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Figure 1: We introduce a structured prediction layer (SPL) to the task of 3D human motion modelling. The SP-layer explicitly
decomposes the pose into individual joints and can be interfaced with a variety of baseline architectures. We show that on
H3.6M and a recent, much larger dataset, AMASS, a variety of baseline models benefit when augmented with an SP-layer.

Abstract

Human motion prediction is a challenging and impor-
tant task in many computer vision application domains. Ex-
isting work only implicitly models the spatial structure of
the human skeleton. In this paper, we propose a novel ap-
proach that decomposes the prediction into individual joints
by means of a structured prediction layer that explicitly
models the joint dependencies. This is implemented via a
hierarchy of small-sized neural networks connected analo-
gously to the kinematic chains in the human body as well
as a joint-wise decomposition in the loss function. The pro-
posed layer is agnostic to the underlying network and can
be used with existing architectures for motion modelling.
Prior work typically leverages the H3.6M dataset. We show
that some state-of-the-art techniques do not perform well
when trained and tested on AMASS, a recently released
dataset 14 times the size of H3.6M. Our experiments indi-
cate that the proposed layer increases the performance of
motion forecasting irrespective of the base network, joint-
angle representation, and prediction horizon. We further-
more show that the layer also improves motion predictions
qualitatively. We make code and models publicly available
at https://ait.ethz.ch/projects/2019/spl.

1. Introduction
Modelling of human motion over time has a number of

applications in activity recognition, human computer inter-
action, human detection and tracking, and image-based pose
estimation in the context of robotics or self-driving vehi-
cles. Humans have the ability to forecast the sequence of
poses over short-term horizons with high accuracy and can
imagine probable motion over arbitrary time scales. Despite

*The first two authors contributed equally.

recent progress in data-driven modelling of human motion
[7, 8, 14, 20, 25, 33], this task remains difficult for machines.

The difficulty of the task is manifold. First, human mo-
tion is highly dynamic, non-linear and over time becomes a
stochastic sequential process with a high degree of inherent
uncertainty. Humans leverage strong structural and tempo-
ral priors about continuity and regularity in natural motion.
However, these are hard to model algorithmically due to
i) the inter-dependencies between joints and ii) the influ-
ence of high-level activities on the motion sequences (e.g.,
transition from walking to jumping). In fact many recent
approaches forgo explicit modelling of human motion [14]
in favor of pure data-driven models [8, 20, 25].

Initial Deep Learning-based motion modelling ap-
proaches have focused on recurrent neural networks (RNNs)
[8, 7, 14], using curriculum learning schemes to increase
robustness to temporal drift. Martinez et al. [20] have shown
that a simple running-average provides a surprisingly diffi-
cult to beat baseline in terms of Euler angle error. Follow-
ing this, sequence-to-sequence models trained in an auto-
regressive fashion have been proposed [20], sometimes using
adversarial training to address the drift problem in long-term
predictions [33]. Pavllo et al. [25] study the impact of joint
angle representation and show that a quaternion-based pa-
rameterization improves short-term predictions.

However, it has been observed that quantitative perfor-
mance does not always translate to qualitatively meaningful
predictions [20, 25]. Furthermore, the H3.6M benchmark is
becoming saturated, limiting progress. This leads to the two
main research questions studied in this work: i) How to mea-
sure accuracy of pose predictions in a meaningful way such
that low errors corresponds to good qualitative results and
how to improve this performance? ii) How to exploit spatial
structure of the human skeleton for better predictions?

With respect to i) we note that much of the literature relies
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on the H3.6M [12] dataset and an Euler angle based metric
as performance measure, evaluated on a limited number of
test sequences. While enabling initial exploration of the
task, the dataset is limited in size (roughly 3 hours from 210
sequences) and in diversity of activities and poses, which
contributes to a saturation effect in terms of performance.
In this paper we show that existing techniques do not scale
well when trained on larger and more diverse datasets. To
this end, we leverage the recently released AMASS dataset
[19], itself consisting of multiple smaller motion datasets,
offering many more samples (14x over H3.6M) and a wider
range of activities. To further unpack the performance of mo-
tion modelling techniques, we introduce several evaluation
metrics to the task of human motion prediction.

