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Abstract— In this paper we propose a robotic vision task with
the goal of enabling robots to execute complex assembly tasks
in unstructured environments using a camera as the primary
sensing device. We formulate the task as an instance of 6D
pose estimation of template geometries, to which manipulation
objects should be connected. In contrast to the standard 6D pose
estimation task, this requires reasoning about local geometry
that is surrounded by arbitrary context, such as a power outlet
embedded into a wall. We propose a deep learning based
approach to solve this task alongside a novel dataset that
will enable future work in this direction and can serve as a
benchmark. We experimentally show that state-of-the-art 6D
pose estimation methods alone are not sufficient to solve the
task but that our training procedure significantly improves the
performance of deep learning techniques in this context.

I. INTRODUCTION

When manipulating complex objects, humans reason about
shape and function. For example, humans know that screws
fit into threaded nuts and know which type of tool should
be used to tighten the screw based on its head. More
generally, we are adept in understanding object interactions
by observing the shape of important key parts of an object.
In particular, humans can manipulate the same class of
object irrespective of its context. We know how to use a
power outlet, whether it is embedded into a plain wall or
a complex piece of furniture. To enable robots to perform
similar tasks, we can use a camera to estimate the 6D pose
of the target into which further assembly components, such
as tools or parts of compound objects, should be placed.
The resulting predictions can then be used for planning of
robot end-effector trajectories. However, the above type of
generalization capability remains elusive for most methods.

Predicting 6D pose of assembly targets in varying contexts
is hard because the texture and the surrounding shape can
be drastically different from one instance to another. The
different appearance of targets makes the detection of key
features harder. Deep learning methods can learn better
representations using context information. However, pose
estimation can be biased by neighboring pixels, especially
if the number of examples in the training dataset is small.
We propose to overcome this issue via bootstrapping shape
information from a single assembly example that is presented
to the learner with randomized surrounding geometry and
texture (see Fig. 1).
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Fig. 1. Top: Example of an assembly task. Given a target object,
the manipulation block should be placed to obtain a compound
structure. Bottom: Given the example on the top, generalization
should be possible as shown in the two bottom rows.

In this paper, we propose and study the new robotic vision
task of 6D pose estimation for assembly scenarios. The
goal is to predict the desired final poses for manipulation
objects, using only raw RGB-D images as input. Approaches
to learning-based 6D pose estimation of rigid objects [1],
[2], [3] have recently made rapid progress in terms of single
object accuracy. However, these approaches can only predict
the pose of a fixed set of a priori known objects. In contrast,
our goal is to attain a method that can generalize to objects
that contain a shape template but are otherwise unseen. The
key insight is that many assembly pieces always fit to a
template geometry, which repeats across different objects
(see Fig. 1). By letting the learner focus on the template
geometry, it should be possible to achieve generalization
to objects outside of the training set. Fig. 1, top shows an
example of a typical assembly task studied here. Crucially,
we introduce a task where a method is trained only on a
single template geometry and needs to be able to generalize
to new objects that contain the template (see Fig. 1, bottom).



To address issues in our task, we introduce a novel
training scheme that leads to better generalization properties
compared to standard 6D pose estimation methods. Our
training data is generated synthetically, allowing for easy
manipulation of geometry and texture. We show that by
using only synthetic training data, where the texture of
the object is randomized, the algorithm can predict the 6D
pose with relatively high accuracy when tested on the same
geometry with unknown texture. However, when presented
with a new object that contains the template geometry,
performance significantly drops. We address this issue by
introducing a novel domain randomization technique, which
randomizes the shape surrounding the target shape. As a
proof-of-concept, we implement a simple open-loop control
scheme on a real robot, which shows that our approach leads
to the successful execution of assembly tasks.

