. The model performs marginally worse
than the best performing model, RNN-SPL, in these metrics.
The joints closer to the root of the kinematic chain have a
much larger impact on the overall pose since wrong rotations
propagate to all the child joints on the chain. This effect
might be ignored when only local rotations are considered,
which is the case for Leul. Langle and Lpos account for this
by first unrolling the kinematic chain.

In line with [25, 33], we report that the residual connec-
tion from [20] is very effective for short-term predictions.
All models we trained performed better with the residual con-
nection irrespective of the dataset or pose representation.

6.3. Ablation Study

To study the SPL in more depth we conduct an ablation
study presented in Tab. 3. We observe that the main perfor-
mance boost is achieved by the decomposition of the output
layer and the per-joint loss in Eq. (6). While the per-joint-
loss alone (i.e., without SPL) is not beneficial on H3.6M, on
AMASS its application alone already helps (RNN-PJL). It is
also effective on Seq2seq models with noisy inputs, but the
performance degrades on vanilla Seq2seq model. In longer-
term predictions, SP-layer shows a significant contribution

AMASS H3.6M
Euler Joint Angle Pos. Walking

RNN 16.44 3.570 1.396 0.900
RNN-PJL 13.13 2.573 0.986 0.950
RNN-SPL-indep. 12.96 2.552 0.982 0.836
RNN-SPL-random 12.98 2.547 0.980 0.863
RNN-SPL-reverse 13.03 2.543 0.973 0.849
RNN-SPL 12.85 2.533 0.975 0.772

Table 3: Ablation study on AMASS and H3.6M (walking)
for 400 ms predictions. Each entry is an average over 5
randomly initialized training runs. Please refer to Sec. 6.3
for detailed explanations and the appendix for more results.

(see Tab. 2). Assuming independent joints without modelling
any hierarchy (RNN-SPL-indep.) improves the results fur-
ther. Introducing hierarchy into the prediction layer either
in reverse or random order performs often similar or better.
However, introducing the spatial dependencies according to
the kinematic chain (RNN-SPL) yields the best results with
the exception of the positional metric.

7. Conclusion

We introduce prior knowledge about the human skeletal
structure into a neural network by means of a structured
prediction layer (SPL). The SP-layer explicitly decomposes
the pose into individual joints and can be interfaced with a
variety of baseline architectures. We furthermore introduce
AMASS, a large-scale motion dataset, and several metrics to
the task of motion prediction. On AMASS, we empirically
show that for any baseline model, any metric, and any input
representation, it is better to use the proposed SP-layer. The
simple RNN model augmented with the SP-layer achieved
state-of-the-art performance on the new AMASS bench-
mark.
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8. Appendix
We provide architecture details in Sec. 8.1, results on

long-term predictions in Sec. 8.2, PCK plots in Sec. 8.3, and
more detailed ablation studies in Sec. 8.4.

8.1. Architecture Details

The RNN and Seq2seq models are implemented in Ten-
sorflow [1]. For the QuaterNet-SPL model we extend the
publicly available source code in Pytorch [23]. Our aim is
to make a minimum amount of modifications to the base-
line Seq2seq [20] and QuaterNet [25] models. In order to
get the best performance on the new AMASS dataset, we
fine-tune the hyper-parameters including batch size, learning
rate, learning rate decay, cell type and number of cell units,
dropout rate, hidden output layer size and teacher forcing
ratio decay for QuaterNet.

Fig. 6 provides an overview over these models. The SP-
layer replaces the standard dense layers, which normally
use the context representation ht, i.e., GRU or LSTM state
until time-step t, to make the pose vector prediction x̂t. The
SPL component follows the kinematic chain and uses the
following network for every joint:

Linear(H)−ReLU − Linear(M) ,

where the hidden layer size per joint H is either 64 or 128
and the joint size M is 3, 4, or 9 for exponential map, quater-
nion, or rotation matrix pose representation, respectively
(see Tab. 4). Similar to the H3.6M setup [14, 20] we use a
2-second seed x1:t−1 and 400-milisecond target sequences
xt:T . The sequence xt:T corresponds to the target predic-
tions.

