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1ETH Zürich 2Max Planck Institute for Intelligent Systems, Tübingen

In this supplementary document, we provide additional
materials to supplement our main submission. In the sup-
plementary video, we show more reconstruction results of
our method on monocular in-the-wild videos.
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1. Implementation Details
1.1. Network Architecture

Human. The canonical human shape network fH
sdf (Eq. 1

in the main manuscript) includes 8 blocks, each of which
consists of a fully connected layer, a weight normalization
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layer [17] and a softplus activation layer [5]. Each fully con-
nected layer contains 256 neurons. The pose condition θ is
obtained by concatenating all axis angles represented in ra-
dians. We apply positional encoding with 6 frequency com-
ponents to the input points to better model high-frequency
details [16]. The canonical human texture network fH

rgb
(Eq. 5 in the main manuscript) includes 4 blocks with the
same architecture as the human shape network except using
the Sigmoid activation function for the last layer and using
a ReLU activation function for the rest layers.

Background. The background network fB (Eq. 7 in the
main manuscript) also consists of two parts: the background
density network and the texture network. The density net-
work has the same architecture as the canonical human
shape network with 10 frequency components to the input
points. And the texture network only includes 1 block of a
fully connected layer with 128 neurons, a weight normal-
ization layer, and a ReLU activation layer, ending up with a
Sigmoid activation layer.

1.2. Training Details

We train our networks using the Adam optimizer [12],
with an initial learning rate of l = 5e−4 which will decay in
half after each scheduled milestone. In our implementation,
the milestones are set to be 200 and 500 epochs respectively.
The other Adam hyper-parameters are set to β1 = 0.9 and
β2 = 0.999. A model is trained for 36 to 48 hours on a
single NVIDIA RTX 3090 GPU.

1.3. Composited Volume Rendering

As introduced in the main manuscript, we extend the in-
verted sphere parametrization of NeRF++ [25] to represent
the scene: an outer volume (i.e., the background) covers the
complement of a spherical inner volume with radius R = 3
(i.e., the space assumed to be occupied by the human).

Foreground Rendering. For rendering the foreground
component, we combine the implicit neural avatar repre-
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sentation (Sec. 3.1 in the main manuscript) with SDF-based
volume rendering [24] which allows us to convert the SDF
to a density value σ. Similar to [24], we first uniform sam-
ple 128 points along the ray r in the inner volume and
then perform the inverse Cumulative Distribution Function
(CDF) sampling returning 64 sampled points. For more de-
tails, we refer to [24].

Background Rendering. To obtain the background com-
ponent color value, we follow [25] and sample 32 points
outside the inner sphere. This is achieved by uniformly
sampling 1

r in the range [0, 1
R ]. Given the sampled 1

r , we
calculate the corresponding background point x′

b using the
geometric relationship derived in [25].

1.4. Initialization

We first utilize the body pose regressor [18] to esti-
mate the initial SMPL [14] parameters of the human in the
videos. Similar to [7], we refine the SMPL estimates by
simply minimizing the 2D distance between 2D joint pre-
dictions from OpenPose [3] and the 2D projection of 3D
SMPL joints along with a temporal pose stability loss which
penalizes temporal pose jittering. The total objective LSMPL
for the SMPL refinement optimization is:

LSMPL(θ) = Ljoint(θ) + λstabLstab(θ) (18)

with

Ljoint(θ) =

Njoint∑
i=1

wiρ (Π (J(θ)i)− J2D,est,i) , (19)

Lstab (θ) =

Njoint∑
i=1

∥J(θ)i − J ′
i∥

2
2 , (20)

where J(θ) is the 3D SMPL joints given the SMPL param-
eters θ. We sum up the distances for each joint i overall
counter joints Njoint. We denote Π as the 3D to 2D projec-
tion of joints with camera parameters. To account for detec-
tion noise, the error terms are weighted by the correspond-
ing detection confidence wi. To down-weight outlier 2D
detections, a robust Geman-McClure error function ρ [6] is
applied. J ′

i represents the 3D SMPL joints of the last frame.
We pretrain the shape network in canonical space based

on SMPL mesh deformed into the canonical pose for the
purpose of accelerating the training process.

1.5. Data Preprocessing

Given the estimated SMPL parameters for all frames, we
relocate the individual SMPL meshes at the space origin O
by subtracting their center of gravity. We further apply a
global scale of 3

R∗1.1 to ensure all estimated camera centers
are inside the inner spherical volume, similar to [24].