To foster further progress on this task, we introduce and
make publicly available a new dataset with synthetic images
for training and real images for testing. To this end, we
captured 24 different objects categorized into 4 different
assembly tasks. The objects are composed of colored wooden
blocks, yielding variability of shape and texture. We provide
annotation of the 6D poses, the geometries of the manipulator
objects and the target shapes, as well as RGB-D images.
Since the utilized wooden blocks are readily available in any
toy store, our setup can be easily rebuilt for testing on a robot.

In summary, we contribute the following: (i) We introduce
and analyze a new task in the area of robotic vision. Solving
the task might have important implications in assembly
tasks. (ii) We propose a domain randomization technique
that improves the accuracy of our task compared to the
standard 6D pose estimation pipeline. We demonstrate that
our approach leads to the completion of assembly tasks on
a real-world robot. (iii) We introduce a training and a test
dataset to evaluate our approach and enable other researchers
to work on this task.

II. RELATED WORK

In recent years, 6D pose estimation has received a lot of
attention in the robotics and computer vision communities
[1], [2], [3], [4], [5]. The long-term goal is to enable
robots to manipulate objects in unstructured environments.
Thus, estimating positions and orientations of manipulation
objects is an important piece of the manipulation pipeline.
Using hand crafted features [5], [6], it is possible to locate
objects with a relatively high accuracy when objects are
not occluded. With the emergence of Convolutional Neural
Networks (CNNs), researchers have tried to improve the
performance by training models to estimate the 6D pose
directly from image data [1], [3], [4], [7]. However, these
methods rely on a predefined set of objects, and thus cannot
be applied directly to our task.

Several papers try to solve 6D pose estimation by training
only on synthetic data [2], [8] by applying domain ran-
domization approaches. In [8], the authors emphasize the
importance of parameter randomization when synthetic data
is generated and randomize parameters such as position and

texture of objects, position and rotation of lights, back-
ground texture, and camera transformations. More recently,
[2] shows that a high level of precision is possible by training
only on synthetic data. Compared to previous work, [2] uses
a 6D pose estimation specific neural network architecture
and a significant amount of photo realistic scenes. Our work
builds on their publicly available data generation pipeline
NDDS, but extends the domain randomization scheme to
geometry. Similar domain randomization techniques are used
to bridge the domain gap in object detection tasks [9].
Furthermore, [10] show that by using domain randomization,
transfer is possible to a real robot for pick and place tasks.

Research on assembly tasks mostly focuses on planning
a sequence of manipulation actions with pre-defined objects
[11]. The planner often relies on a set of rules that describe
how parts can be connected together [12]. These systems
work in isolation, relying on the availability of pose infor-
mation of known parts. For example, the task of packing
objects into boxes can be solved by using a camera as a
sensing device, but only if the object and box shape are
known a priori [13]. The authors of [14] show that it is
possible to construct a tool by reasoning about the shape of
the desired tool and the shape of its parts. Their focus is
on assembly planning, and thus they only use rectangular
wooden blocks which are easy to recognize in a structured
environment. This work shows that geometric reasoning may
be useful for assembly tasks in unstructured environments.

III. PROBLEM DEFINITION

In this paper we introduce the task of 6D template pose
estimation for robotic assembly. To illustrate the problem,
consider the task of placing a screw into a hole. To complete
this task, the vision algorithm needs to detect the screw hole,
from which the target 6D pose can be estimated. Once the
goal pose is available, a planner can compute a trajectory for
a robot arm to insert the screw. Thus, the crucial problem is
to estimate the 6D target pose from the visual scene. 6D pose
estimation is usually done in two steps: 1) the initial pose
is estimated from the full image of the scene; 2) the pose
is refined locally, using data from the image cropped around
the template. We focus on the initial 6D pose estimate, since
it influences the quality of the following steps and thus the
final task performance. An illustration of the typical steps
involved in assembly tasks is shown in Fig. 2.

The screw insertion task can be part of a more complex
assembly task, where the target is embedded into different
geometries. An example of such generalization is shown in
Fig. 1. The T shaped block can be connected to different
objects via the same template geometry. Note how the shape
and texture of the target objects change in this example.
To achieve generalization, we can exploit the existence of
repeating geometric patterns of template geometries.