We train the baseline Seq2seq [20] and QuaterNet [25]
models by using the training objectives as proposed in the
original papers. The SPL variants, however, implement these
objectives by using our proposed joint-wise loss. After an
epoch of training we evaluate the model on the validation
split and apply early stopping with respect to the joint angle

H3.6M AMASS
SPL Units Cell SPL Units Cell

RNN-SPL sparse 64 GRU dense 64 LSTM
Seq2seq-SPL sparse 64 GRU dense 64 LSTM
QuaterNet-SPL sparse 128 GRU sparse 128 GRU

Table 4: SPL configuration. sparse and dense refer to
making a joint prediction by feeding only the immediate
parent or all parent joints in the kinematic chain, respectively.
Models use a hidden layer of either 64 or 128 units per joint.
GRU cell outperforms LSTM on H3.6M while LSTM is
consistently better on AMASS dataset. The vanilla models
use their original setting with the reported cell.

GRU SPL xGRU
QMul

Norm Penalty

Normalize

Decoder

Encoder

SPL +LSTM

Encoder

Decoder

LSTM SPL +Dropout Linear

Figure 6: Model overview. Top: RNN-SPL Middle:
Seq2seq-SPL, Bottom: Quaternet-SPL. Note that both
Seq2seq and QuaterNet models follow sequence-to-sequence
architecture where the encoder and decoder share the param-
eters. The 2-second seed sequence x1:t−1 is first fed to the
encoder network to calculate the hidden cell state which is
later used to initialize the prediction into the future. The
dashed lines from the prediction to the input correspond to
the sampling based training. In other words, the predictions
are fed back during training.

metric. Please note that the early stopping metric is different
than the training objective for all models.

RNN-SPL We use the rotation matrix pose representa-
tion with zero-mean unit-variance normalization, following
teacher-forcing training. In other words, the model is trained
by feeding the ground-truth pose xt to predict x̂t+1. The
training objective is the proposed joint-wise loss with l2-
norm (see Sec. 3.3 in the paper) which is calculated over the
entire seed x1:t−1 and target predictions x̂t:T .

We do not follow a sampling-based training scheme. In
the absence of such a training regularization, the model
overfits to the likelihood (i.e., ground-truth input samples)
and hence performs poorly in the auto-regressive test setup.
We find that a small amount of dropout with a rate of 0.1 on
the inputs makes the model robust against the exposure bias
problem.

The dropout is followed by a linear layer with 256 units.
We use a single LSTM cell with 1024 units. The vanilla
RNN model makes the predictions by using

Linear(960)−ReLU − Linear(N) ,

where N = K ·M . We also experimented with GRU units
instead of LSTM cells, but experimentally found that LSTMs
consistently outperformed GRUs. Finally, we use the Adam



Euler Joint Angle Positional PCK (AUC)
milliseconds 600 800 1000 600 800 1000 600 800 1000 600 800 1000
Zero-Velocity [20] 32.36 48.39 65.25 7.46 11.31 15.3 2.93 4.46 6.06 0.78 0.76 0.74
Seq2seq [20]* 36.39 60.07 88.72 8.39 14.36 21.61 3.38 5.82 8.81 0.75 0.71 0.67
Seq2seq-PJL 41.96 71.63 109.45 8.75 15.57 24.43 3.13 5.55 8.76 0.76 0.71 0.66
Seq2seq-SPL 32.58 52.49 75.69 7.23 11.99 17.62 2.88 4.81 7.10 0.79 0.75 0.72
Seq2seq-sampling [20]* 31.37 47.37 64.72 6.72 10.31 14.23 2.61 4.03 5.58 0.79 0.77 0.75
Seq2seq-sampling-PJL 27.72 42.19 58.01 5.96 9.21 12.79 2.34 3.64 5.07 0.81 0.79 0.77
Seq2seq-sampling-SPL 27.01 40.90 55.97 5.76 8.90 12.36 2.24 3.48 4.85 0.82 0.80 0.78
Seq2seq-dropout 31.16 48.92 68.77 6.94 11.22 16.06 2.78 4.54 6.54 0.78 0.75 0.72
Seq2seq-dropout-PJL 31.20 50.62 73.09 6.59 10.93 15.98 2.53 4.18 6.09 0.80 0.76 0.73
Seq2seq-dropout-SPL 28.02 44.95 64.23 6.15 10.11 14.67 2.42 4.00 5.84 0.81 0.78 0.75
QuaterNet [25]* 27.08 41.32 56.66 5.88 9.21 12.84 2.32 3.64 5.09 0.82 0.79 0.77
QuaterNet-SPL 25.37 39.02 53.95 5.58 8.79 12.32 2.19 3.47 4.87 0.82 0.80 0.78
RNN 31.19 48.84 68.64 7.33 11.87 17.09 2.93 4.79 6.96 0.78 0.74 0.71
RNN-SPL 24.44 38.02 53.06 5.04 8.08 11.50 1.94 3.14 4.49 0.84 0.81 0.79

