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Abstract— Some aerial tasks are achieved more efficiently
and at a lower cost by a group of independently controlled
micro aerial vehicles (MAVs) when compared to a single, more
sophisticated robot. Controlling formation flight can be cast
as a two-level problem: stabilization of relative distances of
agents (formation shape control) and control of the center
of gravity of the formation. To date, accurate shape control
of a formation of MAVs usually relies on external tracking
devices (e.g. fixed cameras) or signals (e.g. GPS) and uses
centralized control, which severely limits its deployment. In
this paper, we present an environment-independent approach
for relative MAV formation flight, using a distributed control
algorithm which relies only on embedded sensing and agent-
to-agent communication. In particular, an on-board monocular
camera is used to acquire relative distance measurements in
combination with a consensus-based distributed Kalman filter.
We evaluate our methods in- and outdoors with a formation of
three MAVs while controlling the formation’s center of gravity
manually.

I. INTRODUCTION

Swarms of autonomous robots have recently received a lot
of attention in the literature, including coordinated groups
of terrestrial [1], aerial [2], [3], [4] or aquatic [5] robots.
Teams of small, cheap robots can collectively achieve many
tasks more efficiently, and in many cases at a lower total
cost than a single, more sophisticated robot. Application
scenarios include rapid establishment of adhoc wireless com-
munication [4] or sensor [6] networks, aerial surveillance and
mapping [7], entertainment [8] as well as search and rescue
missions [4]. Micro aerial vehicles (MAVs) are of particular
interest in this context, as they can navigate freely in 3D
space, carry payloads, can hover and are very robust due to
mechanical simplicity.

In order to achieve a stable formation, individuals require
knowledge about the positions of, or distances to, other
swarm members [9], [10]. Existing approaches to formation
flight therefore rely either on low precision sensors, which
result in large inter-robot distances, or on external infras-
tructure such as high-precision cameras. Small formations of
less than five MAVs, performing acrobatic aerial maneuvers,
have been demonstrated using a room-fixed, external tracking
system (e.g., VICON) and centralized, off-board control [2].
Larger formations with up to 16 agents were studied in [3],
also relying on external localization and centralized control.
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Fig. 1: Inspired by natural swarms, we present a distributed
algorithm for highly accurate relative formation flight of MAVs.
The method does not rely on external tracking or communication
infrastructure and works in indoor and outdoor environments.

Hörtner et al. [8] demonstrated a large formation of 50
quadrotors called Spaxels, performing aerial choreography.
The system leverages GPS localization and relies on a cen-
tral, off-board formation controller. Due to GPS inaccuracies,
inter-agent distances have to remain relatively large. The sFly
project [7] developed visual SLAM based MAV localization
methods that have been applied to swarm flight. However,
there is no real-time interaction between the swarm members,
which makes precise and agile formation flight very difficult.
Other testbeds include localization based on wireless network
signals [6] or on on-board acoustic sensors [4].

In this paper, we propose a completely self-contained,
distributed algorithm for the accurate control of relative
formation flight, without relying on external infrastructure
for this task. We focus on the problem of stabilizing the
relative formation dynamics and assume that the center of
gravity of the swarm is controlled separately, as this can be
achieved by existing navigation and guidance techniques for
single aerial vehicles. Our approach is inspired by work on
deep space satellite formations [11], where accurate external
localization information is not present.

For the first time, we experimentally demonstrate stable
formation flight with an inter-agent distance of less than
1 m. Our method does not rely on any global positioning
system and uses only on-board vision to identify and localize
neighboring agents. The proposed method is completely
distributed, i.e. the agents rely on local computations and
inter-agent communication without central coordination. The
accuracy and agility of the resulting formation is significantly
higher than it would be possible with GPS or visual SLAM



based navigation and therefore admits much more flexibility
in terms of dynamic maneuvers. Finally, our approach works
indoors and outdoors. To our knowledge, this is the first
implementation of a flying formation relying on a completely
distributed control and estimation architecture, using on-
board cameras only. Whilst demonstrated using MAVs, the
developed algorithms are not limited to quadrotors nor to the
sensors used, and can be applied to other robotic swarms.