More precisely, we pose the problem as a prediction of the
template 6D pose T̃ = [R̃|̃t] directly from pixel data. Since
our goal is to enable generalization to different scenes, we
use the following experimental setup: at training time, only
a pair of assembled objects (c.f. Fig 1, top) are available.



Fig. 2. The steps of an assembly task. First, the goal pose is
predicted from a raw image, which is the focus of this paper. The
goal pose is then used to plan the path of the robot arm.

One of these objects is the manipulation object (e.g., the T-
shaped object on Fig 1, top), and the other is the example
target object. We define the template geometry as a part of
the target object mesh (see Fig. 3, B). The manipulation
object fits exactly into the template geometry. Therefore the
template can be represented by a contact profile (see shaded
area in Fig. 3), irrespective of the surrounding geometry. At
test time, the scene can contain target objects with a template
that is surrounded by different shapes and textures compared
to the example target object (see Fig. 3, C).

Estimating the 6D pose of the template is a difficult task.
The templates are small and most of the time self-occluded.
Moreover, the template is embedded into a surrounding
geometry with unseen texture, which results in different
appearances in images. Generally speaking, 6D pose estima-
tion is posed as either regression [1], [3] or classification
[15], [5] of poses from image data. The appearance of
the template changes substantially with the rotation of the
object, which makes the problem hard even if the template
is fully visible. Occlusions and the influence of surrounding
geometry make the problem even harder. Surrounding pixels
drastically change the appearance of the template, making
the detection of crucial features difficult. For instance, on
the example target object (see Fig. 3. B) the left edge can be
extracted via an edge detector. However, on the test example
(see Fig. 3. C) this edge is not visible. Another difficulty
is that we cannot rely on the texture, and thus the 6D pose
needs to be inferred from the broader context in the image.

The advent of CNNs brought significant improvements on
the 6D object pose estimation task [1], [2], [3], [4], [7].
However, generalizing over different textures and removing
influence of the context are challenging problems for CNN
architectures. CNNs are known to exhibit biases towards
texture [16], especially if pretrained on ImageNet, which is
the de-facto standard in 6D pose estimation methods [1], [2],
[3]. Furthermore, deep CNN architectures possess a large
receptive field and thus neighboring pixels of the template
geometry have a strong influence on the pose estimation
outcome. In this paper we provide empirical evidence (see
Sec VI-B) that by naively applying 6D pose estimation
approaches, such models will overfit to the specific object.

IV. APPROACH AND DATASETS

We argue that it is key to reason about the shape of the
template geometry itself, minimizing the influence of the
texture and the surrounding geometry. Thus, we propose a

Fig. 3. A: 3D model of the example target object with the template
geometry. This mesh is used to generate the training data. B: Real
target object containing the template geometry in a similar context.
Green line shows a visible template edge. C: Real target object with
the template geometry in a different context. The edge from B is
not visible (green dashed line).

number of measures to overcome the inherent biases in exist-
ing methods for 6D pose estimation. Crucially, we propose
a training scheme that can be applied to different existing
methods and improves generalization to unseen objects (see
Sec. VI-B). To evaluate our approach, we collect a dataset
with real objects used in four different assembly scenarios.

Our approach relies entirely on synthetically generated
data. However, we show that the approach does not lead
to an insurmountable domain gap, via a test set containing
only real images. The key ingredients of our approach are:
1) texture randomization and 2) shape randomization at train
time. To test our approach, we re-implement the network
architecture from [3], but our approach applies to other
methods too (see Sec. VI-B). The method from [3] predicts
the segmentation mask of a region of interest, the template
geometry in our case. By selecting only the region of relevant
features, the network is trained to reject information outside
of this region. While it has previously been shown that
such region of interest masks improve 6D pose estimation
accuracy [3], [17], it is not sufficient to solve the problem
studied here. This is due to the influence of data biases and
we show experimentally that training a segmentation based
method on data that contains only example objects does not
generalize well (c.f Sec. VI-B).