1.6. Opacity Sparseness Regularization

We deploy the opacity sparseness regularization loss
term to encourage the global sparsity of the ray opacity.
This is achieved by leveraging the dynamically updated hu-
man shape in canonical space. In particular, we warp the
sampled points into canonical space via inverse warping and
calculate the signed distance to the human shape in canon-
ical space. Instead of simply using the queried SDF values
from the canonical shape network for these points, we ex-
tract the canonical human shape explicitly and then calcu-
late the signed point-to-surface distances in the mesh space.
This is because the SDF distribution for the space that is far
away from the canonical human shape could be irregular
due to the lack of observations. For the rays whose nearest
point to canonical human shape has a distance larger than a
pre-defined threshold value 5 cm, we classify these rays as
non-intersecting rays. Note that, we progressively update
the canonical human shape during the whole training pro-
cess, and thus, the threshold value does not tightly bound
the canonical human shape but is a regularizer for a conser-
vative update.

1.7. In-shape Stabilization Loss

Even though the canonical human shape is initialized as
an SMPL mesh deformed into the canonical pose, the train-
ing process could fail in case the background model domi-
nates the representation of the entire scene. To further stabi-
lize the training progress, we can encourage the intersecting
rays (distance ≤ 0) to be fully opaque (the opacities equal to
1). We gradually decay the weight of this loss to zero as it is
optional and only needed in the early stage of the training.

2. Evaluation Details
2.1. 2D Segmentation Comparisons

Dataset. Following MonoPerfCap [23], we use the
MonoPerfCap dataset to compare our method with other
off-the-shelf 2D segmentation approaches to validate the
scene decomposition quality of our method. The evaluation
sequence Helge outdoor contains 131 frames of in-the-wild
human performance with ground-truth masks.

2.2. View Synthesis Comparisons

We use the NeuMan dataset [11] for the evaluation of
novel view synthesis. This dataset collects 6 videos of 10
to 20 seconds long captured by a mobile phone. For more
details and training/testing split of this dataset, we refer to
[11]. The original dataset does not contain ground-truth hu-
man masks and thus is not suitable for the evaluation of the
rendering quality of humans under test views. To this end,
we manually segment the human from images in the test set
for the quantitative comparison. We use HumanNeRF [21]
and NeuMan [11] as our baselines. By default, NeuMan



uses [9] to segment humans and we run RVM [13] for Hu-
manNeRF. We simply use the pre-trained checkpoints of
NeuMan for evaluation (7 days required for training) and
train HumanNeRF with the same human poses as ours.

2.3. Reconstruction Comparisons

We use 3DPW [20] and SynWild datasets (see also
Sec. 2.4) for reconstruction comparisons. Specifically, we
evaluate the outdoors fencing 01 sequence in 3DPW which
contains 942 frames. ICON [22] and SelfRecon [10] are
used as baseline approaches. By default, ICON applies [2]
to obtain the human masks and we run RVM [13] for Self-
Recon.

2.4. SynWild Dataset

We propose a new dataset called SynWild to evaluate
the monocular human surface reconstruction task. Dynamic
human subjects are captured in a dense multi-view system
and reconstructed with detailed surface geometry and realis-
tic textures via commercial software [4]. More specifically,
the capturing setup is equipped with 106 synchronized cam-
eras (53 RGB and 53 IR cameras) and human motion se-
quences are filmed at 30 FPS. Then we place the textured
4D scans into realistic 3D scenes/HDRI panoramas and ren-
der monocular videos from virtual cameras with a 35mm
focal length and 1920x1080 image resolution, leveraging a
high-quality game engine [1]. In total, this dataset includes
6 video sequences (1091 frames) with different motions,
human subjects, and backgrounds. This is the first dataset
that allows for quantitative comparison of monocular hu-
man reconstruction in a realistic setting via semi-synthetic
data. We show the rendered images and their corresponding
ground-truth meshes in Fig. 8.

3. More Results

3.1. Additional Ablation Studies

Jointly Pose Optimization: We compare our full model
to a variant version without jointly optimizing human poses.
The qualitative result is shown in Fig. 9, in which we can
see that our method can refine the poses and achieve better
reconstruction quality.

Modeling of Background: One key component of our
method is to model the background along with the human.
To show the importance of background modeling, we com-
pare our full model to a variant without background model-
ing. Instead, we run RVM [13] to segment the human from
images. Results: Tab. 5 and Fig. 10 indicate that modeling
human and background jointly is crucial for human recon-
struction in the wild.

Image GT Reconstruction

Figure 8. SynWild Dataset. We show sample images and their
corresponding ground-truth meshes from the SynWild dataset.



Figure 9. Importance of jointly pose optimization. Jointly pose
optimization corrects initial pose estimates and achieves better re-
construction quality.

w/o BG ModelingReference Scan Ours Full

Figure 10. Importance of modeling background. Without mod-
eling the background, the decoupling between the human and the
background is upper-bounded by the off-the-shelf segmentation
tool and only yields worse reconstruction results.