II. PRELIMINARIES

A. Coordinate Systems

We use two types of coordinate systems, illustrated in Fig.
2. A body-fixed coordinate system Bi is used to describe
the individual agents’ dynamics. Furthermore a predefined,
global inertial frame I serves as a reference for all agents in
the formation. The rotation matrix RI

Bi ∈ SO(3), where SO is
the special Lie group of all rotation matrices, describes the
transformation from body frame Bi to inertial frame I, or in
other words the attitude of a quadrotor i. Since RI

Bi is used
to transform measurements and control inputs from the body
frame of agent i into the inertial frame, accurate estimation
of RI

Bi is fundamental to MAV control.

B. Modeling

The nonlinear attitude dynamics of the quadrotors are sig-
nificantly faster than the translational dynamics. Therefore,
the two dynamics are modeled separately.

1) Agent Model: The four rotors of a quadrotor are
mounted in fixed positions w.r.t. the body frame and can
be controlled individually as indicated in Fig. 2. Attitude
control of a quadrotor is achieved by differential control of
the rotor thrusts. Pitch, roll and total thrust T is controlled
by varying the individual motor speeds. Yaw is controlled by
the average speed of the clockwise and anticlockwise rotating
rotors. Note that the system is under-actuated.

We use the quadrotor model derived in [12]. The angular
acceleration around the center of gravity is given as

ω̇ = J−1 [−ω× Jω +ua
]
, (1)

where J ∈ R3×3 is the moment of inertia matrix of the
quadrotor and ua ∈ R3 is the input, which is applied by the
four motor thrust forces. The rotational velocity of the body
coordinate frame w.r.t. the inertial frame is given by

ṘI
Bi =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

RI
Bi . (2)

The skew symmetric matrix in (2) is denoted by SKEW(ω).
2) Formation Model: Given the thrust Ti, the rotation

matrix RI
Bi and the gravitational force Fg, the dynamics of

each agent i are modeled as a point mass in the inertial frame:

p̈im = FI,i +Fg ∈ R3 with FI,i = RI
Bi
[
0 0 Ti

]T
. (3)

The individual mass point dynamics are used to describe
the dynamics of the formation in a relative representation
ri = pi− p j in the inertial frame, see Fig. 3. The formation
is defined by N−1 relative vectors, see [13], [14], [11] for

Fig. 2: The basic model of a quadrotor with the inertial system
I and the body system B, as well as the rotor thrust forces F =
[F1,F2,F3,F4], the body rotational rates ω = [ωx,ωy,ωz] and the
rotor speeds ωm = [ω1,ω2,ω3,ω4].

Fig. 3: Basic formation model, consisting of agents approximated
by masspoints; ri are measured by onboard cameras.

a detailed analysis. Using (3), the dynamics of the N-agent
system in Fig. 3 is given by N−1 differential equations:

r̈i = p̈i− p̈i+1 =
FI,i

m
−

FI,i+1

m
∈ R3 , i = 1, . . . ,N−1 . (4)

The formation has (N−1) × 6 states, i.e. all relative
positions and velocities in all three dimensions, updated
according to the discrete-time state space model

xk+1 = Axk +Buk , zk =Ckxk , tk = Hkxk ,

where x=
[
rT

1 ṙT
1 .. rT

N−1 ṙT
N−1
]T ∈R6(N−1) is the state

of the formation, A ∈ R6(N−1)×6(N−1) the system matrix,
u =

[
uT

1 .. uT
N
]T ∈ R3N the input vector with u1, ..,uN :=

FI1 ..FIN and B ∈ R6(N−1)×3N the input map. Furthermore,
z =

[
zT

1 .. zT
N−1

]T ∈ RnC is the measurement vector,
Ck ∈ RnC×6(N−1) the output map, t =

[
tT
1 .. tT

N−1
]T ∈

RnT the communication vector and Hk ∈RnT×6(N−1) the com-
munication map. The matrices Ck and Hk are time-varying
since onboard cameras may capture different neighboring
MAVs at different times. Furthermore, A, B, Ck and Hk are
structured as

A =

 A1 · · · 0
...