A. Domain Randomization

To overcome the issue of texture biases, we randomize the
appearance of the target object via application of different
colors, material roughness, grid patterns, and random textures
from [18]. We show experimentally that texture randomiza-
tion results in high accuracy when tested on an object of the
same shape. The texture of the test object is unknown, which
confirms that the CNN can learn to estimate the pose of a
particular shape by applying texture randomization. Similar
findings were previously reported [16] to introduce a shape
bias in models trained on the ImageNet dataset.

However, it is important to note, that despite texture
randomization, performance on target objects of different
shapes remains poor (see Sec. VI-B). Since the training data
only contains a single example object, a strong shape bias
is introduced. Standard domain randomization techniques
cannot remove this bias. Increasing clutter around the target
object in training data improves performance when the target
is surrounded by other objects [19]. In our case, the template



Fig. 4. Generation of the random mesh. The template mesh is extracted from the example object and a random surrounding mesh is
added. Using this method, the dataset of training objects is constructed and then used to generate training images.

is embedded in the structure, and thus adding separate objects
does not improve the result. To address this problem, we
combine texture randomization with an additional step of
shape randomization. The idea is to randomize the shape
surrounding the template geometry. Thus, the network is
forced to ignore the context and must focus on the template
geometry which is held constant during training. To attain
random shapes, we extract the template mesh (cf. Fig. 4,
left). Next, we define a perturbed context via randomizing
the positions of the vertices of a cuboid. Since every vertex
position is changed independently, we obtain diverse context
shapes (cf. Fig. 4, middle). The range of vertex positions is
chosen such that the faces of the smallest possible cuboid
do not intersect with the template mesh, while the upper
range is selected from a much larger range of values. The
random context shape is then connected to the template mesh
analogously to the original context to produce watertight
meshes. In total we generate 50 random objects per target
shape. We experimentally determined that using more than
50 random objects yield no further improvement.

The NDDS pipeline [2] has been extended in order to
produce the synthetic data. We used all domain randomiza-
tion techniques, i.e., background randomization, light ran-
domization, pose and rotation randomization, and randomly
positioned distractor objects as described in [2]. We limit
the rotation range to prevent full occlusion of the template.
Furthermore, the rotation angles are restricted by the tem-
plate angle of symmetry to prevent symmetric poses in the
dataset, which has been show to improve accuracy [4]. For
each object we generate 12000 training images with ground
truth annotations, i.e., the position and the rotation of the
template geometry, the positions of the 3D keypoints from a
bounding box positioned around the template, 2D projections
of the keypoints in the training image, and the template
segmentation mask. In [9] it has been observed that more
training samples did not improve the results significantly.
We generate a few datasets to examine texture and shape
randomization effects independently as described in Sec. VI.

B. Evaluation Dataset
For evaluation of our approach and as a baseline for future

work, we propose four different exemplar assembly tasks,

illustrated in Fig. 5. Every task corresponds to different
manipulation objects with various types of geometries and
with different types of (self-)occlusion. In Example 1, the
goal is to place the cube into a corner, which displays a
minimal L-shaped template geometry, as is typical in packing
scenarios. Examples 2 and 3 contain more complex rectan-
gular and cylindrical geometries. Example 4 corresponds to
an inserting task where the template geometry is always at
least partially occluded.

For each of the tasks, we recorded six different test scenes
with different objects positioned on a desk. Each scene
contains a different target object – either a single wooden
block or a compound of different wooden blocks. The first
object is always the example target object, which is available
at training time (see Fig. 5). In 6D pose estimation, the
object is available a priori. Thus, we use this example for
comparison with standard 6D pose estimation settings, to
evaluate the influence of surrounding shape and texture. The
other five target objects have a different shape that is not
available at training time. Examples of these objects are
shown in Fig. 5, bottom row. To emulate natural settings,
we place several distractor objects in the scene (see Fig. 8).