Our main technical contribution is a novel structured
prediction layer (SPL) that addresses our second research
question. We leverage the compositional structure of the
human skeleton by explicitly decomposing the pose into
individual joints. The SP-layer models the structure of the
human skeleton and hence the spatial dependencies between
joints. This is achieved via a hierarchy of small-sized neural
networks that are connected analogously to the kinematic
chains of the human skeleton. Each node in the graph re-
ceives information about the parent node’s prediction and
thus information is propagated along the kinematic chain.
We furthermore introduce a joint-wise decomposition of the
loss function as part of SPL. The proposed layer is agnostic
to the underlying network and can be used in combination
with most previously proposed architectures.

We show experimentally that introducing this layer to
existing approaches improves performance of the respective
method. The impact is most pronounced on the larger and
more challenging AMASS dataset. This indicates that our
approach is indeed a step towards successfully exploiting
spatial priors in human motion modelling and in turn allows
recurrent models to capture temporal coherency more ef-
fectively. We thoroughly evaluate the SP-layer on H3.6M
and AMASS. On AMASS, for any base model, any met-
ric, and any input representation, it is beneficial to use the
SP-layer. Furthermore, even simple architectures that are
outperformed by a zero-velocity baseline [20] perform com-
petitive if paired with the SP-layer.

In summary, we contribute: i) An in-depth analysis of
state-of-the-art motion modelling methods and their evalu-
ation. ii) A new benchmark and evaluation protocol on the
recent, much larger AMASS dataset. iii) A novel predic-
tion layer, incorporating structural priors. iv) A thorough
evaluation of the SP-layer’s impact on motion modelling in
combination with several base models.

2. Related Work
We briefly review the most related literature on human

motion modelling focusing on Deep Learning for brevity.

Deep recurrent models Early work makes use of spe-
cialized Deep Belief Networks for motion modelling [30],
whereas more recent works leverage recurrent architectures.
For example, Fragkiadaki et al. [7] propose the Encoder-
Recurrent-Decoder (ERD) framework, which maps pose
data into a latent space where it is propagated through time
via an LSTM cell. The prediction at time step t is fed back
as the input for time step t+ 1. This scheme quickly leads
to error accumulation and hence catastrophic drift over time.
To increase robustness, Gaussian noise is added during train-
ing. While alleviating the drift problem, this training scheme
is hard to fine-tune. Quantitative and qualitative evaluations
are performed on the publicly available H3.6M dataset [12],
with a joint angle data representation using the exponential
map (also called angle-axis). The joint-wise Euclidean dis-
tance on the Euler angles is used as the evaluation metric.
Most of the follow-up work adheres to this setting.

Inspired by [7], Du et al. [6] have recently proposed
to combine a three-layer LSTM with bio-mechanical con-
straints encoded into the loss function for pedestrian pose and
gait prediction. Like [6], we also incorporate prior knowl-
edge into our network design, but do so through a particular
design of the output layer rather than enforcing physical con-
straints in the loss function. Similar in spirit to [7], Ghosh et
al. [8] stabilize forecasting for long-term prediction horizons
via application of dropouts on the input layer of a denoising
autoencoder. In this work we focus on short-term predictions,
but also apply dropouts directly on the inputs to account for
noisy predictions of the model at test time. Contrary to [8],
our model can be trained end-to-end.

Martinez et al. [20] employ a sequence-to-sequence ar-
chitecture using a single layer of GRU cells [4]. The model
is trained auto-regressively, using its own predictions dur-
ing training. A residual connection on the decoder leads to
smoother and improved short-term predictions. Martinez
et al. also show that simple running-average baselines are
surprisingly difficult to beat in terms of the Euler angle met-
ric. The currently best performance on H3.6M is reported
by Wang et al. [33]. They also use a sequence-to-sequence
approach trained with an adversarial loss to address the drift-
problem and to create smooth predictions. Highlighting
some of the issues with the previously used L2 loss, [33]
propose a more meaningful geodesic loss.