. . .
...

0 · · · AN−1

 Ck =

 Ck,1
...

Ck,N

 Hk =

 Hk,1
...

Hk,N



B =


B11 B12 0 · · · 0

0 B22 B23
. . .

...
...

. . . . . . . . . 0
0 · · · 0 BN−1N−1 BN−1N

 .



Fig. 4: Overview of control structure, with one instance running
on each agent. The relative state information ti j and the relative
orientations ΓI

Bi( j) are communicated between agents.

III. DISTRIBUTED FORMATION CONTROL

The main goal of this work is the accurate control of
MAV formations without centralized computing or remote
sensing infrastructure, such as GPS or markers on the ground.
Therefore, all sensing and computing is performed on-board
and in a distributed manner. This leads to a number of
challenges, three of which are described in the following:

a) Distributed Formation State Estimation: A single
MAV cannot observe the state of the whole formation due to
limited local measurements. Therefore, the formation state
needs to be estimated in a distributed manner using inter-
agent communication.

b) Inertial Coordinate Frame Consensus: Each agent
uses local IMU and magnetic field measurements to estimate
an inertial coordinate frame. Since these measurements are
noisy and the local sensors might be differently calibrated,
the local estimates may differ considerably from agent to
agent. Therefore, the agents need to use communication to
reach a consensus on the inertial frame.

c) Visual Neighbor Tracking: Due to the limited field
of view of the onboard cameras, each MAV needs to actively
track neighboring MAVs to ensure the availability of relative
position measurements.

To address these challenges, we propose the distributed
estimation and control architecture depicted in Fig. 4, the
components of which are explained in detail in the following
sections. In particular, in Section III-A, the formation state
estimator is presented, which is based on a distributed
consensus Kalman filter. In Section III-B, the linear quadratic
regulator (LQR) based formation controller is discussed.
Furthermore, in Section III-C the inertial frame estimator
is presented, by which the MAVs ensure consensus on
the global inertial frame and in Section III-D the agent
tracking controller is discussed, by which the MAVs ensure
availability of relative distance measurements.

A. Formation Estimator

The formation estimator is built as follows. Each MAV
estimates the state vector of the complete formation, by using
local measurements and agent-to-agent communication. In
particular, each MAV runs a local Kalman filter instance,

which combines local relative distance measurements, ob-
tained by on-board cameras, with state estimates received
from other agents by communication. To ensure consensus on
the local state estimates, the filter instances are coordinated
by a consensus scheme originally proposed in [15]. In par-
ticular, we build upon an adaptation of this scheme by [16],
which was designed for deep space satellite formations.

In the following, the local estimate of the formation state x
by agent i is denoted by x̂i. The subscript {k|k} denotes an a-
posteriori and the {k|k−1} an a-priori estimate, respectively.
Extending the definition of the communication vector t in
Section II-B.2, the vector ti j is the message sent from agent
j to agent i. The local filter equation is then given as

x̂i
k|k = x̂i

k|k−1 +Li

(
zi−Ck,ix̂i

k|k−1

)
+Fi

N

∑
j=1

ti j−Hk, ji x̂i
k|k−1, (5)

where x̂i
k|k−1 , Ax̂i

k−1|k−1 +Biuk,i is the model based predic-
tion term, Li(zi−Cix̂i) is the measurement update term with
Kalman gain Li, and Fi ∑

N
j=1(ti j−Hix̂i) is the additional com-

munication consensus correction term with gain Fi, which
is necessary to ensure convergence of the local estimates.
Combining measurement and communication vector, the
filter equation (5) can be written using the matrices

Lr ,
[
L,F

]
, Cr ,

[
C
H

]
, Rr ,

[
R 0
0 N

]
, zr ,

[
z
t

]
,

and the estimation procedure can be written in standard
Kalman filter form with prediction and innovation step.
Details are given in Algorithm 1.