1) Dataset Characteristics: The test scenes have been
recorded with an Intel RealSense RGB-D camera. The image
resolution is 640x480. To measure the ground truth goal
poses, we position the target at a predefined offset from a
set of markers (Aruco) that are used to track the camera
pose [20]. The use of markers results in precise tracking
of the goal pose. We move the camera around the target
objects with varying camera angles and distances to the target
object. We keep the camera in a range corresponding to
typical robotic manipulation tasks where a camera is attached
to the robot. We rotate the camera between ±90◦ around
the template. Moving the camera further results in almost
complete occlusion of the template geometry, which would
make detection very difficult. We provide the ground truth
goal positions, RGB-D inputs, example objects’ meshes,
template meshes and manipulation objects’ meshes as anno-
tation. The test data contains 36000 images. We additionally
provide our synthetic training data with all randomized
geometries used to produce the data. In total there are 148000



Fig. 5. The test dataset with ground truth annotations shown with pink wireframes. For each task we show the example object and one
of the test objects with a different shape. Notice that in task 4, the wooden block should be placed inside the hole.

Fig. 6. Convolutional neural network used in our experiments. The
segmentation mask is used to select 2D keypoint predictions only
from within the template geometry.

images. The dataset is available on the project webpage:
https://ait.ethz.ch/projects/2020/template6d/.

V. IMPLEMENTATION

In this section, we explain the specific implementation
details. We discuss the structure of the neural network model,
the refinement procedure, and the real robot implementation.

A. Network Details

In our experiments we follow [3] a CNN with two decoder
streams: a segmentation mask, and a separate prediction
stream for the bounding box keypoints with confidence
estimation. Both streams use the same base network, in our
case VGG 16, as shown in Fig. 6. We combine the outputs
of the blocks 4 and 5 from VGG 16 and pass them to the
decoders, similar to [1]. The output of the decoders are 3D
tensors with spatial resolution S×S and feature dimensions
Dseg and Dreg . The resolution S × S is lower than the
original image resolution, in our case 50×50. This effectively
means that we place an S × S grid onto the image (see
Fig. 6). Each grid cell then produces Dseg segmentation
votes, in our case only two, corresponding to background and
template, and Dreg real numbers that predict the 2D keypoint
locations and confidence scores. For k keypoints, Dreg is
3×k, where 2×k are the predictions of x and y coordinates,
and additionally k confidence predictions. Only predictions

that fall within the segmentation mask are selected, both
at training and test time. By masking out the predictions
from the background, the network focuses on features from
the template. This is especially important in the case of
occlusions, where this regularization helps to remove the
features from occluding objects which bias the prediction.

Each grid cell predicts k = 8 keypoints, corresponding
to the 2D projections of the 3D bounding box corners. As
suggested in [3], we use a RANSAC version of the PnP
algorithm [21] to match the corners of the 3D bounding
box with the 2D keypoints and to compute the template
pose. The RANSAC algorithm finds the best match when
multiple predictions are available. Thus, we select the 10
most confident predictions for each of the 8 keypoints. The
algorithm can be extended to multiple targets via clustering
of the keypoint predictions [3]. However, our test dataset
contains only a single test object per scene, which enables
us to isolate the influence of different contexts.

B. Refinement Step
To further improve the pose estimation accuracy, we

use the Iterative Closest Point (ICP) algorithm. The ICP
algorithm improves the pose by iteratively minimizing the
distance between the 3D model of the template and point
cloud obtained from a depth image. The accuracy of the ICP
algorithm depends on the initial pose, which we obtain via
the method described above. Therefore, improving the initial
pose estimate also results in better final pose predictions.

C. Implementation on the Robot
For the robot experiments, the camera is placed on a fixed

position facing the table upon which the objects are placed.
The offset between the camera and robot is obtained in an
off-line calibration procedure. To remove the influence of
grasping errors, the manipulation objects are placed manually
into the gripper of the ABB YuMi robot. The camera captures
a single RGB-D frame, which is then used to compute the
target pose. The robot arm trajectory is computed via the
trajectory optimization algorithm from [22].