Table 5: Long-term AMASS results of the base models with and without the proposed structured prediction layer (SPL).
For PCK we report the area-under-the-curve (AUC), which is upper-bounded by 1 (higher is better). Euler, joint angle and
positional losses are lower-bounded by 0 (lower is better). "*" indicates our evaluation of the corresponding model on AMASS.
"-dropout" stands for dropout applied directly on the inputs. "-PJL" stands for our proposed per-joint loss on the vanilla
model, showing a significant improvement already. All models use residual connections. Note that models with our proposed
SP-layer always perform better.

optimizer [15] with its default parameters. The learning rate
is initialized with 1e−3 and exponentially decayed with a
rate of 0.98 at every 1000 decay steps.

Seq2seq-SPL As proposed by Martinez et al. [20] we use
the exponential map pose representation with zero-mean
unit-variance normalization. The model consists of encoder
and decoder components where the parameters are shared.
The seed sequence x1:t−1 is first fed to the encoder network
to calculate the hidden cell state which is later used by the
decoder to initialize the prediction into the future (i.e., x̂t:T ).
Similarly, the training objective is calculated between the
ground-truth targets xt:T and the predictions x̂t:T . We use
the proposed joint-wise loss with l2-norm.

In our AMASS experiments, we find that a single LSTM
cell with 1024 units performs better than a single GRU cell.
In the training of the Seq2seq-sampling model, the decoder
prediction is fed back to the model [20]. The other two
variants, Seq2seq-dropout (with a dropout rate of 0.1) and
Seq2seq (see Tab. 2 in the paper), are trained with ground-
truth inputs similar to the RNN models. Similarly, the vanilla
Seq2seq model has a hidden output layer of size 960 on
AMASS dataset.

We use the Adam optimizer with its default parameters.
The learning rate is initialized with 1e−3 and exponentially
decayed with a rate of 0.95 at every 1000 decay steps.

QuaterNet-SPL We use the quaternion pose representa-
tion without any further normalization on the data [25]. The
data is pre-processed following Pavllo et al.’s suggestions
to avoid mixing antipodal representations within a given se-
quence. QuaterNet also follows the sequence-to-sequence
architecture where the seed sequence is used to initialize
the cell states. As in the vanilla model, the training objec-
tive is based on the Euler angle pose representation. More
specifically, the predictions in quaternion representation are
converted to Euler angles to calculate the training objective.

The model consists of two stacked GRU cells with 1000
units each. In contrast to the RNN and Seq2seq models, the
residual velocity is implemented by using quaternion mul-
tiplication. Moreover, the QuaterNet model applies a nor-
malization penalty and explicitly normalizes the predictions
in order to enforce valid rotations. As proposed by Pavllo
et al. [25], we exponentially decay the teacher-forcing ratio
with a rate of 0.98. The teacher-forcing ratio determines
the probability of using ground-truth poses during training.
Over time this value gets closer to 0 and hence increases the
probability of using the model predictions rather than the
ground-truth poses. Similar to the vanilla RNN and Seq2seq
models, a hidden output layer of size 960 performed better
on AMASS dataset.

Finally, the model is trained by using the Adam optimizer
with its default parameters. The learning rate is initialized
with 1e−3 and exponentially decayed with a rate of 0.96



after every training epoch.

8.2. Long-term Prediction on AMASS

In Tab. 5, we report longer-term prediction results as an
extension to the results provided in Tab. 2 in the main paper.
Please note that all models are trained to predict 400-ms. In
fact, the Seq2seq and QuaterNet models have been proposed
to solve short-term prediction tasks only.