Remark 1: For theoretical stability/convergence guaran-
tees of the estimator, the original formulation of Algorithm 1
as proposed in [15] additionally requires a consensus on
the error covariance P̂i, and Gaussian noise distributions
for both the measurement and communication errors. Due
to limitations on the communication bandwidth, we have
omitted the error covariance consensus in Algorithm 1. In
addition, the Gaussian distribution assumption is likely to be
violated in practice, especially during communication packet
drops. Nevertheless, we have not observed any stability
problems in our experiments, and the estimator performance
was sufficiently good to achieve an accurate control of the
formation shape in all cases.

Algorithm 1 Linear Kalman Filter with Consensus for
Formation Estimation
Require: Proc., meas., comm. noise covariances: Qr, Rr, N

Local Formation Prediction Step:
1: x̂i

k|k−1 = Ax̂i
k−1|k−1 +Bu with u =−Kx̂i

k−1|k−1
2: Pk|k−1 = APk−1|k−1AT +Qr

Global Formation Update and Consensus Step:
3: Lr = Pk|k−1CT

r
(
CrPk|k−1CT

r +Rr
)−1

4: x̂i
k|k = x̂i

k|k−1 +Lr

(
zr−Cr x̂i

k|k−1

)
5: Pk|k = (I−LrCr)Pk|k−1



B. Formation LQR

Since every agent estimates the full state vector locally,
each agent can use full state feedback locally without addi-
tional communication. At time k, every agent uses a local
LQR state feedback controller (see e.g. [17]) to compute the
local input ui =−Ki x̂i

k|k, where x̂i
k|k is agent i’s estimate of

the formation.
Remark 2: Note that formation only stabilizes relative po-

sitions. The absolute position of the formation, i.e. its center
point, is steered manually in this work. Existing approaches
from autonomous flight of one vehicle could be applied to
steer the center point of the formation autonomously.

C. Inertial Frame Estimator

The rotation matrix RBi
I is used by each agent i to

transform data from the local body-frame into the inertial-
frame and vice versa. In order to compute an estimate of the
rotation matrix, denoted in the following by R̂Bi

I , the inertial
measurement unit (IMU) on the quadrotor is used, providing
measurements of the body angular rates ω , the acceleration
vector a ∈R3 and the magnetic field strength µ ∈R3. These
measurements are in general noisy and in case of the angular
rate sensors drift over time. As a result, the local inertial
frames will vary from agent to agent.

In order to correct for these local differences, we imple-
ment a consensus scheme on the inertial frame using com-
munication among agents. In particular, an adapted version
of the consensus algorithm for SO(3) as presented in [18] in
combination with an extended Kalman filter (EKF) is used,
and given explicitly in Algorithm 2. Similar to the linear
Kalman filter (KF) in Algorithm 1, Steps 1− 3 constitute
the discrete-time nonlinear prediction of the EKF, which is
obtained by a forward Euler discretization of Eq. (1) and
Eq. (2) and the assumption ua = 0. The variable λ , [a , µ]∈
R6 is introduced as a new state, pointing into the direction

Algorithm 2 Inertial Frame Estimator with Consensus

Local Attitude Prediction Step (IMU):
1: ω̂ i

k|k−1 = ω̂ i
k−1|k−1 + J−1

[
−ω̂ i

k−1|k−1× Jω̂ i
k−1|k−1

]
2: λ̂ i

k|k−1 = I2⊗ exp
[

SKEW(ω)
(

ω̂ i
k|k−1

)
dt
]