VI. RESULTS

In this paper, we propose a new robotic vision task
and several domain randomization techniques to improve
generalization to unseen template context and appearance.
We now evaluate our domain randomization techniques and
point to the most critical issues of the proposed task. First, we
show that via texture randomization, the network can learn
to detect the 6D pose of a shape. Second, we show that the
influence of the surrounding geometry is an important issue
that cannot be solved by state-of-the-art CNNs for 6D pose
estimation. We address this issue by our novel shape random-
ization technique and achieve significant improvement over
the baselines. Finally, we show that by using our approach
it is possible to execute the assembly task on the real robot.

To evaluate our approach, we generated two synthetic
training datasets. To isolate the effects of texture random-
ization, the first training dataset uses only the texture ran-
domization technique while keeping the geometry of the
example target object. The second dataset uses the full
domain randomization pipeline. For each task, we train a
separate neural network. Inference time for both models is
approximately 30 ms. Computing the pose via PnP algorithm
is 4 ms and pose refinement takes 140 ms approximately. The
full pipeline runs at 6 fps on a Nvidia Pascal Titan X.

For evaluation, we use our test dataset with real images as
described in Sec. IV-B. We evaluate our approach separately
on the example target object and compare results to the
cases when the shape of the object is unknown a priori.
This comparison highlights the influence of the surrounding
shape on the pose prediction. Nevertheless, our primary goal
is to achieve high accuracy on target objects with unseen
shapes. Therefore, our main focus is on the evaluation of
our approach on the objects 2-6 in each of the tasks.

A. Metrics

To evaluate the task performance, we propose two met-
rics: average distance (ADD) and ADD-S for symmetric
objects. These metrics have been used routinely for 6D pose
estimation [1], [2], [3], [5], [4], [7]. The ADD metric is
defined as the mean distance between the 3D model points
x, transformed by the ground truth rotation R and translation
t, and the estimated rotation R̃ and translation t̃:

ADD =
1

n

∑
x∈M

||(Rx+ t)− (R̃x+ t̃)||. (1)

In the previous equation, n is the number of points in the
set M of 3D model points. In our case, we sample the
points x uniformly from the 3D bounding box positioned
around the template, which correspond to the space into
which the manipulation object fits. The ADD-S metric is
defined analogously:

ADD-S =
1

n

∑
x1∈M

min
x2∈M

||(Rx1 + t)− (R̃x2 + t̃)||. (2)

Compared to the ADD metric, ADD-S uses the distances
between the closest points rather than specific pairs of points.

Fig. 7. Accuracy-threshold curves. The blue curves show average
accuracy for the example objects, and the orange curves for
objects with unseen shapes. The texture randomization accuracy
significantly drops for objects with unseen shapes, while the full
randomization results in high accuracy for all objects. We only
show results for the method from [3] for clarity.

The final measure of performance is the ratio of correct
pose predictions over the test set Nc

Nd
, where Nc is number of

correctly estimated poses and Nd is the number of samples
in the dataset. We use two different thresholds to classify
the pose as correct. The first threshold is used to evaluate if
the pose is correctly initialized for the refinement procedure.
This threshold is set to 2 cm. The second threshold indicates
that the pose is correctly estimated. This threshold is 10%
of the bounding box diameter, as commonly used in 6D
pose estimation literature [3], [5], [4], [7]. We refer to this
threshold as 0.1d. Keep in mind that objects are relatively
small and that diameters are in the range of 5 cm to 8 cm.

B. Evaluation

Additionally to our reimplementation of [3], we evaluate
our domain randomization approach on a method from [2].
This model shows competitive performance on the task of 6D
pose estimation when trained only on the synthetic dataset
[2]. In the first two experiments, we evaluate the effects
of texture and shape randomization on the neural network
predictions without using the refinement step. In the last
experiment, we evaluate the final precision of the algorithm
after the ICP refinement step.