In this work we show that sequence-to-sequence models,
despite good performance on H3.6M, do not fare as well on
the larger, more diverse AMASS dataset. Although augment-
ing them with our SP-layer boosts their performance, they
are outperformed by a simple RNN that uses the same SP-
layer. To better characterize motion modelling performance
we furthermore introduce several new evaluation metrics.

Structured Prediction Jain et al. [14] propose to explic-
itly model structural information by automatically converting



an st-graph into an RNN (S-RNN). The skeleton is divided
into 5 major clusters, whose interactions are then manually
encoded into an st-graph. Our model is also structure-aware.
However, our approach does not require a coarse subdivision
of joints and does not require manual definition of st-graphs.
Moreover, our layer is agnostic to the underlying network
and can be interfaced with most existing architectures.

Bütepage et al. [2] propose to encode poses with a hierar-
chy of dense layers following the kinematic chain starting
from the end-effectors (dubbed H-TE), which is similar to
our SP-layer. In contrast to this work, H-TE operates on the
input rather than the output, and has only been demonstrated
with non-recurrent networks when using 3D positions to
parameterize the poses.

Structure-aware network architectures have also been
used in 3D pose estimation from images [16, 29, 21, 17, 31].
[17] and [31] both learn a structured latent space. [21] ex-
ploit structure only implicitly by encoding the poses into
distance matrices which then serve as inputs and outputs
of the network. [16] and [29] are closest to our work as
they explicitly modify the network to account for skeletal
structure, either via the loss function [29], or using a se-
quence of LSTM cells for each joint in the skeleton [16].
[16] introduces many new layers into the architecture and
needs hyper-parameter tuning to be most effective. In con-
trast, our proposed SP-layer is simple to implement and train.
We show that it improves performance of several baseline
architectures out-of-the-box.

Parameterizations Most work parameterizes joint angles
as exponential maps relative to each joint’s parent. Pavllo et
al. [25] show results competitive with the state of the art us-
ing quaternions. Their model, QuaterNet, consists of 2 layers
of GRU cells and similar to [20] uses a skip connection. The
use of quaternions allows for integration of a differentiable
forward kinematics layer, facilitating loss computation in
the form of Euclidean distance of 3D joint positions. For
short-term predictions, QuaterNet directly optimizes for the
Euler-angle based metric as introduced by [7]. We show
that QuaterNet also benefits from augmentation with our SP-
layer, indicating that SPL is independent of the underlying
joint angle representation.

Bütepage et al. [2, 3] and Holden et al. [10] convert the
data directly to 3D joint positions. These works do not use
recurrent structures, which necessitates the extraction of
fixed-size, temporal windows for training. [2] and [10] focus
on learning of latent representations, which are shown to be
helpful for various tasks, such as denoising, forecasting, or
motion generation along a given trajectory [9]. [3] extends
[2] by applying a conditional variational autoencoder (VAE)
to the task of online motion prediction in human-robot inter-
actions. We use the positional representation of human poses
to compute an informative metric of the prediction quality.

However, for learning we use joint angles since they encode
symmetries better and are inherently bone-length invariant.

3. Method
The goal of our work is to provide a general solution

to the problem of human motion modelling. To this end
we are motivated by the observation that human motion is
strongly regulated by the spatial structure of the skeleton.
However, integrating this structure into deep neural network
architectures has so far not yielded better performance than
architectures that only model temporal dependencies explic-
itly. In this section we outline a novel structured prediction
layer (SPL) that explicitly captures the spatial connectivity.
The layer is designed to be agnostic to the underlying net-
work. We empirically show in Sec. 5 and 6 that it improves
the performance of a variety of existing models irrespective
of the dataset or the data representation used.

3.1. Problem Formulation

A motion sample can be considered as a sequenceX =
fx1 : : :xT g where a frame xt 2 RN at time-step t denotes
the N -dimensional body pose. N depends on the number
of joints in the skeleton, K, and the size M of the per-joint
representation (angle-axis, rotation matrices, quaternions, or
3D positions), i.e. N = K �M .