Consistent with the short-term prediction results shown
in the main paper, our proposed SP-layer always improves
the underlying model performance. While QuaterNet-SPL is
competitive, RNN-SPL yields the best performance under
different metrics.

In Fig. 7 we show more qualitative results for QuaterNet
and Seq2seq when augmented with our SP-layer. Please
refer to the supplemental video for more qualitative results.

8.3. PCK Plots

We provide additional PCK plots for 100, 200, 300 and
400 ms prediction horizon in Fig. 8. Please note that shorter
time horizons do not use the entire range of thresholds ρ to
avoid a saturation effect.

8.4. Ablation Study

The full ablation study on H3.6M and AMASS is shown
in Tab. 6 and 7, respectively. For an explanation of each
entry, please refer to the main text in Sec. 6.3.



Figure 7: Qualitative Comparison on AMASS. We use a 2-second seed sequence and predict the next 1 second (60 frames).
The last pose of the seed and the first pose of the prediction sequences are consecutive frames. In green (2nd and 4th
row) are results from the vanilla versions of Seq2seq and QuaterNet, respectively. In orange (3rd and 5th row) are results
when augmenting the vanilla model with our SP-layer. Although the SPL-variants shown here are still outperformed by the
RNN-SPL shown in the main paper, they still show slight improvement over their non-SPL counterparts.

Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RNN-mean 0.319 0.515 0.771 0.900 0.242 0.384 0.583 0.742 0.264 0.493 0.984 0.967 0.312 0.668 0.945 1.040

RNN-PJL 0.324 0.534 0.816 0.950 0.233 0.391 0.616 0.776 0.258 0.483 0.961 0.932 0.312 0.675 0.969 1.067

RNN-SPL-indep. 0.288 0.453 0.720 0.836 0.228 0.366 0.575 0.736 0.258 0.482 0.947 0.916 0.313 0.676 0.962 1.064

RNN-SPL-random 0.298 0.473 0.758 0.863 0.227 0.354 0.578 0.717 0.263 0.490 0.956 0.925 0.311 0.677 0.975 1.079

RNN-SPL-reverse 0.302 0.483 0.725 0.849 0.225 0.344 0.557 0.721 0.264 0.494 0.96 0.929 0.312 0.679 0.960 1.050

RNN-SPL 0.264 0.413 0.669 0.772 0.205 0.326 0.559 0.721 0.260 0.486 0.958 0.930 0.307 0.667 0.950 1.049

Table 6: H3.6M ablation study. Comparison of SPL with different joint configurations and the proposed per-joint loss on
H3.6M. Each model entry corresponds to an average of several runs with different initialization.

Euler Joint Angle Positional PCK (AUC)
milliseconds 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400

RNN-mean 1.65 5.21 10.24 16.44 0.318 1.057 2.157 3.570 0.122 0.408 0.838 1.396 0.886 0.854 0.861 0.832

RNN-PJL 1.33 4.15 8.16 13.13 0.230 0.758 1.550 2.573 0.086 0.287 0.590 0.986 0.923 0.897 0.901 0.877

RNN-SPL-indep. 1.30 4.08 8.04 12.96 0.228 0.750 1.537 2.552 0.085 0.283 0.587 0.982 0.924 0.897 0.901 0.878

RNN-SPL-random 1.31 4.09 8.03 12.98 0.228 0.749 1.533 2.547 0.086 0.284 0.586 0.980 0.924 0.897 0.901 0.878

RNN-SPL-reverse 1.31 4.10 8.08 13.03 0.229 0.749 1.532 2.543 0.086 0.282 0.582 0.973 0.924 0.897 0.902 0.878

RNN-SPL 1.29 4.04 7.95 12.85 0.227 0.744 1.525 2.533 0.085 0.282 0.582 0.975 0.924 0.898 0.902 0.878

Table 7: AMASS ablation study. Comparison of SPL with different joint configurations and the proposed per-joint loss on
AMASS. Each model entry corresponds to an average of several runs with different initialization.



Figure 8: PCK Curves of models with and without our SP-layer (dashed lines) on AMASS for 100, 200, 300, and 400
milliseconds (top left to bottom right).