1) Texture randomization: When we use only texture
randomization, the accuracy is satisfactory only for the test
objects with known geometry (see Fig. 7). However, on other
objects, texture randomization performs much worse. This
experiment reveals two essential conclusions. First, these
results suggest that the network indeed learns to recognize
shapes via texture randomization. When the shape is fixed,
the network predicts correct poses even though the textures
are not available at training time. Second, the surrounding
mesh strongly influences the 6D pose estimation of the tem-
plate geometry. There is a significant gap between success
rates on the objects with known shapes and the objects with
unseen shapes. Even with the state-of-the-art method that
rejects the influence of surrounding pixels via a segmentation
mask [3], the network overfits to the training shape.



Fig. 8. Example predictions of our method, trained with different levels of domain randomization. Predictions are represented with pink
wireframes. Note that predictions are rendered without z-culling and hence occlusions appear incorrectly in the right most case.

TABLE I
ADD SUCCESS RATES ON OBJECTS 2-6 (DIFFERENT SHAPE OBJECTS).

Model from [2] Model from [3]
Tex. DR Tex.+Shape DR Tex. DR Tex.+Shape DR

<0.1d <2 cm <0.1d <2 cm <0.1d <2 cm <0.1d <2 cm
Task 1 3.0 11.1 11.4 44.1 0.5 7.3 8.1 35.4
Task 2 1.0 4.9 22.3 59.3 3.9 16.0 20.4 58.3
Task 3 14.2 30.8 17.7 55.5 10.5 42.5 19.8 64.4
Task 4 0.1 4.1 16.2 68.1 0.3 9.0 19.5 63.5
Mean 4.6 12.7 16.9 56.8 3.8 18.7 17.0 55.4

TABLE II
ADD-S SUCCESS RATES ON OBJECTS 2-6 (DIFFERENT SHAPE OBJECTS).

Model from [2] Model from [3]
Tex. DR Tex.+Shape DR Tex. DR Tex.+Shape DR

<0.1d <2 cm <0.1d <2 cm <0.1d <2 cm <0.1d <2 cm
Task 1 8.8 21.5 37.9 68.2 4.9 21.3 29.1 63.7
Task 2 4.4 14.3 60.1 86.9 16.5 30.8 58.6 82.8
Task 3 27.5 39.9 47.6 74.3 35.1 60.9 55.5 85.1
Task 4 6.0 17.8 66.7 95.3 9.1 31.5 64.5 92.0
Mean 11.7 23.4 53.1 81.2 16.4 36.1 51.9 80.9

2) Full randomization: Our final goal is to have a method
that works with objects of unseen shape. Therefore, the
majority of our test objects have shapes that are not available
at training time. The results are summarized in Table I and
Table II. Note that in this experiment, the 2 cm threshold is
more significant. This an important threshold beyond which
a refinement procedure will no longer converge. A qualitative
comparison can be seen in Fig. 8. To mitigate the influence of
the surrounding shape, we add the shape randomization to the
dataset generation pipeline. Shape randomization minimizes
the influence of the surrounding shape by removing the
surrounding shape biases in the training dataset. Our full
domain randomization pipeline significantly improves the
results irrespective of the neural network model used (see
Table I and Table II). In case of the model from [3], the
accuracy increases by 36.7 % and 45.0 % for the 2 cm
threshold, for ADD and ADD-S errors respectively.

3) ICP refinement: As a refinement step, we implemented
the ICP algorithm. The estimated goal pose is sent to the
robot planner after the refinement step. Thus, we should

TABLE III
ADD SUCCESS RATES ON OBJECTS 2-6 (DIFFERENT SHAPE OBJECTS)

AFTER ICP REFINEMENT.