Due to their temporal nature, motion sequences are often
modelled with auto-regressive approaches. Such models
factorize the joint probability of a motion sequence as a
product of conditionals as follows:

p�(X) =

TY
t=1

p�(xt j x1:t�1) (1)

where the joint distribution is parameterized by �. At each
time step t, the next pose is predicted given the past poses.

While this auto-regressive setting explicitly models the
temporal dependencies, the spatial structure is treated only
implicitly. In other words, given a pose vector xt, the model
must predict the whole pose vector xt+1 at the next time step.
This assumes that joints are independent from each other
given a particular context (i.e., a neural representation of
the past frames). However, the human body is composed of
hierarchical joints and the kinematic chain introduces spatial
dependencies between them.

3.2. Structured Prediction Layer

To address this shortcoming, we propose a novel struc-
tured prediction layer (SPL). This is formed by decomposing
the model prediction into individual joints. This decompo-
sition is guided by the spatial prior of the human kinematic
chain, depicted in Fig. 2. Formally, xt 2 RN is a concatena-
tion of K joints x(k)

t 2 RM :

xt = [x
(hip)
t ;x

(spine)
t : : : x

(lwrist)
t ;x

(lhand)
t ]



Figure 2: SPL overview. Given the contexth t of past
frames, joint predictionŝx (k )

t are made hierarchically by
following the kinematic chain de�ned by the underlying
skeleton. Only a subset of joints is visualized for clarity.

To interface with existing architectures, the SP-layer takes
a context representationh t as input. Here,h t is assumed to
summarize the motion sequence until timet. Without loss
of generality, we assume this to be a hidden RNN state or its
projection. While existing work typically leverages several
dense layers to predict theN -dimensional pose vectorx t

from h t , our SP-layer predicts each joint individually with
separate smaller networks:

p� (x t ) =
KY

k=1

p� (x (k )
t j parent(x (k )

t ); h t ) (2)

whereparent(x (k )
t ) extracts the parent of thek-th joint. Im-

portantly, the full body posex t is predicted by following the
skeletal hierarchy in Fig. 2 as follows:

p� (x t ) = p� (x (hip )
t j h t )p� (x (spine )

t j x (hip )
t ; h t ) � � � (3)

In this formulation each joint receives information about its
own con�guration and that of the immediate parent both ex-
plicitly, through the conditioning on the parent joint's predic-
tion, and implicitly via the contexth t . The joint probability
of Eq. 1 is further factorized in the spatial domain:

p� (X ) =
TY

t =1

KY

k=1

p� (x (k )
t j parent(x (k )

t ); h t ) (4)

The bene�t of this structured prediction approach is two-
fold. First, the proposed factorization allows for integration
of a structural prior in the form of a hierarchical architec-
ture where each joint is modelled by a different network.
This allows the model to learn dedicated representations per
joint and hence saves model capacity. Second, analogous
to message passing, each parent propagates its prediction to
the child joints, allowing for more precise local predictions
because the joint has access to the information it depends on
(i.e., the parent's prediction).

In our experiments (cf. Sec. 5 and 6) we show that this
layer improves the prediction performance of a diverse set

Figure 3:Difference between dense and SP-layerwith 2
joints. When all dashed weights are zero, a dense hidden
layer is equivalent to a SP-layer that ignores the hierarchy. In
a dense layer, the hidden unituk is connected to all joints via
w1;k andw2;k . Hence, the gradient@L=@uk is affected by
both joints, whereas in SPL onlyw2;k contributes by design.

of underlying architectures across many settings and metrics.
One potential reason for why this is the case can be found
in the resulting network structure and its implications on
network training. Fig. 3 compares our structured approach
with the traditional one-shot prediction using a dense layer.
Because the per-joint decomposition leads to many small
separate networks, we can think of an SP-layer as a dense
layer where some connections have been set to zero explic-
itly by leveraging domain knowledge. This decomposition
changes the gradients w.r.t. the units in the hidden layer,
which are now only affected by the gradients coming from
the joint hierarchy that they model. In the traditional setting,
the error computed as an average over all joints can easily be
distributed over all network weights in an arbitrary fashion.