Method IoU ↑ C− ℓ2 ↓ NC ↑
w/o BG Modeling. 0.811 3.13 0.728
Ours 0.818 2.66 0.753

Table 5. Importance of background modeling. Without back-
ground modeling, our method cannot recover the complete human
body and the reconstruction quality is upper-bounded by the 2D
segmentation module.

3.2. Comparison with Template-based Methods

A direct quantitative comparison to state-of-the-art
template-based approaches is not feasible. This is because
1) their code is not publicly available and 2) no accurate
3D ground-truth human scans for their in-the-wild testing
sequences are available. Hence, we conduct qualitative
comparisons to state-of-the-art template-based approaches:
MonoPerfCap [23] and DeepCap [8].

We show in Fig. 11 and Fig. 12 the comparison of our
method with MonoPerfCap and DeepCap respectively. We
can see that our method achieves better human reconstruc-
tion results in terms of the global pose alignment and the
surface detail recovery. To be noted, our method does not
require any cumbersome (pre-scanning and manual rigging)
pre-processing.

3.3. Background Component Rendering

At the core of our method lies the idea to jointly learn
the dynamic foreground and the background from images,

Image MonoPerfCap Ours

Figure 11. Qualitative comparison with MonoPerfCap. Our
method recovers better dynamic surface details (e.g., cloth wrin-
kles) and realistic facial features.

Image DeepCap Ours

Figure 12. Qualitative comparison with DeepCap. Our method
recovers better dynamic surface details (e.g., cloth wrinkles) and
realistic facial features.

leading to self-supervised scene decomposition. As shown
in Fig. 16, our method is able to model the complete back-
ground even under occlusions caused by human motions by
leveraging the temporal information in the whole video se-
quence via the proposed global optimization formulation.
In other words, these results also reflect a clean and robust
decoupling of the human and background in the scene.

3.4. Additional Qualitative Results

We provide an additional qualitative novel view synthe-
sis comparison in Fig. 13. We also show the front and back
view of our reconstructed 3D avatars in canonical space in
Fig. 17.



GT NeuMan HumanNeRF Ours

Figure 13. Additional qualitative view synthesis comparison.
Our method achieves comparable and even better novel view syn-
thesis results compared to NeRF-based methods.

Driving Signal Animation

Figure 14. Animation results. Given driving signals from differ-
ent sources, our reconstructed 3D avatars can be animated to novel
new poses and can be rendered along with the original background.

4. Animation

Apart from capturing the dynamic human performance
over the entire video sequence, the reconstructed 3D avatar
can also be animated to novel poses. The animation results
are shown in Fig. 14. The 3D avatars can be animated using
the motion from another training video or the poses from the
off-the-shelf large corpus of motion capture data [15, 19].
Note that, since we also learn the background, we can put
the posed avatar into the original scene with high-fidelity
rendering results as demonstrated in the second column of
Fig. 14.

Image SMPL Reconstruction

Figure 15. Failure case. Unreasonable pose initialization leads to
the incorrect reconstruction, especially when the RGB information
is not enough for the pose correction.

5. Limitations and Societal Impact Discussion
Although readily available, Vid2Avatar still relies on rea-

sonable pose estimates as inputs. A poor pose initialization
may lead to artifacts on that particular frame, especially in
the case of motion blurs where the photometric information
is missing to correct the poses as shown in Fig. 15. And if
regions of the clothed human are not or barely visible in the
entire video input, the 3D surface in these regions tends to
be relatively smooth without high-frequency details. Fur-
thermore, our method performs well for garments that are
topologically similar to the body. Loose clothing such as
skirts or free-flowing garments poses challenges due to their
fast dynamics.

Vid2Avatar enables the digitization of humans from a
single RGB video, which has many potential applications
in movies, AR/VR, and telepresence applications. As the
result of our method is a human avatar, that can be animated
with unseen poses, there is a risk that it might be misused
for purposes such as deep-fakes. Such concerns must be ad-
dressed first before deploying digital human avatars in prod-
ucts. Clearly, our goal with this work is to enable uses of
the technology that are beneficial for society. Unfortunately,
we cannot prevent nefarious uses of such technology, but we
argue that studying these methods in a maximally transpar-
ent way, including discussion of technical details in the pa-
per, and release of code and data, should be preferred over
undisclosed research, as this will help to build counter mea-
sures to mitigate the potential for dubious uses.
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Figure 16. Qualitative results of background rendering. We show qualitative results of our modeled backgrounds.



Reference Image Front View Back View

Figure 17. Visualization of front and back view of reconstructed 3D avatars in canonical space.
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