λ̂k−1|k−1

3: Pk|k−1 = JaPk−1|k−1JT
a +Qa

Local Attitude Update Step (IMU):
4: La = Pk|k−1CT

a
(
CaPk|k−1CT

a +R
)−1

5: [ω̂, λ̂ ]Tk|k−1 = [ω̂, λ̂ ]Tk|k−1 +La

(
za− [ω̂, λ̂ ]Tk|k−1

)
6: Pk|k = (I−LaCa)Pk|k−1

Generate Local RI
Bi = [ex,ey,ez]:

7: ez = âi
k|k−1 ey = µ̂ i

k|k−1× âi
k|k−1 ex = ey× ez

Global Consensus on RI
Bi with other agents:

8: RI+
Bi = RI

Bi exp
[
∑

N
j=1 aik log

(
RIT

Bi ΓI
Bi( j)

)]
9: Γ

I+
B j(i) = ξ i

jR
I+
Bi

Fig. 5: Quadrotor setup based on an ARDrone frame and PX4
hardware. Each agent is identified via ARToolkit marker.

of the acceleration and the magnetic field. According to our
convention, λ̂ is the estimate of λ . Ja is the Jacobian around
the linearization point and ⊗ is the Kronecker product.
Furthermore, ΓI

Bi( j) is the attitude of agent i estimated by
agent j and ξ i

j is the relative orientation of agent j with
respect to i measured by the camera of agent i. Steps 4−6
are the corresponding update steps of the KF, and Step 7
generates a valid rotation matrix from the current estimate
of gravity and the magnetic field. Finally, the consensus step
7−8 integrates messages from a neighbouring agent j, who
observes relative orientations. Note that in Steps 4 and 6
the matrix Ca ≡ I9, the 9-dimensional identity matrix, since
all outputs of the system can be measured by local sensors.
More details on Algorithm 2 can be found in [18].

D. Agent Tracking Controller

Each agent i tracks exactly one agent j by keeping him
in the center of its camera’s field of view. The assignment is
done in such a way that each N different relative positions,
defining the full formation state, are measured. For our
experiments, where the MAVs operate in a horizontal plane,
each agent controls the yaw rate as a function of the observed
agent’s deviation from the camera’s center of view. For this
task, a simple local PI controller is used.

IV. EXPERIMENTAL RESULTS

A. Hardware Setup

The hardware used in all experiments is based on the
commercially available AR.Drone (see Fig. 5), where the
proprietary electronics were replaced with a Pixhawk PX4
Autopilot, available as open source hard- and software.
A quad core ARM Cortex-A9 single-board PC processes
imagery acquired from a PointGrey Firefly MV camera,
running at 30Hz (3.6mm focal length lens). To attain relative
distance and orientation measurements of adjacent agents,
we use the ARToolkitPlus library [19] and markers on each
agent. Finally, in poorly lit environments (at night) we use
electroluminescent foil to back-light the fiducials (see Fig. 5).
For the communication channel we use a wireless UART
bridge running at 5Hz and with a message packet size of 50
bytes.

B. Experiments

We conducted a number of experiments to evaluate the
performance of the distributed estimation and control archi-
tecture and the stability of the formation flight, even under
dynamic formation changes.



Fig. 6: During the experiment, Ref. A or B are transmitted to the
airborne swarm, which dynamically changes its formation.

In our experiments, we flew three MAVs in a triangular
shaped formation. Agent 1 is measuring the distance r1, agent
2 is measuring the distance r2 and agent 3 is measuring the
linear combination of this two −r1−r2. To test the response
of estimator and controller we give formation step change
commands and switch between ref. A and ref. B as illustrated
in Fig. 6

Experiment 1 (Vicon ground truth): To asses the perfor-
mance of the distributed estimator, we stream the positional
estimates of all agents i, denoted as r̂1x (i), and compare them
with ground truth positions from a Vicon system. Without
loss of generality, we only show the x component of the
reference vector r1. Fig. 7 summarizes the results.