3.3. Perjoint Loss

We additionally propose to perform a similar decomposi-
tion in the objective function that leads to further improve-
ments. The training objective is often a metric in Euclidean
space between ground-truth posesx t and predictionŝx t :

L (X ; X̂ ) =
1

T � N

TX

t =1

f (x t ; x̂ t ) (5)

wheref is a loss function such as an`p norm. The lossf is
calculated on the entire pose vector and averaged across the
temporal and spatial domain. In our work, we use a slightly
modi�ed version that preserves joint integrity:

L (X ; X̂ ) =
TX

t =1

KX

k=1

f (x (k )
t ; x̂ (k )

t ) (6)

where the lossf is �rst calculated on every joint and then
summed up to calculate the loss for the entire motion se-
quence. In this work we use the MSE forf , but the formula-
tion allows for an easy adaptation of domain-speci�c losses
such as thegeodesic distanceproposed by [33].



4. Human Motion Modelling

We now evaluate our SP-layer on the task of human mo-
tion modelling. We perform our experiments on two datasets
and three different underlying architectures which use three
different data representations. In the following we explain
the datasets and models in more detail.

4.1. Datasets

For ease of comparison to the state of the art we �rst
report results from the H3.6M dataset. We follow the same
experiment protocol used in [14, 20].

Given the small size of H3.6M and the reported variance
of test results [25], we propose to use the recently introduced
AMASS dataset [19] for the motion modelling task. We
downloaded the dataset from [11] as the data from [19] has
not yet been released at the time of this writing. AMASS
is composed of publicly available databases,e.g. the CMU
Mocap database [5] or HumanEva [26] and uses the SMPL
model [18] to represent motion sequences. The dataset con-
tains80593sequences, which comprise a total of900840918
frames sampled at 60 Hz. This is roughly equivalent to42
hours of recording, making AMASS about 14 times bigger
than H3.6M (6320894frames at 50 Hz).

We split the AMASS dataset into training, validation and
test splits consisting of roughly90%, 5% and5% of the
samples, respectively. Similar to the H3.6M protocol, the
input sequences are2 seconds (120frames) and the target
sequences are400-ms (24 frames) long. The H3.6M bench-
marks use a total of120test samples across15 categories.
This is a relatively small test set and it has been reported to
cause high variance [24]. In our H3.6M experiments we use
this setting to ensure fair comparison. However, on AMASS
we use every frame in the test split by shifting a 2-second
window over the motion sequences, which extracts30304
test samples. H3.6M and AMASS model the human skeleton
with 21 and15 major joints, respectively. We implement
separate SP-layers corresponding to the underlying skeleton.

4.2. Models

The modular nature of our SP-layer allows for �exi-
ble deployment with a diverse set of base models. In our
experiments, we test the layer with the following three
representative architectures proposed in the literature. To
ease experimentation with SPL and other base architec-
tures, we make all code and pre-trained models available at
https://ait.ethz.ch/projects/2019/spl .
Seq2seqis a model proposed by Martinezet al. [20], con-
sisting of a single layer of GRU cells. It contains a residual
connection between the inputs and predictions. Input poses
are represented as exponential maps.
QuaterNet uses a quaternion representation instead [24,
25]. The model augments RNNs with quaternion based

normalization and regularization operations. Similarly, the
residual connection from inputs to outputs is implemented
via the quaternion product. In our experiments, we replace
the �nal linear output layer with our SP-layer and keep the
remaining setup intact.
RNN uses a single layer recurrent network to calculate the
contexth t , which we feed to our SP-layer. In contrast to
the Seq2seq and QuaterNet settings, we represent poses via
rotation matrices. To account for the error accumulation
problem at test time [7, 8, 14], we apply dropout directly on
the inputs. This architecture is similar to the ERD [7] but is
additionally augmented with the residual connection of [20].