Model from [2] + ICP Model from [3] + ICP
Tex. DR Tex.+Shape DR Tex. DR Tex.+Shape DR

<0.1d <2 cm <0.1d <2 cm <0.1d <2 cm <0.1d <2 cm
Task 1 6.1 16.0 23.4 62.2 4.5 18.5 25.6 61.7
Task 2 8.7 15.9 69.1 82.9 23.0 32.5 67.6 81.2
Task 3 23.9 39.7 36.5 70.8 30.7 60.6 45.6 83.2
Task 4 1.1 14.2 25.2 85.6 2.3 22.6 26.9 81.7
Mean 9.9 21.5 38.5 75.4 15.1 33.5 41.4 77.0

TABLE IV
ADD-S SUCCESS RATES ON OBJECTS 2-6 (DIFFERENT SHAPE OBJECTS)

AFTER ICP REFINEMENT.

Model from [2] + ICP Model from [3] + ICP
Tex. DR Tex.+Shape DR Tex. DR Tex.+Shape DR

<0.1d <2 cm <0.1d <2 cm <0.1d <2 cm <0.1d <2 cm
Task 1 15.4 28.7 61.6 73.9 18.1 32.9 60.8 73.2
Task 2 16.5 20.9 83.9 90.1 33.8 40.6 82.3 89.4
Task 3 39.1 47.0 69.8 82.2 60.0 69.2 82.3 92.5
Task 4 14.6 28.0 86.6 96.6 25.2 41.9 83.7 93.8
Mean 21.4 31.2 75.5 85.7 34.3 46.2 77.3 87.2

pay attention to the 0.1d threshold, which indicates that the
pose is correctly estimated. In Tables III and IV, we can
notice a significant improvement when ICP is applied to
the prediction obtained from the full domain randomization
pipeline. After the refinement step, the pose estimate is more
reliable compared to the initial estimation, implying that the
output can be used for motion planning in assembly tasks.

When using the full randomization pipeline, both methods
perform similarly in most of the tasks except in Task 3, where
the method from [3] performs better. The half-cylinder 3D
model is challenging for ICP refinement because the model
can easily slide along the curvature. The method from [3]
uses the RANSAC version of PnP which provides a more
robust initialization for ICP. Another benefit of the method
from [3] is that the keypoints are predicted directly from the
network, while the method from [2] produces the keypoint
heatmaps. It is a known issue that extracting a maximum
from the down-sampled heatmap can be unstable.



Fig. 9. Example of the assembly task executed on the robot. The camera on the left captures the scene. From the image, our approach
predicts the goal pose, which is used to compute the robot arm trajectory.

C. Experiments on a Real-World Robot

To demonstrate that our approach leads to the suc-
cessful execution of assembly tasks, we implemented
our algorithm on a real robot (c.f. Fig. 9). Please re-
fer to the accompanying video for more results (url:
https://youtu.be/hUyjFG7W5hM). Our system predicts a goal
pose from a single image and produces a trajectory for the
robotic gripper. The algorithm has the lowest error rates
if the template is oriented towards the camera. In these
cases, the robot can complete the task. However, the robot
cannot always execute the task since the accuracy of 6D pose
estimation decreases for more extreme viewing angles. By
improving the method for 6D pose of template geometries or
by adding a feedback loop, the accuracy could be improved.

VII. DISCUSSION AND CONCLUSION

In this paper, we introduce a robotic vision task that can
have significant implications in assembly tasks. We analyze
the most critical issues in this task, i.e., the influence of the
unseen surrounding geometry to the 6D pose estimation. To
address this problem, we introduce a domain randomization
approach and show significant improvements irrespective
of the underlying network architecture. Furthermore, we
demonstrate that our pipeline leads to the successful exe-
cution of the assembly tasks on a real-world robot.

We present the initial work that enables generalization
in assembly tasks via template geometries. To allow other
researchers to improve the solution of the proposed task, we
will release our training and test datasets. We suggest a few
directions that could lead to better results. The accuracy of
the 6D pose estimation can be improved in different ways,
either by improving the training dataset, the neural network
model, or improving the training loss function. Furthermore,
by using closed-loop control, the planning algorithm can be
improved to correct for the errors of the 6D pose estimation.
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