Experiment 2 (Indoor formation flight): To demonstrate
independence of any room-fixed positioning systems, we
fly formations in different indoor environments, again with
dynamic formation changes, see Fig. 8 middle. Fig. 1 illus-
trates steering of the formation’s center of gravity with a
remote control, which does not compromise the stability of
the formation.

Experiment 3 (Outdoor Formation flight): Finally, we
verify the outdoor performance by repeating Experiment 2
in an outdoor environment.

C. Results

The top plot in Fig. 7 shows the x-component of the
estimated state r̂1x (blue) versus Vicon groundtruth (pink).
While there are some positional deviations, the estimated
state r̂1x and ground truth match closely most of the time.
The quadrotors created significant turbulence in the small
lab space, which explain some of the positional error. The
conducted outdoor experiment and flights in larger rooms
showed stable flight which confirm this assumption. The
bottom plot in Fig. 7 shows a close-up of the region circled
in red in the top plot. Here the estimates of all three agents i
are shown alongside the standard deviation σ . The sector
shows a sequence where the state estimates first diverge
due to dropped communication packets, and then quickly
converge again as soon as communication is re-established.
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Fig. 7: Top: plot of the estimate r1x(1) of agent 1 compared
with Vicon ground truth. Bottom: Close-up of circled region;
illustrating a sequence where the state estimates first diverge, due to
dropped communication packets, and then consensus is recovered
as communication is re-established.

The consensus term in (5) enforces convergence between
the distributed estimator, which is reached after 1s. The
maximum difference between local estimates is 40 cm before
convergence and quickly drops below 2.5 cm.

Beyond the estimator experiment in comparison to a Vicon
vision system as described above, we also conducted two
qualitative experiments to validate the capabilities to fly in
different environments. The bottom row in Fig. 8 shows a
free flying formation in a large indoor courtyard without
any tracking or global positioning infrastructure. The center
of gravity of the formation was steered manually with the
formation following the manual input and maintaining its
triangular arrangement. Fig. 8, middle illustrates dynamic
formation changes in the same environment. Please also refer
to the video accompanying this manuscript. Furthermore, a
similar experiment was conducted outdoors, which is shown
in the top plot in Fig. 8. This further demonstrates the
benefits of the proposed consensus based distributed state
estimation and control algorithm and the resulting accuracy,
which can not be achieved with e.g. a GPS system.

V. CONCLUSION

We have presented a fully distributed estimation and
control architecture that enables formation control of MAVs
in arbitrary environments without any external sensing struc-
ture. The algorithm requires only onboard sensor data from
an IMU and relative distance measurements from a marker-
based onboard vision system as well as communicated state
information from the other members of the formation. A



t=0.0s t=0.8s t=1.5s t=2.3s

t=0.0s t=0.9s t=1.3s t=2.1s

t=0.0s t=2.s t=5.3s t=7.5s

Fig. 8: Free flying formation during formation change. Top: Outdoor environment. Middle: Indoor environment. Bottom: Stable formation
follows manually set position of center of gravity of the swarm.

distributed extended Kalman filter formulation computes a
joint estimate of the formation’s state. Due to multiple redun-
dant measurements, the system is robust against occlusions
as long as there is at least one measurement of each relative
state in the formation. A proof-of-concept implementation
with three quadrotors demonstrates the feasibility of the
approach, while relying on onboard sensing and computa-
tion as well as on local communication only. A series of
experiments demonstrates the convergence of the distributed
state estimation algorithm and the robustness of the proposed
technique for both indoor and outdoor formation flight.

While the proposed method scales theoretically seamlessly
to larger formations with a high number of agents, there is a
practical limitation of the maximal formation members due
to the linear scale in bandwidth.
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