In the SP-layer, each joint is modelled with only one small
hidden layer (64 or 128 units) followed by a ReLU activation
and a linear projection to the joint prediction̂x (k )

t 2 RM .
We experiment with different hierarchical con�gurations
in SPL (cf. Sec. 6.3) where following the true kinematic
chain performed best. Some models bene�t from inputting
all parent joints in the kinematic chain compared to using
only the immediate parent. Note that we changed existing
Seq2seq and QuaterNet models only as much as required to
integrate them with SPL. To ensure a fair comparison we
�ne-tune hyper-parameters like learning rate, batch size and
hidden layer units. See appendix Sec. 8.1 for details.

5. Evaluation on H3.6M Dataset

In our �rst set of comparisons we baseline the proposed
SP-layer on the H3.6M dataset using the Euler angle metric
as is common practice in the literature.

5.1. Metrics

Euler angles Let w = � a denote a rotation of angle�
around the unit axisa 2 R3. w is the angle-axis (or ex-
ponential map) representation of a single joint angle. The
Euler angles are extracted fromw by �rst converting it into a
rotation matrixR = exp( w ) using Rodrigues' formula and
then computing the angles� = ( � x ; � y ; � z ) following [27].
This assumes thatR follows thez-y-xorder. Furthermore, as
noted by [27], there exist always two solutions for� , from
which [14] picks the one that leads to the least amount of
rotation. The Euler angle metric for time stept is then

L eul (t) =
1

jX test j

X

x t 2X test

s X

k

(� (k )
t � �̂ (k )

t )2 (7)

where� (k )
t are the predicted Euler angles of jointk at time

t. Xtest is de�ned by [14] and comprises of 120 sequences.

5.2. Results

Tab. 1 summarizes the relative performances of models
with and without the SP-layer on the H3.6M dataset and
compares them to the state of the art. The publicly available



Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
LSTM-3LR [7] 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23
SRNN [14] 0.81 0.94 1.16 1.300.97 1.14 1.35 1.46 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93
Zero-Velocity [20] 0.39 0.68 0.99 1.150.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04
AGED [33] 0.22 0.36 0.55 0.670.17 0.28 0.51 0.64 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83
Seq2seq-sampling-sup [20] 0.28 0.49 0.72 0.810.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
Seq2seq-sampling-sup-SPL 0.23 0.370.53 0.61 0.20 0.32 0.52 0.67 0.26 0.48 0.92 0.90 0.29 0.63 0.90 0.99
Seq2seq-sampling [20] 0.27 0.47 0.70 0.780.25 0.43 0.71 0.87 0.33 0.61 1.04 1.19 0.31 0.69 1.03 1.12
Seq2seq-sampling-SPL 0.23 0.38 0.58 0.670.20 0.32 0.52 0.66 0.26 0.48 0.92 0.90 0.30 0.64 0.91 0.99
QuaterNet [25] 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93
QuaterNet-SPL 0.22 0.35 0.540.61 0.20 0.33 0.55 0.68 0.25 0.47 0.91 0.88 0.26 0.59 0.84 0.91
RNN 0.30 0.48 0.78 0.890.23 0.36 0.57 0.72 0.26 0.49 0.97 0.95 0.31 0.67 0.95 1.03
RNN-SPL 0.26 0.40 0.67 0.780.21 0.34 0.55 0.69 0.26 0.48 0.96 0.94 0.30 0.66 0.95 1.05

Table 1:H3.6M results for the commonly usedwalking, eating, smoking, anddiscussionactivities across different prediction
horizons. Values correspond to the Euler angle metric measuredat the given time. “Seq2seq-sampling” and “Seq2seq-
sampling-sup” models correspond to “Residual unsup. (MA)” and “Residual sup. (MA)” models in [20], respectively. Note
the relative performance improvement for each base model when augmented with our SP-layer.

Seq2seq [20] and QuaterNet [25] models are augmented with
our SP-layer, but we otherwise follow the original training
and evaluation protocols of the respective baseline model.

Using the SP-layer improves the Seq2seq performance
signi�cantly and achieves state-of-the-art performance in
thewalkingcategory. Similarly, SPL yields the best perfor-
mance with QuaterNet in short-termsmokinganddiscussion
motions and marginally outperforms the vanilla QuaterNet
in most categories or is comparative to it. While our SP-
layer also boosts the performance of the RNN model in
walking, eatingandsmokingmotion categories, performance
remains similar fordiscussion.

We follow the same evaluation setting as in previous work
for direct comparability. It is noteworthy to mention that the
evaluation metrics reported on H3.6M exhibit high variance
due to the small number of test samples [24] and low errors
do not always correspond to good qualitative results [20].

6. AMASS: A New Benchmark

In this section we evaluate the baseline methods and
our SP-layer on the large-scale AMASS dataset, detailed
in Sec. 4.1. The diversity and large amount of motion sam-
ples in AMASS increase both the task's complexity and the
reliability of results due to a larger test set. In addition to
proposing a new evaluation setting for motion modelling we
suggest usage of a more versatile set of metrics for the task.

6.1. Metrics

So far, motion prediction has been benchmarked on
H3.6M using the Euclidean distance between target and
predicted Euler angles [14, 20, 25, 33]. Numbers are usually
reported per action at certain time steps averaged over 8 sam-

ples [14]. Unfortunately, Euler angles have twelve different
conventions (not counting the fact that each of these can be
de�ned using intrinsic or extrinsic rotations), which makes
the practical implementation of this metric error-prone.

For a more precise analysis we introduce additional met-
rics from related pose estimation areas [28, 32, 34]. In order
to increase the robustness we furthermore suggest to i) sum
until time stept rather than report the metricat time step
t, ii) use more test samples covering a larger portion of the
test data set and iii) evaluate the models with complemen-
tary metrics. Note that we do not train the models on these
metrics; they only serve as evaluation criteria at test time.

Joint angle difference To circumvent the potential source
of error in the Euler angle metric, we propose using another
angle-based metric following [11, 32]. This metric computes
the angle of the rotation required to align the predicted joint
with the target joint. UnlikeL eul , this metric is independent
of how rotations are parameterized. It is furthermore similar
to the geodesic loss proposed by [33]. Let R̂ be the predicted
joint angle for a given joint, parameterized as a rotation
matrix, and the respective target rotationR . The difference
in rotation can be computed as~R = R̂R T , from which we
construct the metric at time stept as follows:

L angle (t) =
1

jX test j

X

x t 2X test

1
K

X

k



 log

�
~R

(k )
t

� 



2
(8)

where ~R
(k )
t is the rotation matrix of jointk at timet. In

contrast toL eul we compute the loss on global joint angles by
�rst unrolling the kinematic chain before computingL angle .



Euler Joint Angle Positional PCK (AUC)
milliseconds 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
Zero-Velocity [20] 1.91 5.93 11.36 17.780.37 1.22 2.44 3.94 0.14 0.48 0.96 1.54 0.86 0.83 0.84 0.82
Seq2seq [20]* 1.52 5.14 10.66 17.840.27 0.99 2.19 3.85 0.11 0.39 0.87 1.53 0.91 0.86 0.86 0.82
Seq2seq-PJL 1.46 5.28 11.46 19.780.24 0.95 2.16 3.87 0.09 0.35 0.80 1.41 0.91 0.87 0.87 0.83
Seq2seq-SPL 1.57 5.00 10.01 16.430.27 0.94 2.01 3.45 0.10 0.36 0.79 1.36 0.91 0.87 0.87 0.84
Seq2seq-sampling [20]* 2.01 5.99 11.22 17.330.37 1.17 2.27 3.59 0.14 0.45 0.88 1.39 0.86 0.84 0.85 0.83
Seq2seq-sampling-PJL 1.71 5.15 9.71 15.150.32 1.00 1.97 3.14 0.12 0.39 0.77 1.23 0.88 0.86 0.87 0.85
Seq2seq-sampling-SPL 1.71 5.13 9.60 14.860.31 0.97 1.91 3.04 0.12 0.38 0.74 1.18 0.89 0.86 0.88 0.85
Seq2seq-dropout 1.54 4.98 9.94 16.130.27 0.95 2.00 3.39 0.10 0.37 0.79 1.34 0.91 0.87 0.87 0.84
Seq2seq-dropout-PJL 1.26 4.41 9.24 15.460.23 0.84 1.82 3.13 0.09 0.33 0.71 1.21 0.92 0.88 0.88 0.85
Seq2seq-dropout-SPL 1.26 4.26 8.67 14.23 0.23 0.81 1.74 2.96 0.09 0.32 0.68 1.16 0.92 0.89 0.89 0.86
QuaterNet [25]* 1.49 4.70 9.16 14.540.26 0.89 1.83 3.00 0.10 0.34 0.71 1.18 0.90 0.87 0.88 0.85
QuaterNet-SPL 1.34 4.25 8.39 13.430.25 0.83 1.71 2.83 0.09 0.32 0.67 1.10 0.91 0.88 0.89 0.86
RNN 1.69 5.23 10.18 16.290.31 1.05 2.17 3.62 0.12 0.41 0.85 1.43 0.89 0.85 0.86 0.83
RNN-SPL 1.33 4.13 8.03 12.84 0.22 0.73 1.51 2.51 0.08 0.28 0.57 0.96 0.93 0.90 0.90 0.88

Table 2:AMASS resultsof the base models with and without the proposed SP-layer. We report normalized area-under-the-
curve (AUC) for PCK values (higher is better, maximum is1). For the remaining metrics, lower is better. “Seq2seq” and
“Seq2seq-dropout” are trained by using ground-truth inputs. "-dropout" applies0:1 dropout on the inputs. “*” indicates our
evaluation of this model. "-PJL" stands for our proposedper-joint losson the vanilla model, showing a signi�cant improvement
already. Note that models with SPL perform better except on short-term predictions for “Seq2seq” model.

Positional Following Pavlloet al.'s [25] suggestion, we
introduce a positional metric. This metric simply performs
forward kinematics onx t andx̂ t to obtain 3D joint positions
pt and p̂t , respectively. It then computes the Euclidean
distance per joint. We normalize the skeleton bones such
that the right thigh bone has unit length.

L pos (t) =
1
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PCK In cases where large errors occur, the value ofL pos

can be misleading. Hence, following the 3D (hand) pose
estimation literature [13, 22, 28, 34], we introduce PCK by
computing the percentage of predicted joints lying within a
spherical threshold� around the target joint position, i.e.

PCK(x t ; x̂ t ; � ) =
1
K

X

k

I
h

 p(k )

t � p̂(k )
t





2
� �

i

L pck (t; � ) =
1
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whereI [�] returns1 if its input is true, and0 otherwise. Note
that for PCK we do not sum, but average, until time stept.

6.2. Results

Tab. 2 summarizes the performance of the three model
variants, each with and without the SP-layer. We trained
the base models with minimal modi�cations, i.e. design,
training objective and regularizations are kept intact. We use

angle-axis, quaternion and rotation matrix representations
for Seq2seq, QuaterNet, and RNN models, respectively. To
make a fair comparison, we run hyper-parameter search on
the batch size, cell type, learning rate and hidden layer size.

Unlike on H3.6M, LSTM cells consistently outperform
GRUs on AMASS for the Seq2seq and RNN models. Dif-
ferent from [20], we also train the Seq2seq model by apply-
ing dropout on the inputs similar to our RNN architecture.
QuaterNet gives its best performance with GRU cells while
some �ne-tuning for the teacher forcing ratio is necessary.

In all settings, the Seq2seq models fail to give competi-
tive performance on this large-scale task and are sometimes
outperformed by the zero-velocity baseline proposed by Mar-
tinezet al. [20]. QuaterNet shows a strong performance and
is in fact the closest vanilla model to the SPL variants. How-
ever, our SP-layer still improves the QuaterNet results further.
The contribution of the SP-layer is best observable on the

Figure 4: PCK curves of the best Seq2seq variant and
QuaterNet with and without SPL on AMASS for400 ms
predictions. More results are shown in appendix Sec. 8.3.




